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1 Introduction
Numerous physical phenomena stem from the interplay between periodic and random 
processes. This interaction results in processes that lack inherent periodicity but exhibit 
periodic patterns in their statistical functions over time. This property of a given sig-
nal is called hidden periodicity. The common statistics which may exhibit the periodic 
behavior of the signal are the mean function and autocovariance function (ACVF), and 
in such a case the model under consideration is called periodically correlated (PC) or 
second-order cyclostationary. The PC signals manifest themselves in various real-world 
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We address the issue of detecting hidden periodicity when the signal exhibits periodic 
correlation, but is additionally affected by non-Gaussian noise with unknown charac-
teristics. This scenario is common in various applications. The conventional approach 
for identifying periodically correlated (PC) behavior involves the frequency domain-
based analysis. In our investigation, we also employ such an approach; however, we 
use a robust version of the discrete Fourier transform incorporating the Huber func-
tion-based M-estimation, unlike the classical algorithm. Building upon this approach, 
we propose robust coherent and incoherent statistics originally designed to identify 
hidden periodicity in pure PC models. The novelty of this paper lies in introduc-
ing robust coherent and incoherent statistics through the application of the robust 
discrete Fourier transform in classical algorithms and proposing a new technique 
for period estimation based on the proposed methodology. We explore two types 
of PC models and two types of additive noise, resulting in PC signals disturbed by non-
Gaussian additive noise. Detecting hidden periodicity in such cases proves to be 
significantly more challenging than in classical scenarios. Through Monte Carlo simula-
tions, we demonstrate the effectiveness of the proposed robust approaches and their 
superiority over classical. To further substantiate our findings, we analyze three datasets 
in which hidden periodicity had previously been confirmed in the literature. Among 
them, two datasets correspond to the condition monitoring area, being a main motiva-
tion of our research.

Keywords: Periodic correlation, Hidden periodicity detection, Non-Gaussian noise, 
Period identification, Air pollution data, Local damage detection

Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

RESEARCH

Żuławiński et al. 
EURASIP Journal on Advances in Signal Processing         (2024) 2024:71  
https://doi.org/10.1186/s13634‑024‑01168‑6

EURASIP Journal on Advances
in Signal Processing

*Correspondence:   
wojciech.zulawinski@pwr.edu.pl

1 Faculty of Pure and Applied 
Mathematics, Hugo Steinhaus 
Center, Wroclaw University 
of Science and Technology, 
Hoene-Wronskiego 13c, 
50-376 Wrocław, Poland
2 INSA Lyon, LVA, UR677, 
69621 Villeurbanne, France
3 Faculty of Geoengineering, 
Mining and Geology, 
Wroclaw University of Science 
and Technology, Na Grobli 15, 
50-421 Wrocław, Poland

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13634-024-01168-6&domain=pdf


Page 2 of 30Żuławiński et al. EURASIP Journal on Advances in Signal Processing         (2024) 2024:71 

scenarios. They are observed in mechanical systems [1, 2], climatology, and meteoro-
logical processes [3, 4]. Furthermore, financial time series can also exhibit PC behavior 
[5, 6]. The concept of PC processes was initially introduced by L. Guzdenko and E. G. 
Gladyshev [7, 8] and further expanded by H. Hurd [9] and W. Gardner [10]. Since then, 
numerous scientific articles and books have addressed PC processes analysis.

In the literature, one can find various theoretical models that exhibit the PC property. 
In time series analysis, the most common is the periodic autoregressive moving aver-
age model (PARMA), which is a natural extension of the widely utilized autoregressive 
moving average (ARMA) model [11]. In PARMA scenario, the constant coefficients in 
ARMA time series are replaced by periodic deterministic functions. In consequence, the 
periodicity of such models manifests itself in the ACVF. ARMA models find applica-
tions in various areas of interest, including engineering sciences, where they describe 
a real system based on measured data from mechanical systems [12–14]. However, if 
the mechanical system operates under time-varying conditions, the coefficients of the 
ARMA model also fluctuate over time, displaying variability in some characteristics of 
the corresponding data. If such changes are periodic, it results in periodicity of data 
characteristics. Consequently, within mechanical systems, PARMA models (particu-
larly PAR models) have been proposed as an optimal approach for systems experiencing 
cyclic variations in load or speed, such as the bucket wheel excavator used in the raw 
material industry [15]. The application of PARMA and PC models in mechanical sys-
tems (particularly in condition monitoring) is the main motivation of our work. In this 
area, one of the key problems is the local damage detection in gears/bearings. Viewed 
through a signal processing perspective, damage detection can be characterized as the 
identification of impulsive signals (resulting from localized faults) and cyclic signals 
(stemming from the rotation of elements) within noisy observations. Thus, the identifi-
cation of local damage can be considered as the detection of hidden periodicity.

In the classical analysis of PC processes, different approaches were used for the detec-
tion of hidden periodicity [16]. However, the most common one is the analysis of the 
ACVF of the underlying signal in various domains (time, time–frequency, and bi-fre-
quency domains) [17, 18]. The classical tool in such a case is the two-dimensional 
spectral density, a bi-frequency statistic, with its estimator called sample coherence. 
It is strongly related to the commonly used cyclic spectral coherence statistic, which 
serves as a tool for the identification of periodic characteristics of a signal [19]. Meth-
ods for detection of hidden periodicity based on such maps are widely discussed in the 
literature. For example, the authors of [20, 21] used new algorithms for cyclic spectral 
approaches in mechanical systems, while the study presented in [22] proposed a novel 
method for cyclic spectrum analysis improved by machine learning techniques. Several 
cyclostationary indicators (in the context of gear fault monitoring) that also make use of 
the ACVF were proposed in [23], see also [24, 25].

Sample coherence, analyzed for example in [18, 26], takes advantage of the property 
of PC models for which the support of the two-dimensional spectral density is a set of 
parallel, evenly spaced diagonal lines. It was also utilized for other statistics used to iden-
tify the hidden periodicity of PC time series, such as coherent and incoherent statistics 
[5, 18]. They were proposed in [27] as functions represented in the frequency domain to 
determine the presence of periodic correlation in given data. Both are one-dimensional 
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representations of the two-dimensional sample coherence, which convey the informa-
tion about potential periodicity in a way that is easier to interpret. When a periodicity is 
present in the analyzed signal, the correspondingly periodic peaks should be present in 
the plots of these statistics.

Although the methods mentioned above for the PC behavior identification appear to 
be effective for classical cases, in practical applications, it is frequently observed that sig-
nals display PC behavior (or, in general, hidden periodicity) but are also disturbed by 
additional noise. Consequently, detecting hidden periodicity becomes considerably more 
challenging compared to situations where a pure model (i.e., without the additive noise) 
is considered. Indeed, in industrial settings, the recorded signals are almost invariably 
corrupted by noise that can stem from disruptions in the measuring systems or other 
external factors that influence the observations. The problem of PC models with additive 
noise was discussed in the literature, where various techniques were proposed for the 
estimation of such models. For example, in [28, 29] the authors examined the PAR mod-
els with additive outliers, and in [30, 31], the noise-corrupted PAR system was discussed 
for the general distribution of noise with finite-variance distribution. The special case of 
noise-corrupted PARMA models (i.e., ARMA model) has been extensively discussed for 
different types of additive noise; see, e.g., [32–34].

In this paper, we discuss the problem of hidden periodicity detection when the model 
under consideration exhibits PC property but is disturbed by non-Gaussian additive 
noise. Similar to the classical approach (i.e., when the additive noise does not occur), the 
methodology is based on the sample coherence; however, in the algorithm we propose 
to use the robust version of the discrete Fourier transform based on the Huber func-
tion-based M-estimation. Using the robust version of the sample coherence, we propose 
robust counterparts of coherent and incoherent statistics and apply them to the hid-
den periodicity identification. Relatively simple modification of the classical approaches 
allows us to effectively apply them for noise-corrupted models.

Let us note that the problem of detecting hidden periodicity can be formulated using 
the language of hypothesis testing. In classical methodology based on Gaussian mod-
els, this approach seems to be natural. However, our situation differs from the classical 
approach because our goal is to demonstrate that detecting hidden periodicity is more 
complex when general additive non-Gaussian noise is present in the data. In hypoth-
esis testing, we first need to define the test statistic. In our case, when considering the 
sample coherence-based statistic, it can serve as a basis for hypothesis testing. However, 
the next step involves identifying the test statistic’s distribution under the null hypoth-
esis. This is the main challenge because, under the null hypothesis, we do not assume 
any specific distribution of the data, nor do we assume any specific PC model. There-
fore, formulating the problem in the language of hypothesis testing for such a general 
situation is difficult. In our previous paper (see [30]), we discussed the problem of hid-
den periodicity detection using hypothesis testing for the finite-variance case, where we 
assumed specific PC models. Here, the situation is more complicated, and the graphical 
methods proposed in this paper can help to identify hidden periodicity behavior.

In our analysis, we discuss two exemplary PC models. The first model (called later PC 
model 1) is a Gaussian noise with added periodic function, while the second one (called 
later PC model 2) is a Gaussian PAR model. Both models were explored in the literature 
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as common systems for PC phenomena description in various areas. We also consider 
two types of additive noise. The first one (called AN model 1) is a sequence of addi-
tive outliers, while the second one (called AN model 2) is an autoregressive model with 
innovations coming from a general class of α−stable distribution [35]. Let us note that 
the interdependence contained in AN model 2 makes the detection of hidden periodic-
ity even more difficult. We recall that the α−stable distribution, in general, has infinite 
variance (except in the Gaussian case) and belongs to the so-called heavy-tailed class 
of distributions. This class has found many applications, including the condition moni-
toring area [36, 37]. Both considered PC models combined with two types of additive 
noise serve the stochastic systems with non-Gaussian distribution; however, in the case 
of AN model 1, this distribution has finite variance, while in the second case, it may 
have infinite-variance distribution. We highlight that, in real applications, additive noise 
may have a much wider sense than just a few outliers, and thus, we also consider the 
non-Gaussian α−stable additional noise in the considered models. The novelty of our 
approach lies in introducing robust algorithms for coherent and incoherent statistics 
through the application of the discrete Fourier transform based on Huber function-
based M-estimation and proposing a new technique for period estimation based on this 
methodology. Furthermore, we propose a robust version of the measure of fitness (MoF) 
statistic, which was originally discussed in [5]. To our knowledge, incorporating a robust 
algorithm for discrete Fourier transform calculation has not been considered in the lit-
erature for coherent and incoherent statistics algorithms. Additionally, the technique for 
period estimation based on these robust algorithms is a novel proposition in the context 
of non-Gaussian additive noise.

We note that the concept of PC models with non-Gaussian distribution is not new; 
however, the robust coherent/incoherent statistics (obtained by using Huber function-
based M-estimation) is a new approach in this area. In the literature, there are known 
approaches for the analysis of signals exhibiting both hidden periodicity (cyclostation-
arity) and non-Gaussian behavior. The methods based on p-th-order cyclostationarity 
were proposed, e.g., in [38] for the direction of arrival estimation and in [39] for the 
time difference of arrival estimation. In the latter paper, the problem analyzed was also 
addressed using the fractional lower-order cyclostationarity; see also [40]. This concept 
was also used in [41] for the joint estimation of time difference of arrival and frequency 
difference of arrival. In [42], phased fractional lower-order cyclic moments were con-
sidered. Another measure, called cyclic correntropy, was proposed in [43] and further 
analyzed, e.g., in [44, 45]. This approach was also used to propose robust methods for 
various signal processing problems, e.g., automatic modulation classification [46], cyclic 
array beamforming [47], and direction of arrival estimation [48]. Methods based on the 
hyperbolic tangent cyclic correlation [49, 50] and generalized cyclic correlation [51] 
were also considered. In [52], nonparametric cyclic detectors based on sign and rank 
statistics were proposed.

In this paper, by extensive Monte Carlo simulation studies for both PC models and 
both types of additive noise with different levels of non-Gaussianity, we demonstrate the 
efficiency of the proposed methodology based on robust MoF, coherent and incoherent 
statistics for hidden periodicity detection. Comparative analysis (classical versus robust 
versions of the analyzed statistics) clearly confirms the superiority of the proposed 
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approaches in the considered cases. The simulation results are supported by analysis of 
real datasets from two areas. All considered time series have been previously discussed 
in the literature, also in the context of PC models with additive noise. The first dataset 
was examined in [53]. It describes air pollution data, and in the mentioned bibliography 
position, the authors proposed to apply the PAR model with additive outliers (in our 
case it is PC model 2+AN model 1). In the current paper, based on the proposed robust 
statistics, we confirm the hidden periodicity property of the data and the superiority of 
the robust statistics over classical approaches. The other two datasets come from the 
condition monitoring area and describe the vibration signal from the crushing machine 
(operating in the raw material industry) and the acoustic signal from belt conveyor 
idlers, respectively. In our case, we apply the proposed robust statistics (coherent and 
incoherent) for time–frequency representations of the signals and, in consequence, we 
propose their new bi-frequency representation. We assume that both signals correspond 
to PC model 1+AN model 2, as they were analyzed in the literature [54, 55]. By the per-
formed analysis, we confirm the hidden periodicity of the datasets and the superiority 
of the robust statistics over classical approaches in the considered context. The new bi-
frequency maps based on robust coherent and incoherent statistics can serve as efficient 
tools for local damage identification and may be effectively used for signals disturbed by 
non-Gaussian noise.

The rest of the paper is organized as follows. In Sect. 2, we describe the considered PC 
models and the analyzed types of additive noise. In Sect. 3, we recall the sample coher-
ence and three statistics based on it—coherent, incoherent, and MoF statistics. We also 
introduce robust versions of the discussed statistics, which are based on the robust algo-
rithm for the Fourier transform calculation. Here, we also describe a new algorithm for 
period estimation, which is based on robust statistics proposed in this paper. In Sect. 4, 
we present the Monte Carlo simulation study, where for different levels of non-Gaussi-
anity of additive noise we demonstrate the superiority of the proposed approaches over 
classical methods. In Sects. 5 and 6, we present the analysis of real datasets. The last sec-
tion concludes the paper.

2  Periodically correlated time series with additive noise
In this paper, we consider the following model, called periodically correlated model with 
additive noise

where {Xt} is a periodically correlated (PC) time series (random sequence) with period 
T ∈ N

∗ and {Zt} is the additive noise (AN). We assume that {Zt} is a stationary time 
series with a non-Gaussian distribution that is independent of {Xt} . First, we recall the 
definition of PC time series.

Definition 1 The time series {Xt} is periodically correlated (or second-order cyclosta-
tionary) if its mean and autocovariance functions are periodic in t with the same period 
T ∈ N

∗ [18]

(1)Yt = Xt + Zt , t ∈ Z,

(2)EXt = EXt+T , cov(Xt ,Xt+h) = cov(Xt+T ,Xt+h+T ), h ∈ Z,
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where E(·) is the expected value, cov(·, ·) is the covariance, and there are no smaller val-
ues of T ∈ N

∗ for which both conditions in Eq. (2) hold.

As a particular case of the periodically correlated time series, we consider the model for 
which only the mean or the autocovariance function is periodic while the other character-
istic (i.e., autocovariance function and mean, respectively) is independent of time t (i.e., the 
mean function is constant in t, and the autocovariance function depends only on lag h). In 
such a case, the time series still fulfills Definition 1. Note that a function independent of 
time t is periodic with any period T ∈ N

∗.

2.1  Examples of PC time series

In this paper, we consider two examples of time series that exhibit the PC property given 
in Definition 1.

PC model 1. As the first model of PC time series {Xt} , we consider the sum of a 
weakly stationary time series and the T-periodic deterministic function f : Z → R (i.e., 
f (t + T ) = f (t) ). Then, the random sequence {Xt} defined as

is a PC time series, see [56]. The most typical example of a weakly stationary random 
sequence {ξt} used in Eq. (3) is the sequence of Gaussian N (0, 1) independent identically 
distributed (i.i.d.) random variables. This is also the case considered in this paper.

PC model 2. The second considered example of a PC model is the periodic autore-
gressive (PAR) time series considered as the periodic extension of the well-known 
autoregressive (AR) model that assumes constant coefficients. The PAR(p) time series is 
defined as follows [18]

where the {ξt} is a sequence of i.i.d. random variables. In this paper, we assume that for 
each t, ξt ∼ N (0, 1) . The parameter sequences {φi(t), i = 1, . . . , p} are periodic with the 
same period T ∈ N

∗ with respect to t.

2.2  Examples of additive noise

In this paper, we consider two types of additive noise. In both considered cases, we 
assume that the time series {Zt} in Eq. (1) is stationary and has a non-Gaussian distribu-
tion. However, the AN models considered exhibit different properties.

AN model 1. The first considered model of AN assumes that {Zt} in Eq. (1) constitutes 
a sequence of i.i.d. random variables such that for each t we have

where {Kt} is an i.i.d. sequence of the following distribution

with P denoting the probability. We assume At and Kt are independent for each t. 
Moreover, {At} also constitutes an i.i.d. sequence and for each t, At is a random variable 
from the uniform distribution At ∼ U(0, a) ( a > 0 ). The considered AN model is called 

(3)Xt = f (t)+ ξt

(4)Xt − φ1(t)Xt−1 − ...− φp(t)Xt−p = ξt ,

(5)Zt = AtKt ,

(6)P(Kt = 1) = P(Kt = −1) = q/2, P(Kt = 0) = 1− q, q ∈ [0, 1],
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additive outliers sequence. For each t, Zt has finite variance for any set of parameters, 
even though it exhibits impulsive behavior.

AN model 2. As the second AN model, we consider the AR(p) time series with α−
stable distribution. Precisely, in this case, we assume that {Zt} in Eq. (1) satisfies the 
following equation [57, 58]

where the {εt} is a sequence of i.i.d. random variables with symmetric α−stable distribu-
tion defined via the characteristic function [59, 60]

In the above, 0 < α ≤ 2 represents the so-called stability index and σ > 0 is the scale 
parameter. Let us recall that the symmetric α-stable distribution is considered as the 
classical example of the heavy-tailed (power-law) distributions. Moreover, it is an exten-
sion of the Gaussian distribution, as for α = 2 it reduces to this classical distribution. 
The stability index is responsible for the heaviness of this distribution’s tail. The smaller 
α , the higher the probability of large values. For α < 2 , the variance of the α-stable distri-
bution is infinite.

Let us note that, in contrast with the AN model 1, in this case the sequence {Zt} 
does not constitute a sample of independent random variables as long as at least one 
parameter of the AR model is nonzero. In general, {Zt} exhibits the so-called short-
range dependence [58]. The distribution of Zt for each t belongs to the non-Gaussian 
family of distributions (here α−stable). In the case of α = 2 , the α−stable AR model 
defined in Eq. (7) reduces to the classical AR model with Gaussian innovations; see 
[11]. Finally, when p = 0 , the discussed AN model is just a sequence of i.i.d. random 
variables with strictly α−stable (when α < 2 ) or Gaussian (when α = 2 ) distribution.

The following setups of presented PC models (with period T = 8 ) and additive noise 
models are considered

• PC model 1 (later denoted as PC1): f (t) = 1+ sin
(

1
4π t

)

 , ξt ∼ N (0, 1),

• PC model 2 (PC2): PAR(1) model with φ1(1) = −0.6 , φ1(2) = 1.7 , φ1(3) = 0.9 , 
φ1(4) = −0.4 , φ1(5) = 0.8 , φ1(6) = −0.8 , φ1(7) = 0.7 , φ1(8) = −0.2 , ξt ∼ N (0, 1),

• AN model 1 (AN1): a = 60 , q = 0.005,
• AN model 2 (AN2): AR(1) model with φ̃1 = 0.2 , α = 1.8 , σ = 1.

The sample trajectories (of length N = 720 ) of the PC1 and PC2 models and their 
combinations with both the AN1 and AN2 sequences are presented in Fig. 1. One can 
see that the periodic behavior cannot be detected by visual inspection even in PC1 
and PC2 samples, that is, without any additive noise. However, in these cases, it would 
be easily identified using classical tools, such as those presented in Sect. 3.1. On the 
other hand, when additive noise is included, it significantly corrupts the behavior 
originally observed. In trajectories with AN1, only several observations are changed 
in comparison with the original PC time series, but they are significantly outlying, 
which strongly influences results of standard methods negatively. In the AN2 case, all 

(7)Zt − φ̃1Zt−1 − ...− φ̃pZt−p = εt ,

(8)�(z) = E exp {iεt z} = exp −σα|z|α , z ∈ R.
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observations are changed in comparison with the original PC time series, and some 
peaks can be observed as well—hence, it can be considered a more challenging case.

3  Methodology
3.1  Classical methods for periodicity detection

In this paper, we focus on periodicity detection algorithms in the bi-frequency domain. 
All considered methods are based on the sample coherence statistic, which is a 
smoothed estimator of the normalized two-dimensional spectral density function [5]. 
This approach is one of the most commonly used for the detection of hidden periodic-
ity, especially for the models where the autocovariance function is periodic with period 
higher than 1. However, our goal is to highlight the universality of the introduced meth-
odology; therefore, we also apply the sample coherence statistic for the models where 
only the mean function is periodic (while the autocovariance function is independent of 
time t). For a time series X = [X0, . . . ,XN−1] , the sample coherence statistic is defined as

where B is the smoothness coefficient, and I(ωj) =
∑N−1

t=0 Xt exp(−2π iωjt) is the dis-
crete Fourier transform for standard frequencies ωj = j/N  (measured in cycles/sample), 
j = 0, . . . ,N − 1 . The usefulness of this statistic comes from the fact that for PC models, 
the support of the two-dimensional spectral density function is a set of parallel, evenly 
spaced diagonal lines. The two-dimensional plot of sample coherence may serve as a vis-
ual inspection of periodicity presence.

The sample coherence is most often only a base for other tools, which produce results 
that are easier to interpret and apply in automated procedures. In [27], the coherent and 
incoherent statistics were proposed. Both can be considered as one-dimensional rep-
resentations of the originally two-dimensional sample coherence. For 0 < d < N  , the 
coherent statistic is defined as

(9)|γ (k , l,B)|2 =
|
∑B−1

b=0 I(ωk+b)I(ωl+b)|
2

∑B−1
b=0 |I(ωk+b)|

2
∑B−1

b=0 |I(ωl+b)|
2
, 0 ≤ k , l < N ,

Fig. 1 Sample trajectories of PC1 (left column) and PC2 (right column) time series: without additive noise 
(top row), and with additive noise from AN1 (middle row) and AN2 (bottom row) models
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while the incoherent statistic is given by

where L = [(N − 1− d)/B] (integer part), for a specified value of B used in sample 
coherence calculations. The choice of this parameter is discussed in [18, 27]. Note that 
δI (d) is a generalization of δC(d) and simplifies to the latter for B = N  . Another method 
of periodicity detection is the measure of fitness (MoF) statistic [5]. It is a bootstrap-
based approach that, in some cases, might be more efficient than coherent and incoher-
ent statistics. The MoF is defined as

for a specified value of B, with

where c is the estimated critical value (for a given significance level) obtained using the 
moving block bootstrap (MBB) method [61].

All three presented statistics produce values from the interval [0,1]. In the above 
formulation, they are functions of the d = |l − k| parameter, that is, in the domain 
of frequency indices. Then, the peaks at d = dT  , 2dT  , 3dT , . . . values indicate a perio-
dicity with period T = N/dT  . However, these statistics are often considered in the 
frequency domain, i.e., as functions of ωd = d/N  . This argument can also be further 
adjusted, for example, to include the sampling frequency of the analyzed time series.

3.2  Robust methods for periodicity detection

Although the statistics presented above serve as efficient tools for periodicity detec-
tion in non-impulsive time series (in particular Gaussian), all of them (as will also 
be demonstrated later) may be inefficient when applied to data with non-Gaussian, 
impulsive behavior. The reason for this is the sensitivity of the discrete Fourier trans-
form I(ωj) to outliers [62]. To solve this problem, we consider here a robust approach 
for I(ωj) calculation proposed in [63]. It is based on the fact that the Fourier trans-
form calculation can be formulated as a linear regression problem in the following 
way

where the coefficients β̂j = [β̂1,j , β̂2,j]
′ are obtained by minimizing the least square cost 

function

(10)δC(d) = |γ (0, d,N )|2,

(11)δI (d) =
1

L+ 1

L
∑

k=0

|γ (kB, kB+ d,B)|2,

(12)δMoF(d) =
1

N

N
∑

k=1

�(k , k + d,B),

(13)�(k , l,B) =

{

1, |γ (k , l,B)|2 ≥ c,

0, |γ (k , l,B)|2 < c,

(14)I(ωj) =
N

2

(

β̂1,j − iβ̂2,j

)

,
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for Cr = [cos(2πrωj), sin(2πrωj)]
′ . The terms Xr − C

′
rβj , r = 0, . . . ,N − 1 , are later 

called residuals. The regression in Eq. (15) is applied only for j = 1, . . . , ⌊(N − 1)/2⌋ . 
The results for larger frequencies can be obtained using the property I(ωj) = I(1− ωj) , 
as we only consider real time series X . Moreover, for ωj = 0 and ωj = 1/2 , when 
sin(2πrωj) = 0 for each r ∈ N , we set β̂2,j = 0 and apply the regression only to find the 
β̂1,j term. For these ωj , we then set I(ωj) = N β̂1,j.

The least squares method is very inefficient when outliers are present in the data; how-
ever, there are various approaches for robust linear regression which aim to overcome this 
drawback. In this paper, we use the idea of M-estimation [64], where the square cost func-
tion in Eq. (15) is replaced by a function ρ(·) that is less sensitive to outliers. In other words, 
we consider the following optimization problem

which is equivalent to solving

where ψ(·) = ρ′(·) , and s = MAD/0.6745 is the selected robust scale estimate with 
median absolute deviation (MAD) of the residuals’ vector in the numerator. Let us note 
that ρ(·) and ψ(·) functions are applied to the residuals standardized using s.

There are many ρ(·) functions with robust properties, e.g., Huber, Tukey’s biweight, 
and Andrews functions. In this paper, we use as ρ(·) the Huber function, which is 
defined as

where θ > 0 is a tuning constant. One can see that this function is built upon square 
( L2 ) and absolute value ( L1 ) loss functions, combining advantages of both, i.e., efficiency 
in standard cases (without outliers) and robustness, respectively. The trade-off between 
them is determined by the value of θ . The lower it is, the more robust (but less efficient 
in standard cases) the method is. Usually, we assume θ = 1.345 , for which the Huber 
regression is 95% as efficient as the least squares method in the Gaussian case. In prac-
tice, M-regression is usually performed using the iteratively reweighted least squares 
(IRLS) method [65]. In this paper, we used the robustfit function in MATLAB. The 
robust Fourier transform Ĩ(ωj) can then be derived using Eq. (14), i.e., we set

where β̂j are now calculated from Eq. (16). Again, we apply this regression only for 
j = 1, . . . , ⌊(N − 1)/2⌋ and use Ĩ(ωj) = Ĩ(1− ωj) to obtain the results for larger 

(15)β̂j = argmin
βj∈R2

[

N−1
∑

r=0

(

Xr − C
′
rβj

)2

]

(16)β̂j = argmin
βj∈R2

[

N−1
∑

r=0

ρ
(

(Xr − C
′
rβj)/s

)

]

,

(17)
N−1
∑

r=0

Crψ

(

(Xr − C
′
r β̂j)/s

)

= 0,

(18)ρ(x) =

{

x2/2, |x| ≤ θ ,
θ(|x| − θ/2), |x| > θ ,

(19)Ĩ(ωj) =
N

2

(

β̂1,j − iβ̂2,j

)

,
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frequencies. For ωj = 0 and ωj = 1/2 , we set β̂2,j = 0 and look only for the β̂1,j term, 
finally setting Ĩ(ωj) = N β̂1,j.

Using Ĩ(ωj) , we are able to modify the periodicity detection algorithms described 
in Sect.  3.1 to make them more robust and suitable for non-Gaussian time series. 
The only difference in comparison with their classical versions is that all are based 
on the robust sample coherence defined as

It can be seen that the above formula is a modification of Eq. (9) with all terms I(ωj) 
replaced by the corresponding Ĩ(ωj) values.

Based on robust sample coherence, we define robust coherent and incoherent sta-
tistics, respectively, as

Analogously, we define the robust MoF as

where c̃ is the estimated critical value (for a given significance level) obtained using the 
MBB method.

3.3  Method for period estimation

As mentioned above, for all statistics presented (in both standard and robust ver-
sions) the peaks at dT , 2dT , 3dT , . . . indicate periodic behavior with period T = N/dT  . 
For all other d, we expect the obtained values to be significantly lower. This property 
of the considered methods allows us to propose a simple criterion for period selec-
tion in an automatic manner. Let us assume that for a time series X one of the above 
statistics (in standard or robust version) δ(d) was calculated for d = 1, . . . , dmax . Note 
that for any potential period T ∗ (for simplicity, let us assume that T ∗ divides N), the 
expected placements of the aforementioned peaks are known. Then, we define the 
period selection criterion as

Then, out of all considered potential periods T ∗ , we select the one for which PSC(T ∗) 
takes the largest value. If there is a tie, we choose the smallest potential period. Let us 
note that the methodology for period estimation presented above is universal and can 
utilize both classical and robust statistics discussed in Sects. 3.1 and 3.2.

(20)|γ̃ (k , l,B)|2 =
|
∑B−1

b=0 Ĩ(ωk+b)Ĩ(ωl+b)|
2

∑B−1
b=0 |Ĩ(ωk+b)|

2
∑B−1

b=0 |Ĩ(ωl+b)|
2
, 0 ≤ k , l < N .

(21)δ̃C(d) = |γ̃ (0, d,N )|2, δ̃I (d) =
1

L+ 1

L
∑

k=0

|γ̃ (kB, kB+ d,B)|2.

(22)δ̃MoF(d) =
1

N

N
∑

k=1

�̃(k , k + d,B), with �̃(k , l,B) =

{

1, |γ̃ (k , l,B)|2 ≥ c̃,

0, |γ̃ (k , l,B)|2 < c̃,

(23)PSC(T ∗) =
max

{

δ(d) : N/T ∗ divides d
}

max
{

δ(d) : N/T ∗ does not divide d
} , d = 1, . . . , dmax.
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4  Monte Carlo simulations
4.1  Periodicity detection

This part of the simulation study is devoted to the efficiency analysis of the periodicity 
detection methods described in Sects. 3.1 and 3.2. Throughout entire Sect. 4, for both PC 
models and both AN models considered, we assume the same settings as for the exemplary 
trajectories presented in Fig. 1. Let us recall them below

• PC model 1 (later denoted as PC1): f (t) = 1+ sin
(

1
4π t

)

 , ξt ∼ N (0, 1),

• PC model 2 (PC2): PAR(1) model with φ1(1) = −0.6 , φ1(2) = 1.7 , φ1(3) = 0.9 , 
φ1(4) = −0.4 , φ1(5) = 0.8 , φ1(6) = −0.8 , φ1(7) = 0.7 , φ1(8) = −0.2 , ξt ∼ N (0, 1),

• AN model 1 (AN1): a = 60 , q = 0.005,
• AN model 2 (AN2): AR(1) model with φ̃1 = 0.2 , α = 1.8 , σ = 1.

Therefore, as follows from the construction of PC1 and PC2, in all cases considered we have 
the period T = 8.

4.1.1  PC model 1

Let us first consider the PC1+AN1 and PC1+AN2 cases. For the trajectories of these mod-
els presented in Fig. 1 (recall their length N = 720 and period T = 8 , thus dT = 90 ), we 
calculate each of the six considered statistics for d = 1, . . . , dmax = 360 . In the incoherent 
and MoF methods (in both versions), for all experiments presented in this paper, we set 
B = 60 . Moreover, for MoF methods, we use 100 bootstrap replicates and the 1% signifi-
cance level. The results are illustrated in Fig. 2. In these plots, red dashed lines are included 
for d ∈ D = {90, 180, 270, 360} (called later cyclic d). These are the expected placements 
of statistics’ peaks (relative to values obtained for other d) up to dmax , for the periodicity 
of T = 8 to be correctly identified. Moreover, to quantify its efficiency, for each statistic 
(denoted in the formula below as δ(·) ), we calculate the following indicator

(24)τ =

∑

d∈D δ(d)
∑dmax

d=1 δ(d)
,

Fig. 2 Analyzed periodicity detection statistics calculated for PC1+AN1 and PC1+AN2 trajectories. The cyclic 
d ∈ D = {90, 180, 270, 360} are marked with red dashed lines
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where larger values indicate better efficiency. The values of τ for each statistic for 
both PC1-based cases are presented in Tab. 1. Let us first analyze the results for the 
PC1+AN1 case. Most of all, one can see a clear difference between the results of the 
standard and robust version of each statistic. All classical statistics behave in a way that 
does not indicate the actual periodicity of the underlying time series. On the other hand, 
in their robust versions, a clearly visible peak for d = 90 is present, which is enough 
to correctly identify the periodicity with T = 8 . The highest efficiency indicator τ was 
obtained for the robust coherent statistic, for which the aforementioned peak is the most 
significant (relatively to other values observed in its plot). The results for the PC1+AN2 
model confirm that this case is more challenging than the previous one. For all robust 
statistics, the periodicity is less distinguishable than before, as the peaks in d = 90 are 
now relatively less significant. However, robust coherent and robust MoF statistics, for 
which the highest values of τ were obtained, still performed acceptably. On the other 
hand, all standard statistics again did not detect periodicity. In fact, let us note that for 
both PC1+AN1 and PC1+AN2 cases, the obtained values of τ were always higher for 
robust methods than for the corresponding standard approaches.

Next, let us analyze the efficiency of the proposed methodology for different param-
eters of both considered additive noise distributions, using the proposed performance 
indicator τ and Monte Carlo simulations. In the following comparisons, we exclude 
both standard and robust MoF methods because of their computational complexity. 
Figure  3 presents the values of efficiency indicator τ averaged over 1000 simulated 
trajectories from PC1 model with given additive noise. In the left column, it is the AN 
model 1 with q = 0.005 for different values of a (top panel) and with a = 60 for differ-
ent values of q (bottom panel). Analogously, in the right column, it is the AN model 2 
with φ1 = 0.2 (AR(1)), with σ = 1 for different values of α (top panel) and with α = 1.8 
for different values of σ (bottom panel). First, let us analyze the results obtained for 
AN model 1. Most of all, let us note that for more difficult cases, related to a larger 
magnitude and frequency of outliers in a time series (i.e., when a and q increases), 
both considered robust methods maintain their efficiency, with a large advantage of 
robust coherent statistic. On the other hand, for standard methods, the efficiency 
tends to decline. These results clearly confirm what could also be seen before, the 
sensitivity to outliers of non-robust methods, and the lack of this drawback for robust 
approaches. For AN model 2, the efficiency of both robust methods also tends to 
decrease more slowly for more extreme cases (that is, for lower α and larger σ ). The 
observed results again show the significant advantage of the robust coherent method 
over all other approaches.

Table 1 Values of efficiency indicator τ for all analyzed periodicity detection statistics for PC1+AN1 
and PC1+AN2 cases (with the best results marked in bold)

Coherent Robust coherent Incoherent Robust 
incoherent

MoF Robust MoF

PC1+AN1 0.0073 0.2473 0.0085 0.0352 0.0038 0.1217

PC1+AN2 0.0119 0.0440 0.0132 0.0219 0.0521 0.0972
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4.1.2  PC model 2

Let us now perform the same analysis, but for PC2 case as the underlying periodi-
cally correlated model. Figure 4 presents the results for all six considered statistics 
applied to PC2+AN1 and PC2+AN2 samples illustrated in Fig. 1. Moreover, in Tab. 
2, we show the values of the corresponding efficiency indicator τ . As before, for the 
case with AN1, the advantage of the proposed robust methods is very significant. 
For all of them, the observed peaks clearly indicated periodicity with T = 8 , whereas 
their standard versions failed, showing once again their strong sensitivity to outliers 
in a time series. Non-robust methods did not perform well neither for the model 

Fig. 3 Average efficiency indicator values for PC1 and different parameters of AN models (left column: AN 
model 1, right column: AN model 2)

Fig. 4 Analyzed periodicity detection statistics calculated for PC2+AN1 and PC2+AN2 trajectories. The cyclic 
d ∈ D = {90, 180, 270, 360} are marked with red dashed lines
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with AN2. Moreover, let us note the inefficiency of the robust coherent method. 
However, both robust incoherent and robust MoF approaches again succeed in 
the periodicity detection, with their peaks placed in an expected way. For both 
PC2+AN1 and PC2+AN2 cases, the best efficiency indicator τ value was obtained 
for the robust MoF method. Again, for both cases, each robust method yielded a 
larger value of τ than its standard counterpart.

Let us now further investigate the performance of the analyzed methods using 
Monte Carlo simulations. The plots of the averaged efficiency indicator for the PC2 
model and different parameters of additive noise (analogous to Fig.  3 for PC1) are 
presented in Fig. 5. For the AN model 1, again, one can see that both robust methods 
are insensitive to outliers, and hence, they are much more efficient than standard 
techniques. This is also true for AN model 2, where for all parameters considered 
(except for the Gaussian case α = 2 ) robust approaches outperform the classical 
ones. Let us note that here, as opposed to the PC1 model, the robust incoherent sta-
tistic was more efficient than the robust coherent statistic.

Table 2 Values of efficiency indicator τ for all analyzed periodicity detection statistics for PC2+AN1 
and PC2+AN2 cases (with the best results marked in bold)

Coherent Robust coherent Incoherent Robust 
incoherent

MoF Robust MoF

PC2+AN1 0.0071 0.1100 0.0081 0.1014 0 0.4515
PC2+AN2 0.0074 0.0176 0.0189 0.0403 0.0747 0.2323

Fig. 5 Average efficiency indicator values for PC2 and different parameters of AN models (left column: AN 
model 1, right column: AN model 2)
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4.2  Period estimation

In this part, we analyze the efficiency of the period selection criterion presented in 
Sect. 3.3 based on different periodicity detection statistics δ(d) . Here, we evaluate only 
coherent and incoherent statistics with their robust versions (again omitting both MoF-
based methods due to their computational complexity).

4.2.1  PC model 1

Let us first consider the PC1+AN1 case. We simulate 1000 trajectories of length 
N = 720 of this model. Then, for each sample, we calculate each statistic δ(d) for 
d = 1, . . . , dmax = 360 and then the PSC(T ∗) criterion based on it for the period can-
didates T ∗ = 2, 3, 4, 5, 6, 8, 10, 12, 15, 16 (recall that the true period is T = 8 ). Boxplots 
of the criterion values obtained for all generated trajectories, for each δ(d) statistic and 
period candidate T ∗ , are presented in the left panel of Fig. 6. The results of the analogous 
procedure for PC1+AN2 case are illustrated in the right panel. Here, for each method, 
we expect the criterion values for T ∗ = T = 8 to be significantly higher than for the 
other candidates. One can see that such behavior is clearly visible for both robust meth-
ods, and the proposed criterion based on them can indeed identify the correct period. 
Although the results for T ∗ = 16 are at the same level, let us note that it is double the 
correct period and, due to the construction of PSC(T ∗) , it will always have at least the 
same value of this criterion (hence, in case of ties, we always select the smallest period 
candidate). For both the classical coherent and the incoherent statistic, the criterion 
is less efficient, since the results for T ∗ = 8 are not significantly larger than the others 
(especially in the PC1+AN1 case).

Similar to the analysis of periodicity detection statistics, let us now analyze the per-
formance of the proposed period selection criterion for different parameters of both 
AN distributions. For that purpose, we conduct the following experiment. For the 
PC1 model with given additive noise, we simulate 1000 trajectories of length N = 720 . 
For each sample, we calculate a given statistic δ(d) for d = 1, . . . , dmax = 360 and the 
PSC(T ∗) based on it for T ∗ = 2, 3, 4, 5, 6, 8, 10, 12, 15, 16 to identify a period for this tra-
jectory. In the end, we calculate the percentage of cases (out of 1000 simulated trajec-
tories), for which the estimated period is equal to the true one T = 8 . As δ(d) , we again 
consider only coherent and incoherent statistics (in classical and robust versions). The 

Fig. 6 Boxplots of period selection criterion PSC(T ∗) values based on the analyzed periodicity detection 
statistics for different T ∗ , for PC1+AN1 and PC1+AN2 cases
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results for different parameters of AN model 1 and AN model 2 (arranged in the same 
way as, for example, in Fig. 3) are presented in Fig. 7. Most of all, one can see that for all 
cases considered with AN model 1 (with different a and q), the robust statistics-based 
criteria are almost perfectly efficient. A similar behavior can also be observed for AN 
model 2 with different values of α , with a small decrease for higher values of σ . This 
confirms that the proposed period selection criterion combined with robust periodicity 
detection methods is able to serve its purpose. On the other hand, the analogous results 
for classical statistics again prove their inefficiency for considered models—one can see a 
strong decline of the success percentages as the additive noise becomes more significant.

4.2.2  PC model 2

Let us now conduct the same analysis for the PC2 model. The boxplots of the PSC(T ∗) 
criterion values calculated for the PC2+AN1 and PC2+AN2 models are presented in 
Fig. 8. One can see that these cases (in particular the latter) turned out to be more chal-
lenging than the PC1-based ones. For both classical statistics, the results for T ∗ = T = 8 
again do not stand out from the others. Moreover, for the robust coherent statistic, the 
results for T ∗ = 4, 12 are comparable to those for T ∗ = 8, 16 which could lead to a wrong 
period estimation. The desired behavior can only be observed for the robust incoherent 
statistic, in particular for the PC2+AN1 model. In the case of the presence of AN2, the 
results for the correct period are still visibly greater than for others, although the differ-
ence in comparison to other even period candidates is not large.

Fig. 7 Percentages of cases with correctly identified periods for PC1 and different parameters of AN models 
(left column: AN model 1, right column: AN model 2)
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The percentages of correctly identified cases for the PC2 model with different addi-
tive noise parameters are presented in Fig.  9. For AN model 1, again one can see 
that the efficiency of both robust methods does not change significantly for different 
parameters a and q, although the robust incoherent statistic is always much better 
with almost perfect effectiveness. It is also the best method for all the setups con-
sidered of AN model 2 (with a slight exception for the Gaussian case α = 2 ), even 
though its performance decreases for more extreme cases (especially for larger σ ). As 
before, both classical methods are getting significantly worse for larger levels of addi-
tive noise, and in general, the advantage of robust approaches is very clear.

Fig. 8 Boxplots of period selection criterion PSC(T ∗) values based on the analyzed periodicity detection 
statistics for different T ∗ , for PC2+AN1 and PC2+AN2 cases

Fig. 9 Percentages of cases with correctly identified periods for PC2 and different parameters of AN models 
(left column: AN model 1, right column: AN model 2)
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5  Application for air pollution data
Let us now present the application of the proposed periodicity detection methodology 
to real data from the air quality area. The time series analyzed are the daily mean pol-
lutant particulate matter with diameter smaller than 10 mm (PM10 ), measured hourly in 
µg/m3 and collected at the station located in the Great Vitória Region GVR-ES, Brazil, 
at the Automatic Air Quality Monitoring Network (RAMQAr). A complete description 
of the data can be found, for example, in [53]. In this article, it was claimed that the 
described phenomenon can be modeled by the PAR time series with additive outliers, 
which in our case corresponds to the PC2+AN1 combination considered in this paper. 
This hypothesis was confirmed in [30] using the proposed methodology for testing the 
presence of additive noise. In both mentioned positions, the period T = 7 was assumed 
a priori because of a weekly rhythm of the analyzed phenomenon. In this paper, we apply 
the proposed methodology to validate this assumption and compare the results of stand-
ard/robust approaches. We consider two daily mean PM10 time series: from Carapina 
and Vitória (center) monitoring stations, both gathered from January 1, 2018, to May 5, 
2019 and consisting of 490 observations. They are presented in Fig. 10. In both series, 
one can identify some outlying observations; however, there are more of them in the 
Carapina dataset.

For both considered datasets, we apply the proposed periodicity detection statistics in 
a similar manner as for the exemplary trajectories in Sect. 4.1 (see Figs. 2 and 4), that is, 
all six considered statistics are applied to each time series, taking d = 1, . . . , dmax = 245 . 
The results are presented in Fig. 11. The red dashed lines now correspond to the expected 
placements of the statistics’ peaks for the period T = 7 , which are d ∈ D = {70, 140, 210}

.
In the case of the Carapina dataset, one can see that both versions of coherent statis-

tics returned a peak for d = 70 as expected; however, in the robust case it is a little bit 
more significant in comparison with other obtained values of a statistic (in particular, 
to the peak obtained around d = 100 ). On the other hand, in both incoherent statistics, 
there are no peaks that would indicate a periodicity. Both MoF statistics returned a peak 
in d = 70 , but some other peaks are also present.

The results for the Vitória (center) dataset show that, in this case, it was easier to 
identify the periodicity. Again, coherent and robust coherent statistics returned a peak 
in d = 70 . For both incoherent statistics, large values were obtained for d = 70, 140 , 

Fig. 10 Two analyzed air pollution datasets—daily mean PM10 measured in Carapina and Vitória (center) 
stations
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although they are relatively less significant than the peaks of both coherent statistics. In 
the case of both MoF methods, for all d = 70, 140, 210 the obtained values are large, but 
again, other peaks are present as well.

For both considered cases, the efficiency indicator τ (see Eq. (24)) was calculated. 
The results are presented in Tab. 3. One can see that, in general, the indicator values 
for robust methods are larger than for their non-robust counterparts. The exceptions 
are incoherent statistics for the Carapina dataset, where both standard and robust ver-
sions failed, and MoF-based statistics for Vitória (center) data. In the latter case, a small 
advantage of the standard method may be caused by the fact that, as presented, for this 
dataset the periodicity detection was generally easier, and the influence of outlying val-
ues was not significant.

6  Application for local damage detection problem
In this section, we present the application of the proposed methodology to real datasets 
from the condition monitoring area. We analyze two datasets corresponding to vibration 
signals from a crushing machine and acoustic signal from belt conveyor idlers, which 
may be considered as bases for the identification of local damage in rolling element bear-
ing. There are many approaches for fault modeling in bearings [66, 67]. For simplicity, it 
is assumed that a signal containing information about damage is a sum of deterministic 
periodic function (local impulses) and random noise. Let us note that this case corre-
sponds to PC model 1+AN model 2 considered in this paper.

For both analyzed signals, we will analyze the performance of the proposed methodol-
ogy when periodicity is present in the signal (case of local fault), as well as when it is not 
(healthy case). In the presented analysis, we again consider only coherent and incoherent 
statistics ( B = 60 ) in classical and robust versions, excluding both MoF methods.

Fig. 11 Analyzed periodicity detection statistics calculated for both considered daily mean PM10 datasets. 
The cyclic d ∈ D = {70, 140, 210} (assuming T = 7 ) are marked with red dashed lines

Table 3 Values of efficiency indicator τ for all analyzed periodicity detection statistics for both 
considered daily mean PM10 datasets assuming T = 7 (with the best results marked in bold)

Coherent Robust coherent Incoherent Robust 
incoherent

MoF Robust MoF

Carapina 0.0372 0.0450 0.0133 0.0128 0.0695 0.0713
Vitória (center) 0.0875 0.1004 0.0378 0.0426 0.2555 0.2176
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Although the considered methods can be used in a straightforward way for analyzed 
signals in the time domain, here we present an alternative approach where they are 
applied to signal represented in the time–frequency domain (spectrogram). This idea is 
often used in local damage detection methods because of the very complex structure of 
the analyzed signals. The local impulses corresponding produced by a damage are often 
identifiable only in a specific frequency band (called the informative frequency band, 
IFB). Hence, here we also use the time–frequency representation. Such a procedure is 
also much more time efficient, because the statistics are not applied to a single, very long 
data vector, but to a number of much shorter samples, which significantly reduces the 
computational complexity. Moreover, as a result of this approach, we obtain a bi-fre-
quency map, which allows us to easily identify the periodicity as well as the informative 
frequency band (in a similar manner as, e.g., spectral coherence maps [19]).

For each considered statistic δ(d) , the procedure for creating a spectrogram-based bi-
frequency map is as follows. First, for the analyzed signal X = [X0, . . . ,XN∗−1] we calcu-
late the spectrogram S(t, f)

where STFT(t, f ) is the short-time Fourier transform given by the formula

with w(t − n) being a shifted window of length Nw . Then, for each frequency f, we take 
the corresponding spectrogram row Sf = [S(t1, f ), . . . , S(tN , f )] (its length N depends on 
selected spectrogram parameters), and for selected ǫmin and ǫmax , we calculate for each 
ǫmin ≤ ǫ ≤ ǫmax (modulation frequency) the statistic δ(d) setting d = ǫN ∗/fs , where fs 
is the sampling frequency. As a result, we obtain a bi-frequency map denoted as �(f , ǫ) . 
To compare all obtained maps with the same scale [0,1], we rescale each map by dividing 
each of its values by the maximum value of this map.

6.1  Vibration signal from a crushing machine

The analyzed vibration signal from a crushing machine is a two-second sample from 
the dataset considered in [54]. The system used for measurement consists of Endevco 
accelerometers (vibration), BruelKjaer Laser probe (shaft speed was measured), NI DAQ 
card, Labview SignalExpress and laptop. The vibration signals were acquired in horizon-
tal and vertical directions. The analyzed signal and its spectrogram (constructed using 
nfft = 512 frequency points and Hann window of length Nw = 128 and overlap 110) are 
illustrated in Fig. 12. This case is further referred to as Dataset 1a. In the plot of the sig-
nal, one can see a significantly outlying impulse around 1.5s, which might cause a chal-
lenge for standard, non-robust methods. The length of this signal is N ∗ = 50000 , and 
the sampling frequency is fs = 25000 Hz. It is important to note that this signal was 
collected from a healthy crushing machine, which means that no fault periodicity is 
expected in the results.

Using the presented spectrogram, let us construct the analyzed bi-frequency maps for 
each of four considered statistics, taking ǫmin = 3 Hz and ǫmax = 100 Hz. The results are 

(25)S(t, f ) = |STFT(t, f )|2,

(26)STFT(t, f ) =

N∗−1
∑

n=0

Xnw(t − n) exp(−2π ifn/N ),
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presented in Fig. 13. Most of all, one can see a clear difference between standard coher-
ent/incoherent statistics and their robust versions. In the former, unexpectedly, very sig-
nificant values were obtained for f > 5000 Hz, whereas in the latter, the constructed 
maps are much more homogeneous, which is a more desired result in this case.

As mentioned, Dataset 1a was gathered from a healthy machine; hence, no perio-
dicity is present there. To imitate a damage of the machine, let us artificially introduce 
the periodicity to the original signal, by adding a series of cyclic impulses of a form of 
decaying harmonic oscillation with amplitude A = 45 , informative frequency band 
fc = 3500− 6500 Hz, and cyclic frequency ff = 30 Hz. The resulting signal (called 
Dataset 1b) and its spectrogram (constructed using the same parameters as in Dataset 
1a) are presented in Fig. 14. One can see that the introduced cyclic impulses are covered 
by the background, non-cyclic noise—in particular, by the mentioned outlying impulse 
around 1.5s.

The considered bi-frequency maps calculated for Dataset 1b are presented in Fig. 15. As 
now the periodicity is present, we expect all maps to detect it by returning significantly high 
values for ǫ = 30, 60, 90 (true cyclic frequency and its multiples), in the 3500 < f < 6500 

Fig. 12 Analyzed real vibration signal from a crushing machine (Dataset 1a) and its spectrogram

Fig. 13 Bi-frequency maps �(f , ǫ) based on the spectrogram and coherent/incoherent statistics (in standard 
and robust versions) for the Dataset 1a
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band, and low values everywhere else. The results obtained show that this is the case only 
for both considered robust methods. For classical coherent/incoherent statistics, the sig-
nificantly large disturbances for f > 5000 (present also in the results for Dataset 1a) cause 
that the periodicity cannot be detected. Therefore, the advantage of the proposed robust 
techniques is clear. In particular, the periodicity is easily identifiable in the robust coherent 
statistic-based map.

To quantify the performance in periodicity detection, we calculate the following indicator 
for each constructed map

where the larger the value, the more efficient the method is. This indicator reflects the 
desired behavior of each map in a similar way as the previously considered τ (Eq. (24)). 
Let us note that again it is the ratio of the sum of values obtained for arguments cor-
responding to the correct periodicity detection (the selected f and ǫ range is explained 

(27)τ1(�) =

∑

3500<f<6500

∑

ǫ∈{30,60,90}�(f , ǫ)
∑

f

∑

ǫ �(f , ǫ)

Fig. 14 Modified vibration signal with added periodic impulses (Dataset 1b) and its spectrogram

Fig. 15 Bi-frequency maps �(f , ǫ) based on the spectrogram and coherent/incoherent statistics (in standard 
and robust versions) for the Dataset 1b. The true informative frequency band is marked with red lines
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above) and the sum of all values. The results presented in Tab. 4 confirm the advantage 
of the robust coherent statistic-based map.

6.2  Acoustic signal from belt conveyor idlers

The second case analyzed refers to acoustic signals from belt conveyor idlers. Here, 
we consider audio recordings collected with a smartphone. The raw measurement 
contains a 10 s segment of the acoustic signal sampled at 48 kHz. The bearing used 
in these idlers is SKF 6204-2RSH with possible fault frequency equal to 5.5 Hz under 
minor, slow speed variation from range 105–110 rpm (locally, the speed could be con-
sidered as constant). The source of non-Gaussian behavior in the acoustic signal here 
is related to the mechanical belt joints (metallic clamp used to connect two pieces 
of the belt). During operation, the belt moves on the rolling idlers, and when the 
mechanical clamp touches a given idler, it produces an impulsive sound (the metallic 
clamp hits the metallic coating of the idler). Again, we analyze cases without and with 
periodicity; however, here the latter is not artificially designed, as one of the signals 
was collected from a damaged machine.

The analyzed acoustic signal corresponding to a healthy machine (called later 
Dataset 2a) and its spectrogram (constructed using nfft=512 and Hann window of 
length Nw = 500 with overlap 475) are presented in Fig. 16. The length of the signal 
is N ∗ = 96000 , and the sampling frequency is fs = 48000 Hz. Most of all, one can see 
two significantly outlying impulses (around 0.3s and 1.4s) that may corrupt the results 
of standard methods. Here, similarly as in Dataset 1a, no periodicity is present; all 
analyzed maps should be homogeneous and not significantly disturbed in any band. 
The results presented in Fig. 17 show that, again, it is not the case for both standard 
coherent and incoherent statistics. On the other hand, the behavior observed in both 

Table 4 Values of efficiency indicator τ1(�) for all constructed bi-frequency maps �(f , ǫ) for Dataset 
1b (with the best result marked in bold)

Coherent Robust coherent Incoherent Robust incoherent

τ1(�) 0.0036 0.0214 0.0040 0.0057

Fig. 16 Acoustic data from belt conveyor idlers—case without damage (Dataset 2a) and its spectrogram
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robust maps is much more homogeneous, although again the robust coherent statis-
tic-based map performed visibly better.

Let us now analyze the signal from a damaged machine, where periodicity is naturally 
present. This signal (later referred to as Dataset 2b) and its spectrogram (constructed 
using the same parameters as for Dataset 2a) are illustrated in Fig. 18. Again, the signal 
length is N ∗ = 96000 with the sampling frequency fs = 48000 Hz. Here, one can iden-
tify some cyclic impulses; however, they are covered by two strong non-cyclic impulses 
around 0.6s and 1.8s. Their negative influence on the results of standard methods is sig-
nificant, as shown in Fig. 19, where the maps for Dataset 2b are presented. For both non-
robust methods-based maps, the values obtained in some frequency bands are too large 
for the periodicity to be correctly detected. On the other hand, both robust methods 
much better recovered the information about periodicity. Although the obtained cyclic 
impulses are not as clearly observable as in Dataset 1b case, their visibility is sufficient to 
identify a periodicity with fc = 5.5 Hz. As for Dataset 1b, let us also consider the perfor-
mance indicator for each map, now given by

Fig. 17 Bi-frequency maps �(f , ǫ) based on the spectrogram and coherent/incoherent statistics (in standard 
and robust versions) for the Dataset 2a

Fig. 18 Acoustic data from belt conveyor idlers—case with damage (Dataset 2b) and its spectrogram
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It is constructed analogously as τ1(�) (Eq. (27)) considered for Dataset 1b. The only dif-
ference is related to constraints in the numerator—we expect all maps to return large 
values for ǫ = 5.5 and its multiples, without specified range for f (since here the inform-
ative frequency band is not known). As presented in Tab. 5, the proposed indicator 
confirms the advantage of robust methods which obtained better results than their non-
robust counterparts.

7  Conclusions
In this paper, we discussed the problem of hidden periodicity detection when the 
model under consideration exhibits PC property and is additionally disturbed by 
non-Gaussian distributed noise. We proposed a modification of the sample coherence 
algorithm by incorporating the robust version of the discrete Fourier transform. This 
procedure enabled the introduction of robust versions of coherent and incoherent 
statistics, as graphical methods for detecting hidden periodicity when the PC model 
is affected by additive non-Gaussian noise. Furthermore, we analyzed the robust 
MoF statistic, which also utilizes the robust sample coherence. Building on this 
approach, we introduced an algorithm for period estimation specifically tailored for 
the considered class of models. The main goal of this paper was to propose a general 

(28)τ2(�) =

∑

f

∑

ǫ∈{5.5,11,...,38.5}�(f , ǫ)
∑

f

∑

ǫ �(f , ǫ)
.

Fig. 19 Bi-frequency maps �(f , ǫ) based on the spectrogram and coherent/incoherent statistics (in standard 
and robust versions) for the Dataset 2b

Table 5 Values of efficiency indicator τ2(�) for all constructed bi-frequency maps �(f , ǫ) for Dataset 
2b (with the best result marked in bold)

Coherent Robust coherent Incoherent Robust incoherent

τ2(�) 0.0978 0.1200 0.0951 0.1082
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methodology for detecting hidden periodicity in the presence of non-Gaussian addi-
tive noise. The main contribution was the introduction of a robust version of sam-
ple coherence-based statistics through the application of the robust discrete Fourier 
transform (based on Huber function-based M-estimation) and the proposal of a new 
technique for period estimation based on this methodology.

In our simulation study, we analyzed two types of PC models and two types of addi-
tive noise. They were chosen to encompass the properties observed in the real data 
examined. We demonstrated the effectiveness of our proposed approach across vari-
ous levels of non-Gaussianity of the additive noise. The results are compared with 
those obtained from a classical approach that employs the standard sample coherence. 
The presented simulation studies clearly validated the rationale for employing robust 
techniques with the models considered. The most challenging scenario emerged with 
the Gaussian PAR model (i.e., PC model 2) combined with additive noise modeled as 
an α-stable autoregressive time series (AN model 2). Incorporating the heavy-tailed α
-stable distribution, which may exhibit infinite variance, along with the interdepend-
ence of additive noise (i.e., autoregression), posed a significant challenge in detecting 
hidden periodicity. However, we have demonstrated the utility of our methodology 
even in this complex case.

As an illustration of the proposed approach, we analyzed three datasets from the fields 
of environmental engineering and condition monitoring. The first dataset pertained 
to air pollution, which has been previously examined in the literature, where the PAR 
model with additive outliers was proposed for the analysis of such data. Leveraging this 
assumption, we applied robust techniques for hidden periodicity detection and dem-
onstrated their effectiveness in this context. The other two datasets involved vibration 
signals from a crushing machine and acoustic signals from belt conveyor idlers. Both 
signals have previously been studied in the context of signal-based local damage detec-
tion and were modeled using a PC model with non-Gaussian α-stable noise. From a sig-
nal processing perspective, the problem of local damage detection can be approached 
by the detection of hidden periodicity. We analyzed these signals using time–frequency 
representations (spectrograms) and applied robust coherent and incoherent statistics to 
these representations. As a result, we proposed new robust bi-frequency maps that pro-
vide clear information about local faults, even in the presence of impulsive disturbances.

Although the results were presented using only specific real-world datasets, the pro-
posed methodology can be applied to other areas of interest, as the issue of hidden peri-
odicity and external factors inducing non-Gaussian behavior in data is prevalent across 
various domains.

In our future work, we intend to further explore this research within the field of condi-
tion monitoring. Specifically, we aim to leverage the newly developed bi-frequency maps 
to design statistics that can aid in predicting local faults or identifying them at an early 
stage. In the literature, such statistics are commonly referred to as health indices and 
play a crucial role in prognostics for estimating the remaining useful life of machinery.
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