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Abstract 

Radio frequency fingerprint identification (RFFI) can distinguish highly similar wireless 
communication devices to protect physical layer security and improve the security 
of wireless networks effectively, which has been widely used for spectrum manage-
ment and physical layer secure communication. However, most RFFI methods show 
a degradation of performance under low signal-to-noise ratio (SNR) environments. In 
this paper, we propose a RSBU-LSTM network relying on multiple features to improve 
the identification accuracy with low SNR. Firstly, we use multiple features of in-phase (I), 
quadrature (Q), and phase as inputs. Then, we use multiple Residual Shrinkage Building 
Units (RSBUs) to extract the correlation features within the cycle of signals and preserve 
as many features as possible in low SNR environments. Finally, we use the long short-
term memory (LSTM) to extract the relevant features of the signals of non-adjacent 
cycles. The experimental results show that the proposed network can effectively com-
plete RFFI in low SNR environments and show better performance than other models 
used for comparison.

Keywords: Physical layer security, Radio frequency fingerprint identification, Deep 
learning, Residual shrinkage building units, Long short-term memory

1 Introduction
With the development of new generation wireless communication technology and Inter-
net of Things (IoT) technology represented by 5 G, human society has entered an era of 
information and intelligence where everything is interconnected. As the IoT has been 
widely used in smart cities, smart grids, industrial Internet, and other fields, the research 
on IoT technology is increasing [1]. According to predictions, the number of IoT devices 
worldwide will reach 25.2 billion by 2025, and the annual revenue of IoT suppliers selling 
IoT hardware, software, and comprehensive solutions may exceed 470 billion dollars [2]. 
However, the openness of radio waves has led to many illegal access and hacker attacks, 
which can easily cause property and mental damage to people. The key of solving this 
problem is to quickly identify illegal wireless individuals attempting to deceive or invade 
the network through wireless individual identification. Fortunately, there are subtle 
differences in the electronic device parameters inside each signal transmitter, which 
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is inevitable in the manufacturing of electronic devices. Therefore, each device has its 
unique hardware features that are difficult to tamper with or forge. These unique fea-
tures are called radio frequency fingerprints (RFFs). Radio frequency fingerprint identifi-
cation (RFFI) has been widely used for spectrum management and physical layer secure 
communication [3].

Traditional RFFI methods mostly extract physical parameter features of signals in the 
time domain or transform domain. After obtaining features, individual identification of 
radiation sources is accomplished through a classifier. In terms of feature extraction, fast 
Fourier transform [4], short-time Fourier transform [5], and discrete Gabor transform 
[6, 7] were frequently adopted. Classic machine learning classifiers, including support 
vector machines (SVM) [8, 9] and random forests [10, 11], are used to identify signal 
transmitters using these different time–frequency features. Based on this, reference [12] 
proposed an RFFs extraction and device identification algorithm based on multiscale 
fractal features and SVM, the proposed model achieving an average identification accu-
racy of 99.13% for 16 Bluetooth devices. Reference [13] investigated the impact of the 
usage of carrier frequency offset (CFO) on RFFI accuracy, and it can be used for identi-
fication when they are relatively distinguishable. In addition, new unsupervised machine 
learning (ML) [14] algorithms have also been applied in RFFI. Unfortunately, these tra-
ditional feature engineering-based identification methods mostly rely on experiential 
design of RFF features and prior knowledge of signals, resulting in a lack of universality 
and poor real-time performance, which cannot meet current practical needs.

As deep learning demonstrates its powerful feature extraction capability, it has gradu-
ally been applied to RFFI [15]. In order to fully leverage the significant advantages of 
convolution neural network (CNN) in processing image data, differential constella-
tion diagram [16], compressed time–frequency spectrum [17], double layer waveform 
domain image [18], constellation trajectory [19], bimodal feature map [20], and other 
images were used as inputs. Due to the loss of some information during the process of 
converting to images, the accuracy of identification is affected. Therefore, lots of innovate 
neural network models have been appeared. Reference [21] proposed the Adaptive Radio 
Frequency Fingerprint Fusion Network (ARFNet) which can extract and adaptively fuse 
multiple RFFs in a data-driven manner and achieved high identification accuracy. Refer-
ence [22] proposed a RFFID method based on lightweight CNN, and the result shows 
that this method can identify Zigbee device, and the accuracy reached 100%. In addition, 
long short-term deep neural network (CLDNN) [23], dense neural network (DNN) [24], 
multi-scale convolutional neural network (MSCNN) [25], slice combination CNN [26] 
are also good models to complete RFFI. Similarly, reference [27, 28] combining machine 
learning classifiers with neural networks also improved identification accuracy. With the 
rapid development of artificial intelligence (AI), generative adversarial network (GAN) 
[29], transfer learning [30, 31], incremental learning [32], meta-learning [33], federated 
learning [34], and other methods have gradually been applied in RFFI.

According to research findings, many models experience a decrease in identification 
performance under non-ideal environmental conditions such as low signal-to-noise ratio 
(SNR). Reference [35] proposed an intelligent signal processing method against noise inter-
ference that draws on the concept of the CNN. Reference [36] proposed a dynamic shrink-
age learning network (DSLN) to improve identification accuracy in low SNR environments 
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by utilizing dynamic shrinkage thresholds. Inspired by these, we propose a new network to 
address this issue in this paper. In order to extract RFFs to the maximum extent possible, we 
first consider using multiple features including in-phase (I), quadrature (Q), and phase as 
inputs to the network. Then, we use multiple Residual Shrinkage Building Units (RSBUs) to 
suppress noise and extract the correlation features. At the same time, we use the long short-
term memory (LSTM) to extract the relevant features of the signals of non-adjacent cycles. 
Finally, concatenate the features of sub-networks and obtain prediction results through the 
fully connect (FC) layer. The main contributions are as follows:

(1) Different from previous works that directly input signals into the network, we con-
sider not only the real and imaginary part information of the signal, but also its 
phase information in the signal processing stage. Due to the fact that phase infor-
mation also includes the RFFs of the signal, the proposed signal input is more com-
prehensive.

(2) Different from directly inputting data into CNN [37] for feature extraction, we use 
RSBUs for feature extraction, introducing soft thresholding to reduce the impact 
of noise on feature extraction and better extraction of relevant features within and 
between adjacent cycles.

(3) Different from previous works that directly output prediction results after using 
CNN feature extraction, we use LSTM network to extract the relevant features of 
the signals of non-aggressive cycles. And all the extracted features were concate-
nated to achieve diversity in feature extraction.

(4) To test the progressiveness of the proposed network, we conducted simula-
tion experiments and compared the network with the one-dimensional CNN 
(1D-CNN)-based method and its improved version. The results indicate that our 
network can achieve better identification accuracy under low SNR conditions.

The rest of this paper is organized as follows: Specific methods are explained in Sect. 2. 
In Sect. 3, experimental design is described. In Sect. 4, results and discussion are presented. 
The conclusion and future work are shown in Sect. 5.

2  Signal model and the RSBU‑LSTM network
In this section, we propose a method for extracting signal features, the components of the 
network model, and a complete network model.

2.1  Signal model and feature extraction

Consider the RF signal s(t) is expressed as:

where w(t) is the signal carrying information and n(t) is noise. The intercepted signal is 
expressed as:

where r(t) represents received signal and f ′
0
 is the estimated carrier frequency. Use 

orthogonal carriers to obtain complex signal rc(t):

(1)s(t) = w(t)+ n(t)

(2)r(t) = sr(t)e
j2π f

′

0
t = sr(t)(cos(2π f

′

0 t)+ j sin(2π f
′

0 t))
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In order to obtain more signal features, we extract I(t), Q(t), and P(t) three types of data.

2.2  Residual shrinkage building unit (RSBU)

When facing a large amount of high noise signals, deep residual networks (ResNet) using 
convolutional kernels as local feature extractors may not be able to detect RFFs, resulting in 
poor discriminative power of high-level features learned by the output layer, which is insuf-
ficient to achieve accurate device identification. RSBU [38] combines the characteristics of 
ResNet’s identical cross-layer connections, improves the stability and training efficiency of 
deep learning models, and introduces soft thresholding and attention mechanisms, which 
can effectively overcome the shortcomings of feature extraction difficulties in convolutional 
kernels. The structure of RSBU is shown in Fig. 1.

We input all the three types of data into the RSBU module. Assume I(t) = x , Q(t) = y , 
and P(t) = z . We taking signal sequence x as an example. In RSBU, features are first divided 
into two paths, one path entering two convolutional layers for feature refinement. Each 
convolutional layer is accompanied by batch normalization (BN) and ReLU operations.

Vector xk−1
i  is the ith feature vector of the previous (k − 1) th layer, xkj  is the jth feature 

vector of the current kth layer, and N is the number of input feature vectors. wk
ij and bkj  

represent the weight and bias of the neuron, respectively. ∗ is the convolution operation, 
and f(x) is a rectified linear unit (ReLU), which can increase the nonlinear expression 
ability. After these two layers of convolution, the obtained feature x is first subjected to 

(3)rc(t) = I(t)+ jQ(t)

(4)I(t) =r(t) cos 2π f
′

0 t

(5)Q(t) =r(t) sin
(

2π f
′

0 t
)

(6)P(t) = arctan (Q(t)/I(t))

(7)xkj =f

(

i=1
∑

N

xk−1
i ∗ wk

ij + bkj

)

(8)f (x) =(0, x)

Fig. 1 The structure of RSBU
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absolute value processing and then reduced to a one-dimensional vector through global 
average pooling (GAP). Finally, feature A is obtained, represented as:

where i, j, and c are the width, height, and channel indices of feature x, respectively. This 
one-dimensional vector is divided into two paths. All inputs are fed into the attention 
mechanism module composed of two FC layers, where the first FC layer contains BN 
and ReLU, while the second FC layer only has ReLU. The number of output neurons 
in this module matches the number of input feature channels. Normalizing the output 
between 0 and 1 is represented as,

where Zc is a neuron, and α is its corresponding scaling parameter. The average value 
of the other channel is multiplied by the output of the attention module to obtain the 
exclusive threshold for each channel.

where τc is the threshold of channel c for feature x. Using the results obtained above, 
after performing a soft thresholding operation, it is added to the original segmented fea-
tures to achieve cross-layer identity connections.

M is the output of RSBU and also the input of the next RSBU. X, Y, and Z represent the 
outputs of the I-channel characteristics x, Q-channel characteristics y, and phase char-
acteristics z input into RSBU, and they are also the inputs of the next RSBU.

After going through multiple layers of RSBU, these three features are respectively input 
into three LSTMs.

2.3  Long short‑term memory (LSTM)

LSTM [39] is a variant of recurrent neural networks (RNN) which is used for processing a 
sequence of data. Compared with classical RNN, it can effectively capture the correlation 
information between temporal data and alleviate gradient vanishing or exploding phenom-
ena. It uses hidden memory information instead of ordinary hidden nodes and has higher 
sensitivity to time series data. Its core structure consists of four parts: forget gate, input 
gate, cell state, and output gate. The structure of LSTM is shown in Fig. 2.

The hidden state and cell output are denoted by ht and ct , respectively. xt represents the 
current sequence input. In this implementation, LSTM is formulated as:

(9)A = average
∣

∣xi,j,c
∣

∣

(10)αc =
1

1+ exp(−Zc)

(11)τc = αc × A

(12)M = m+ τc ×m,
(

M = X ,Y ,Z;m = x, y, z
)

(13)ft =σ
(

Wf · [ht−1, xt ] + bf
)

(14)it =σ(Wi · [ht−1, xt ] + bi)

(15)ot =σ(Wo · [ht−1, xt ] + bo)
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In the equations above, ft , it , c̃t , ot are the input, forget, cell, and output gates, respec-
tively. Wf  , Wi , and Wo represent the weight matrix of forget gate, input gate, and output 
gate, respectively. bf  , bi , and bo represent the deviation of the forget gate, input gate, and 
output gate, respectively. ct−1 and ht−1 represent the state of the memory layer and the 
hidden layer at the previous moment, respectively. σ is the sigmoid function. tanh is the 
hyperbolic tangent activation function. · denotes the convolutional operator, and 

⊙

 is 
the Hadamard function. According to this formula, both hidden and cell states in the 
previous block are used for the calculation of these states in each block.

Then, we concatenate the outputs of three LSTMs.

M represents the features after concatenating. Finally, we use the FC layer to complete 
device prediction and identification.

Overall, Fig. 3 shows a general overview of the RSBU-LSTM network relying on multiple 
features. For the input of the network, it is fed with three channel signals of I, Q, and phase. 
Then after a convolution, the signal is fed into the RSBUs. To maximize the preservation of 
RFFs in low SNR environments. Finally, the relevant features of the non-adjacent periods 
of the signal are further extracted through LSTM. In order to fully utilize various informa-
tion and improve identification accuracy, all features are connected together to obtain more 
robust features. At the same time, establish the output of the layer corresponding to the 
individual device, and use the FC layer to achieve the identification of individual devices.

(16)c̃t =tanh(Wc · [ht−1, xt ] + bc)

(17)ct =ft
⊙

ct−1 + it
⊙

c̃t

(18)ht =ot
⊙

tanh(ct)

(19)M = concat
(

x(ht , ct), y(ht , ct), z(ht , ct)
)

Fig. 2 The structure of LSTM
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3  Experimental design
In this section, we introduced the dataset and data processing used for the experiment, the 
experimental environment, and the experimental training strategy.

3.1  Simulation data

In order to test the effectiveness of RSBU-LSTM network under complex noise environ-
ment, we use the open dataset, referred to as KRI-16IQImbalances [40]. This is a dataset 
collected from an experimental setup of USRP SDR with a fixed USRP B210 as the receiver. 
All 16 transmitters are bit-similar USRP X310 radios that emit IEEE 802.11a standards 
compliant frames generated via a MATLAB WLAN System toolbox. The data frames gen-
erated contain random payload but have the same address fields and are then streamed to 
the selected SDR for over-the-air wireless transmission and the transmitter–receiver dis-
tance is 62 feet. The receiver SDR samples the incoming signals at 5 MS/s sampling rate at 
center frequency of 2.45 GHz. The collected signals are processed into raw I/Q sequences 
through IQ balance compensation and DC offset compensation. Overall, they collected 
approximately 2 million sampling points for each radio. We extracted 500 samples from 
the signal of each radio, each containing 2560 points. The experimental data accounts for 
approximately 60% of the dataset. Assuming that a signal sample is x(n), the signal power of 
this sample can be expressed as:

Pn represents the signal power of this sample. N is the length of the sample signal. To add 
Gaussian white noise of –5dB ~20dB, we calculated the corresponding noise power Ps.

a is the specified value of the SNR. Then, we can generate Gaussian random variables 
with zero mean and appropriate variance (variance equal to noise power) to simulate 
Gaussian white noise. Once we have a noisy signal, we can add it to the original signal.

(20)Pn =
1

N

N−1
∑

n=0

|x[n]|2

(21)Ps =
Pn

10
a

10

, a = [−5, 0, 5, 10, 15, 20]

(22)y[n] = x[n] + n[n]

Fig. 3 Illustration of the RSBU-LSTM network relying on multiple features
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y[n] represents the signal with Gaussian white noise, and n[n] represents the noise. The 
processing sample signals are divided into the training set and test set in a ratio of 8:2. 
The training set is applied to train the network model; the test set is applied to assess the 
property of the network model.

3.2  Experimental environment

In terms of hardware for the experimental environment, the CPU is Intel Xeon Sliver 
4210R, the memory is 32GB, the hard disk is 512  G SSD, and the GPU is GeForce 
RTX 3090. In terms of software, design, development, training, and testing are based 
on Python 3.10 and the deep learning framework Python 1.12.1. In addition, both the 
model and data are loaded into the GPU and accelerated through CUDA technology.

3.3  Training design

In the training phase, cross-entropy was chosen as the loss function, and the parameters 
were optimized using the SGD algorithm. The elementary learning rate was set to 0.01, 
and it was set to 0.001 for 20 iterations, for a total of 100 iterations. Each iteration shuf-
fles the training samples and sets the batch size to 16 to speed up the learning of model 
parameters. The hyper-parameter configuration for model training is shown in Table 1.

4  Simulation results
In this section, we first tested the effectiveness of extracting multiple features, then veri-
fied the necessity of each part of the network through ablation experiments, and finally 
compared the performance with several similar networks, proving the progressiveness 
nature of the proposed network.

4.1  Feature extraction effectiveness and analysis

In the experiment, the proposed network using two channel data and the same network 
using three channel data are selected for comparison. Figure 4 shows the average identi-
fication accuracy of 16 devices signals for the proposed network using two channel data 
and three channel data.

From Fig.  4, it can be seen that the average identification accuracy of the four net-
works increases with the increase in SNR. When the SNR is –5dB ~20dB, the average 
identification accuracy of the network using three channel data is higher than that of 

Table 1 Hyper-parameter configuration

Hyper‑parameter Parameter value

Epoch 100

Batch-size 16

Optimizer SGD

Initial learning rate 0.01

Weight-Decay 0.0005

Momentum 0.9

Num-Print 100
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the network model using any two channel data. The identification accuracy of the net-
work using three channel data is significantly improved compared to other network 
models when the SNR is –5dB  –~5dB, with an average identification accuracy of 58.9%. 
Compared to using I-channel data and Q-channel data, I-channel data and phase data, 
Q-channel data and phase data increased by 1.7%, 5.8%, and 5.3%, respectively. Based on 
the above analysis, it can be concluded that using multiple features can improve identifi-
cation accuracy, which verifies the rationality of the feature extraction algorithm in this 
paper.

4.2  Ablation experiment and analysis

To evaluate each part of the proposed network, the RSBU using three channel data and 
LSTM using three channel data are selected for comparison. The ablation experimental 
results are shown in Fig. 5. Case 1 represents the network lack of LSTM, directly con-
catenating the output of RSBUs and obtaining prediction results through FC layer. Case 
2 represents the network lack of RSBUs, input the three channel data into basic resid-
ual blocks and LSTM, concatenating all features and then outputting prediction results 
through the FC layer.

It can be seen from Fig. 5 that Case 1 and Case 2 show a significant decrease in iden-
tification accuracy compared to the original network when the SNR is –5dB ~20dB. 
As the SNR increases, the RFF carried in the signal becomes more significant. And the 
identification accuracy of Case1 is always higher than Case2 when the SNR is –5dB 
~10dB, proving the effectiveness of RSBUs in noise removal. As the noise decreases, the 

Fig. 4 Identification performance for different features
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identification accuracy of Case1 and Case2 tends to be consistent. The average identifi-
cation accuracy of the proposed network has been improved by 2% and 3.6% compared 
to Case1 and Case2, respectively. Therefore, the better performance of the proposed net-
work proves the effectiveness of the improvement.

4.3  Network performance and analysis

In the experiment, the MCLDNN [41], ResNet-LSTM [42], CLDNN [23], and ResNet18 
[43] networks are selected for comparison with the proposed network. Figure 6 shows a 
comparison of the identification accuracy of 16 device signals from five networks when 
the SNR is –5dB ~20dB.

It can be seen from Fig.  6 that when the SNR is –5dB ~20dB, the identification 
accuracy of the five networks gradually increases with the increase in SNR, and 
the identification accuracy of the proposed network is always at the highest posi-
tion. When the SNR is –5dB, the proposed network performance improvement 
is relatively clear. From Table  2, it can be seen that the proposed network has an 
average identification accuracy of 78.7% with a SNR of –5dB ~20dB, which is 2.2%, 
4.7%, 6.3%, and 7% higher than the identification accuracy of MCLDNN, CLDNN, 
ResNet-LSTM, and ResNet18 networks, respectively. At lower SNR (–5dB ~10dB), 
the average identification accuracy of this network can reach 68.4%, which is 2.5%, 
5.5%, 7.3%, and 8.2% higher than the identification accuracy of MCLDNN, CLDNN, 
ResNet-LSTM, and ResNet18 networks, respectively. Overall, the average identi-
fication accuracy of the proposed network is higher than the other four networks, 

Fig. 5 Ablation experiment
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and the proposed network performance is the best. Subsequently, we use confusion 
matrices to analyze the identification performance of the network in detail.

Figures 7, 8 and 9 depict the overall confusion matrix of identification for RSBU-
LSTM of –5dB, 5dB, and 20dB. At –5dB, some similar devices are difficult to iden-
tify due to the noise influence. At 5dB, there is a clear diagonal in the confusion 
matrix except for a few misclassified cases. At 20dB, except for a very small number 
of devices with identification deviations, it is basically possible to achieve full device 
identification. In general, the network has a good discrimination ability in low SNR 
environment.

Fig. 6 Identification performance for different networks

Table 2 Average identification accuracy comparison

Network –5dB (%) 0dB (%) 5dB (%) 10dB (%) 15dB (%) 20dB (%)

Proposed 37.1 54.7 84.8 97.1 98.9 99.5

MCLDNN 35.5 51.9 81.2 95.2 97.1 98.4

CLDNN 32.1 47.8 78.6 93.2 95.5 96.7

ResNet-LSTM 28.8 45.5 78.1 91.9 94.1 95.8

ResNet18 26.6 44.9 77.3 91.8 94.3 95.4
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5  Conclusion
This paper proposes a RSBU-LSTM network relying on multiple features to achieve 
individual identification of wireless devices. In order to comprehensively utilize the 
feature information of signals, the RF signal is first divided into three data channel: I, 
Q, and phase. Considering that the signal contains a large amount of noise that affects 
feature extraction, we use multiple RSBUs to suppress noise and extract the correla-
tion features. Subsequently, the LSTM network was effectively combined with RSBUs 
to achieve feature extraction within multiple signal cycles and between multiple signal 

Fig. 7 Confusion matrix in –5dB

Fig. 8 Confusion matrix in 5dB
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cycles. Finally, we concatenate all the features and then output the prediction results 
through the FC layer. Divide the open dataset into training and test sets, fully train 
the network through the training set, and use the test set to complete network testing. 
The experimental results show that the proposed network can effectively extract the 
RFFs of signals and accurately identify signals in low SNR environments. Compared 
with models based on 1D-ResNet and their improved versions, this network shows 
better performance. In the future, we will consider designing a network that utilizes 
unsupervised learning [44] to better extract signal features and utilize the new net-
work to complete RFFI with limited samples under low SNR conditions.
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