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Abstract 

Super-resolution imaging has, for more than seventy years, gradually evolved to pro-
duce advanced methods for enhancing the resolution of images beyond the diffrac-
tion limits. Notwithstanding its foreseeable practical capabilities, we noted that this 
technology has received undeserved attention. The present work provides an extensive 
review of super-resolution imaging since its first conception in 1952, contextualizing 
studies into four research directions: reviews, advances, applications, and hardware 
implementations. We have discussed achievements, challenges, and potential oppor-
tunities of super-resolution imaging to equip researchers, especially those in their early 
careers, with knowledge to further advance the technology. Our work may open inter-
esting research avenues that may accelerate realization of the technology into com-
mercial imaging devices.
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1 Introduction
The long-standing idiom

“A picture is worth a thousand words”

reflects varied interpretations depending on the context and discipline  [1–3]. For our 
case, the idiom may be interpreted as pictures (images), unlike words, provide a quicker 
content-rich visual communication. A single image may contain multiple messages with 
a story that could otherwise be told through many words. Given this advantage, there 
has been massive efforts to generate images with higher visual qualities for easier inter-
pretation and analysis.

Perceptually attractive images embed sharper, clearer, and detailed features—hence 
the term resolution that defines the information density in the image. Common types 
of image resolution include spatial resolution [4] (number of pixels that an image con-
tains), angular resolution [5] (minimum angular distance that an optical instrument can 
discern two distant objects), radiometric resolution  [6] (number of bits per pixel that 
distinguishes different gray-scale values), temporal resolution [7] (time needed to revisit 
the same location to acquire an image), and spectral resolution  [8] (distinguishable 
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wavelength bands detected by the imaging sensor from the electromagnetic spectrum). 
This work focuses on the spatial resolution that defines the quality of an image based on 
its information density. From now onwards, resolution, unless otherwise stated, means 
spatial resolution.

The scientific inquiry and human desire for quality scenes have necessitated the devel-
opment of approaches (methods, algorithms, and techniques) to improve the resolution 
of images. Typical approaches include hardware modification  [9] and image process-
ing [10]. The former approach may be achieved by increasing the number of pixels on 
the surface of the imaging sensor. This process necessitates reduction of the pixel size 
and integration of complex analog and digital circuits on the sensor chip [9, 11]. How-
ever, the amount of incident light on the sensor surface decreases with the pixel size. 
Consequently, the imaging sensor tends to generate shot noise that degrades the qual-
ity of an image [11]. In addition, resolution enhancement through hardware modifica-
tion increases cost and bulkiness of the imaging device. Challenged by these limitations, 
researchers have proposed software approaches, including super-resolution [12–14], to 
increase the resolution of images without modifying the hardware.

In 1952, the concept of super-resolution was conceived for the first time by Giuliano 
Toraldo di Francia  [15]. The author’s original idea was to improve the angular resolu-
tion of an optical system beyond its diffraction limit,1 governed by uncertainty princi-
ple stating that [16] “a wave cannot be localized much tighter than half of its vacuum 
wavelength.” All developments in (optical) super-resolution imaging centers on address-
ing this limitation, and advanced techniques attempt to lower the pre-defined maximum 
threshold of the wavelength.

Since conception of the idea, there has been some developments in super-resolution 
imaging across different science and engineering fields. Notwithstanding the develop-
ments, there has been inadequate comprehensive review works tracking the origin of 
this technology to date. The current work explores the evolution of this important tech-
nology over the last 70 years. We discuss achievements, challenges, and opportunities of 
the super-resolution methods to guide researchers on the possible research avenues to 
advance the technology.

2  Super‑resolution imaging
2.1  Fundamental concepts

The field of super-resolution imaging has been evolving over time (Fig.  1), capturing 
a broad range of science and engineering applications. However, compared with most 
other image processing fields, the rate of publications in this field seems unsatisfactory. 
Despite being an old field, we noted a skewed publication landscape of super-resolution 
imaging. Using the VOSviewer tool,2 we analyzed 2,504 publications on super-resolution 
imaging extracted from the Scopus3 and PubMed4 databases. Ranging between 1988 and 
2022, these publications—extracted using the search rule “super-resolution imaging” OR 

1 http:// www. ifac. cnr. it/ PUTO/ histo ry. htm
2 https:// www. vosvi ewer. com/
3 https:// www. scopus. com/
4 https:// pubmed. ncbi. nlm. nih. gov/

http://www.ifac.cnr.it/PUTO/history.htm
https://www.vosviewer.com/
https://www.scopus.com/
https://pubmed.ncbi.nlm.nih.gov/
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“optical super-resolution” OR “geometrical super-resolution”—describe different aspects 
of the field (reviews, advances, applications, and hardware implementations). Our obser-
vation from the analysis shows that China and United States are the leading countries in 
super-resolution imaging, but links for the collaboration network between these devel-
oped countries and the developing ones is relatively weak (Fig. 2). Given several advan-
tages of super-resolution imaging, including hardware cost reduction, strengthening the 
collaboration between developed and developing countries may be important. Gener-
ally, advancing the super-resolution imaging field globally requires coordinated plans 
and support from funding organizations. The target should be to implement super-reso-
lution imaging algorithms into electronics devices, hence reducing their costs for acces-
sibility by the developing world. In this respect, hardware and software developers may 
need to focus on four factors when designing super-resolution techniques: hardware res-
olution requirements, computational load (speed), algorithmic complexity, and overall 
product price.

Studies on super-resolution imaging take four directions (Table 1): reviews, advances, 
applications, and hardware implementations. Understanding these directions may help 
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Fig. 2 Collaborative network visualization of publications on super-resolution imaging
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early-career researchers to focus their research in a comprehensible way. Considering 
studies that advance the field, super-resolution methods can broadly be grouped into 
three categories, namely optics-based, geometry-based, and hybrid  [17] (Fig.  3). The 
general objective of these methods is to improve the quality of images generated by 
imaging systems. While the optics-based category deals with improvement of the angu-
lar resolution of an optical instrument, the geometry-based category focuses directly on 
the spatial resolution enhancement of an image. Hybrid super-resolution approaches, 
which have received wide attention in recent years, combine both optical and geometri-
cal super-resolution techniques to generated more detailed images [18–20].

The current work covers geometrical super-resolution methods, specifically those exploit-
ing the number of input images to reconstruct a high-resolution image. Subsequently, we 
have single-frame and multiframe methods. To generate an image with a higher perceptual 

Table 1 Directions of super-resolution imaging publications

Reviews Advances Applications Hardware 
implementations

Park et al. [11] Daihong et al. [32] Schubert [33] Del et al. [34]

Greenspan [35] Kouame and Ploquin [36] Christou [26] Ignatov et al. [37]

Fornasiero and Opazo [38] Majidi et al. [39] Robinson et al. [40] Lugmayr [41]

Laine et al. [42] Gul et al. [5] Zhou et al. [43] Tampubolon et al. [44]

Yue et al. [25] di Francia [15] Leach [45] Wang et al. [46]

Yang et al. [13] Irani and Peleg [12] Tønnesen and Nägerl [47] Chu [48]

Schermelleh et al. [49] Jiang et al. [50] Diaspro and van Zand-
voort [51]

Liu et al. [52]

Hong and Zang [53] An and Bhanu [54] Chen et al. [55] Diederich [56]

Christensen-Jeffries 
et al. [57]

Gu et al. [58] Burkhow [59] Yi et al. [60]

Li et al. [61] Zhang and Ling [62] Dencks et al. [63] Elron et al. [64]

Xu et al. [65] Niu et al. [66] Sato et al. [67] El-Khamy et al. [68]

Wu et al. [69] Kennedy et al. [70] Ng et al. [71] Zhenfeng et al. [72]

Sheppard [73] Gupta et al. [74] Baztán et al. [75] El-Khamy et al. [76]

Ooi et al. [77] Qiu [78] Xiaojian and Peikang [79] Ozcan et al. [80]

Ma et al. [81] Tokuhisa [82] Lippincott-Schwartz [83] Chen et al. [84]

Chen et al. [85] Shimizu et al. [86] Gohshi [87]

Liu et al. [88] Du et al. [89] Mayer et al. [90]

Liu et al. [91] Xu at al. [92] Du et al. [93]

Zhu [94] Dreier et al. [95] Wang et al. [96]

Wang et al. [97] Liu et al. [98]

Tian and Ma [99] O’Reilly and Hynynen [100]

Chaudhuri [101] Jiang et al. [102]

Zheng et al. [103]

Shi et al. [104]

Mane et al. [105]

Liu et al. [106]

Dong et al. [107]

Farrell et al. [108]

Xu et al. [65]

Zhou et al. [109]

Shen et al. [110]
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quality, the former method uses a single degraded and noisy image while the later method 
explores additional information from multiple low resolution images of the same scene. 
Over the past few decades, multiframe super-resolution (MSR) methods have gained wider 
attention for their ability to add extra details into the final reconstructed image. Inspired by 
its potential benefits, this work covers MSR methods.

In 1964, Harris [21], extending the work of 1955 by Toraldo di Francia [22], established 
fundamental theories and concepts to address the diffraction problem in optical sys-
tems. Ten years later, Gerchberg [23] showed that reducing energy error can significantly 
improve the resolution of an image beyond the constraints posed by diffraction. The author 
attempted to recover some high frequency components from a single degraded image 
through an iterative phase retrieval technique. However, involving a single image in the 
reconstruction process fails to incorporate additional information into the final solution. In 
1984, Tsai [24] proposed the first MSR method based on the frequency domain to improve 
the resolution of LandSat Thematic Mapper images [25]. This method allows quicker imple-
mentation and offers lower computational load. Since the work by Tsai, several advanced 
MSR methods have been proposed and applied in various fields [26–31].

The MSR problem can be described using the observation model that demonstrates how 
an ideal high resolution image undergoes multiple degradations to generate a sequence of 
degraded (low resolution) images (Fig. 4). Let the (unknown) high resolution image, u, cap-
tured by the imaging device be warped, blurred, and decimated by operators Wk , Bk , and 
Dk , respectively, to generate a sequence of low resolution images, {yk} , with k indexing the 
generated image in the sequence. If yk gets corrupted by an additive noise, ηk , (independent 
and identically distributed) then the observation model can be represented mathematically 
as

(2.1)yk = WkBkDku+ ηk .
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From (2.1), the observation model reduces to estimating u given the limited number of 
{yk} and unknown degradation operators ( Wk ,Bk ,Dk , and ηk ). Equation (2.1) denotes 
an inverse problem [111], often addressed using iterative algorithms and optimization 
methods.

Let M low resolution images be generated by the imaging device represented by the 
observation model. Then, rearranging (2.1) and introducing the widely used ℓ2-norm 
error minimization strategy yields the MSR optimization problem

Other strategies for error minimization, including ℓ0 and ℓ1 , may be applied as well to 
derive the optimization problem from which u can be estimated.

Inverse problems, including image super-resolution in (2.2), are inherently ill-
posed and can, therefore, generate unstable and undesirable solutions. Regularization 
techniques are usually applied to address the ill-posed nature of the inverse prob-
lems [112, 113]. Guided by these techniques, a regularization term should be incorpo-
rated into (2.2), giving a formulation

where � > 0 and R denote the regularization parameter and stabilization matrix, respec-
tively. Solving (2.3) and subjecting the resulting formulation into the continuous dynam-
ical system gives an estimate of u as

The solution space in (2.4) can be discretized in the computer using well-estab-
lished numerical schemes  [114–117]. Advances in MSR mostly focus on estimating 

(2.2)0 = argmin u
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degradation operators ( Wk , Bk , and Dk ), designing R, and formulating MRS optimization 
problems (Table 1).

2.2  Achievements and challenges

The quest for quality images has attracted researchers, professionals, and practitioners 
to invest massively in super-resolution imaging. The potential benefits, applications, and 
capabilities of this promising technology make it attractive, interesting, and increasingly 
useful. Google, for instance, initiated a project to apply artificial intelligence in upscal-
ing the resolution of images  [118, 119]. Google researchers applied two approaches to 
achieve outstanding super-resolution results: iterative refinement  [118] and cascaded 
diffusion models [119].

The achievements in image super-resolution can be discussed broadly along four 
directions. Firstly, development of methods, algorithms, and techniques for resolution 
enhancement. Secondly, establishment of frameworks to address the super-resolution 
problem. Thirdly, practical applications and use cases of the super-resolution technol-
ogy. Fourthly, development of quality assessment metrics for images generated through 
the super-resolution process. Researchers and practitioners should be guided by these 
directions to advance the super-resolution technology.

In the first direction of achievement, researchers have proposed several approaches 
(methods, algorithms, and techniques) to restore the quality of degraded images (Fig. 3). 
Of the approaches, those based on machine learning have, in recent years, gained a con-
siderable attention of researchers  [13, 120–123]. There seem to be a promising future 
of the super-resolution technology under machine learning approaches, especially when 
combined with MSR. In their recent article, Ooi and Ibrahim [77] highlighted the chal-
lenges of these approaches for researchers to capitalize and advance the technology.

The second direction of achievement calls for efforts to establish efficient and robust 
frameworks for image super-resolution. Studies may be conducted to investigate 
strengths and weaknesses of the available frameworks [124], then devise practical solu-
tions to address potential weaknesses and limitations. The frameworks may form the 
basis for researchers to build methods for image super-resolution. In our survey, we 
could not locate sufficient information that systematically guides researchers on the 
development of super-resolution methods based on standard frameworks. In machine 
learning (e.g., deep neural networks) approaches, for instance, most frameworks 
observed in the literature lack information on why they work and how they are system-
atically and logically designed.

The third achievement of image super-resolution can be observed in domestic and 
industrial products, where the technology has been applied to generate detailed and 
sharper images [34, 56, 125]. Despite the current achievements, this direction is still in 
the early stage with a number potential research opportunities. Most super-resolution 
algorithms in the literature have not been tested and implemented in practical imag-
ing devices, including mobile phones, microscopes, scanners, and cameras. This chal-
lenge emanates from limitations and high cost of hardware implementation. In essence, 
we have not fully exploited the capabilities offered by the super-resolution technology 
and its applications in different scientific and engineering products, including imaging 
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devices for super-resolving text images [126, 127], astronomical objects [128], face [50, 
129], and underwater creatures [130, 131].

Fourthly, the super-resolution technology has resulted into the establishment of 
metrics for image quality assessment (IQA). Considering image super-resolution, the 
primary goal of the IQA metric is to measure the information richness of the super-
resolved image. In objective quality assessment, the IQA metric quantifies the degree 
of image resolution enhancement after the super-resolution process. Despite the efforts 
and achievements in the development of IQA metrics, we observed lack of recommen-
dations on how researchers should select such metrics, based on specific criteria, for 
different application domains. Given the image processing task (e.g., resolution enhance-
ment, noise removal, or inpainting), conclusions from results may be misleading if 
an incorrect IQA metric is applied to assess the quality of the generated images. This 
knowledge gap calls for researchers to establish benchmarks for selecting IQA metrics.

Considering the degradation model (Fig.  4) that generates (2.3) and (2.4), MSR suf-
fers from additional challenges requiring scholarly attention. Firstly, there has been no 
standard guidelines on the choice of M, number of low-resolution frames. Practical 
applications require a proper value of M for generating optimum results. Secondly, esti-
mation of degradation operators has mostly been done under simulation experimental 
settings. In practice, these operators occur naturally within the imaging system. There-
fore, researchers should develop more advanced approaches to accurately estimate val-
ues of the degradation operators, an attempt that may facilitate realization of MSR in 
practical devices. Thirdly, the degradation model (Fig. 4) deals with additive noise that 
cannot completely represent the natural imaging environment. Images encounter differ-
ent noise types (e.g., multiplicative and mixed) uncaptured by the degradation model. 
This limitation calls for a need to revise the model and make it adaptive. In practical 
settings, the super-resolution method should adaptively and simultaneously perform 
resolution enhancement and noise removal, reversing all degradations that corrupt the 
original image. Fourthly, more effective regularization functionals should be established 
to address the ill-posed nature of the MSR model. Equation (2.4) incorporates a typi-
cal variation of a regularization functional, obtained after ℓ2 minimization of the cor-
responding energy functional from (2.3). Other types of norms should be explored and, 
more importantly, evaluation metrics to gauge their performance should be researched. 
In addition, more work is needed to determine superior regularization functionals that 
can effectively address the missing-data super-resolution problem. In this respect, com-
pelling results may be achieved by adaptively adjusting the regularization parameter, � , 
and fidelity term relative to the local image features.

3  Practical applications of image super‑resolution
The super-resolution technology has revolutionized the imaging industry, providing 
some real-world applications to domestic and commercial devices. For instance, the 
technology has provided methods and techniques to manufacture inexpensive and port-
able imaging devices. The today’s generation has witnessed smartphones and miniature 
cameras that apply image processing techniques to capture high-quality images. Given 
its wide practical applications, the super-resolution imaging has remained an interesting 
research topic to date.
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3.1  Face image super‑resolution

In several practical applications, we desire high-quality face images with well-pre-
served and clear features [132, 133]. For example, surveillance images should display 
clear human faces of criminals to assist police officers in law enforcement. Another 
practical example can be observed in access control systems that use a face image 
for human recognition. Given these applications, there has been intensive research 
to ensure that imaging systems generate quality face images that meet the intended 
demands. One direction of research is face image super-resolution (also called face 
hallucination) that deals with increasing the resolution of a face image  [50, 54, 129, 
134]. Currently, machine learning approaches have demonstrated promising results in 
face image super-resolution [62, 66, 121].

3.2  Medical imaging

Medical images provide a cost-effective solution for doctors to make diagnosis on the 
disease and conditions of patients. The fundamental premise for drawing appropri-
ate diagnostic decisions depends on the quality of a medical image. Therefore, the 
imaging modalities (e.g., X-ray, ultrasound, magnetic resonance imaging or MRI, 
computerized tomography or CT, and positron emission tomography or PET) should 
generate high-resolution images with distinctive medical features. To this end, 
image super-resolution has played a key role to improve the resolution of medical 
images  [35, 36, 40, 57, 58, 61, 70, 78]. Specific applications of medical image super-
resolution can be found in X-ray imaging [82, 86, 89, 92, 95], ultrasound imaging [36, 
57, 98], MRI [102–105, 135], CT imaging [136–140], and PET imaging [70, 141–144].

3.3   Multispectral and hyperspectral imaging

The ordinary camera can capture images within the visible electromagnetic spectrum. 
Some applications, however, require utilization of other electromagnetic spectrum 
bands to reveal important features of objects. This demand compelled researchers to 
introduce multispectral and hyperspectral imaging methods that explore a broader 
range of the electromagnetic spectrum. Hyperspectral imagery generates images with 
higher spectral resolution compared with those generated by multispectral imagery. 
Nevertheless, these modes generate images with poor spatial resolution. Challenged by 
the limitation, efforts have been put to apply super-resolution techniques to improve the 
spatial resolution of multispectral and hyperspectral images [106, 107, 110, 145–147].

3.4  Synthetic‑aperture radar imaging

Synthetic-aperture radar (SAR) [148, 149], an emerging technology in remote sensing, 
uses an imaging sensor for active data collection from the earth. During operation, 
the SAR sensor generates energy and transmits it to the earth. Afterwards, the sensor 
receives and records the reflected energy after interaction with the earth. SAR imag-
ing, despite its wide applications  [148–151], requires an expensive sensor to gener-
ate images with higher spatial resolution. Responding to the challenge, scholars have 
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proposed super-resolution techniques that facilitate resolution enhancement with-
out sensor modification—an approach that significantly lowers the overall cost of the 
imaging system [152, 153].

3.5  Astronomical imaging

Despite the considerable achievements in astrophotography (imaging of space 
objects)  [154], diffraction limits and other technical challenges cause space telescopes 
to generate low-resolution images of astronomical objects and celestial events. Typical 
degradations in space images include noise, warping, and decimation. These degrada-
tions, if not addressed, may hinder the advancement of scientific exploration in astron-
omy. Therefore, super-resolution imaging has been considered as an optimal solution 
to simultaneously increase angular and spatial resolutions of astronomical images [128, 
155–157].

3.6  Microscopy imaging

Microscopy allows scientists and researchers to observe microscopic objects (e.g., cell 
structures) and study complex biological processes using microscopes [158]. Because of 
technological challenges, super-resolution techniques have been proposed to increase 
the angular resolution of microscopic objects beyond the diffraction limit  [33, 49, 
108, 159–163]. Techniques for super-resolution microscopy include stimulated emis-
sion depletion (STED) microscopy  [65, 69, 109], structured illumination microscopy 
(SIM) [73, 81, 164], stochastic optical reconstruction microscopy (STORM)/photoacti-
vation localization microscopy (PALM)  [165–168], Fourier ptychographic microscopy 
(FPM) [169, 170], and super-oscillation microscopy (SOM) [171, 172]. These techniques 
use different mechanisms to overcome optical limitations (scattering, reflection, diffrac-
tion, attenuation, and absorption), hence advancing the scientific inquiry of biological 
processes. For example, the advancement of super-resolution microscopy has greatly 
improved our understanding on animal and plant cells.

3.7  Multimedia industry and video enhancement

In recent years, there has been increasing demands for high-quality scenes in the multi-
media industry. People desire to watch high definition videos (e.g., movies), animations, 
and visual effects for entertainment or other multimedia applications. Therefore, moti-
vated by the sophistication in computing, researchers have proposed different super-
resolution methods to improve the resolution of images and videos  [173, 174]. Such 
methods may be embedded into computing devices, such as smartphones and tablets, to 
give users the deserved experience.

3.8  Biometrics

Super-resolution imaging may be applied to enhance the resolution of biometrics fea-
tures [17], such as fingerprint [175–177], iris [178, 179], and palm veins [180]. This image 
enhancement procedure, usually implemented as a pre-processing component, may help 
to improve the accuracy of biometric identification system. For example, super-resolu-
tion algorithms may be embedded in a smartphone to enhance the quality of compact 
fingerprint signatures captured by the sensor.



Page 11 of 21Maiseli and Abdalla  EURASIP Journal on Advances in Signal Processing         (2024) 2024:78  

3.9  Electronics manufacturing industries

Fabrication of printed circuit boards (PCBs) using vision-driven systems involves several 
steps, including detection of defects (e.g., broken electrical circuits or contacts) from 
PCB surfaces  [181–183]. This step becomes rather challenging for tiny defects, call-
ing for a need of high-quality PCB images. Advanced cameras may address this chal-
lenge at the expense of increased hardware cost. Subsequently, super-resolution imaging 
techniques may be used to improve the resolution of PCB images, especially in defec-
tive regions of the boards. There has been some little attempts to apply super-resolution 
algorithms to improve the fabrication processes of PCBs [184, 185].

4  Evaluation of super‑resolution methods
4.1  Image quality metrics

Performance of the super-resolution method can be determined by gauging the qual-
ity of the images that such a method generates. Traditionally, subjective and objective 
metrics have been used for performance evaluation [186]. In recent years, scholars have 
attempted to apply machine learning approaches in the quality assessment of the super-
resolved images [187, 188].

Subjective image quality assessment involves visual inspection to investigate features 
of the image [189]. Results from this method depends on the perceptual abilities of the 
human, driven by several physiological and psychological factors. For the same image, 
people can provide different perceptions on its quality. Therefore, a clear methodology 
should be devised before using the subjective IQA. One approach could be to develop an 
instrument, such as a questionnaire or an interview guide, and visit groups of people to 
provide their opinions on the perceptual qualities of the images. Then, the responses can 
be analyzed to provide statistical values that will form the basis for drawing conclusions 
regarding the visual appeal of the images.

Three approaches of subjective IQA may be applied to evaluate the super-resolution 
methods [189]: firstly, categorical rating where an observer judges the quality of a single 
image (single stimulus) or a pair of images (double stimulus) based on a fixed five-point 
scale; secondly, forced-choice that requires an observer to perform pairwise comparison 
of images, then order them from highest to lowest quality; and thirdly, similarity judge-
ment that, in addition to the observer selecting an image with the highest quality, esti-
mates the image quality difference on a continuous scale.

The subjective IQA approach, if carefully performed, may provide promising results 
consistent with the human visual system. Our investigation from the literature reveals 
that authors tend to apply their personal experiences to subjectively evaluate the qual-
ity of the images, and this tendency provides biased conclusions that disregard opinions 
from a wider population.

In objective IQA, the quality of an image is quantified numerically. This evaluation 
metric provides a universal standard in assessing the quality of a super-resolved image. 
There exists three common types of objective IQA methods: full-reference, no-refer-
ence, and reduced reference. Each IQA method gives a number that shows the degree of 
deviation between the images under comparison.

In full-reference IQA, the restored (super-resolved) image is compared with the given 
reference (ideal) image. The limitation of this metric is that it requires a reference image 
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that may not always be available. Examples of full-reference IQA include the follow-
ing  [190]: mean absolute error  [191], mean squared error  [192], peak signal-to-noise 
ratio  [193–195], structural similarity  [186, 192, 196], visual information fidelity  [197], 
most apparent distortion  [198], feature similarity  [199], gradient magnitude similar-
ity deviation  [200], visual saliency induced  [201], normalized Laplacian pyramid dis-
tance [202], learned perceptual image patch similarity [203], and deep image structure 
and texture similarity [204].

The no-reference IQA metric does not require a reference image to quantify its 
quality  [205]. This metric may be suitable in  situations where only information of the 
restored (or degraded) image is available, such as in single-frame super-resolution imag-
ing. Because the metric requires only a single test image, robust methods are usually 
needed to estimate the statistical information, such as noise and probability density 
functions, in the image. Examples of the no-reference IQA metrics include the follow-
ing [205]: blind image integrity notator using discrete cosine transform statistics [206], 
blind multiple pseudo reference image  [207], blind/referenceless image spatial qual-
ity evaluator  [208], curvelet quality assessment  [209], distortion identification-based 
image verity and integrity evaluation [210], entropy-based no-reference IQA [211], blind 
IQA  [212], novel-blind IQA  [213], spatial-spectral entropy-based quality index  [209], 
no-reference perception-based image quality evaluator  [214], no-reference IQA  [215], 
and oriented gradients IQA index [216].

The reduced-reference IQA metric evaluates the perceptual quality of an image with 
respect to the partial information of a reference image  [217]. Examples of this met-
ric include wavelet marginal index  [218], divisive normalization transform marginal 
index  [219], reduced-reference structural similarity  [220], wavelet reduced-reference 
IQA index [221], and feature-based reduced-reference IQA index  [222].

4.2  Datasets and implementation codes

The best practice when developing a super-resolution method, or any other image and 
video processing method, is to share the datasets and implementation codes of the 
developed method to the public repository. This practice, supported by the open science 
(movement that promotes accessibility of scientific research)  [223], allows researchers 
to reproduce results from authors’ works. Studies show that publications linked to open 
datasets and implementation codes receive more citations5  [224], an observation that 
translates to a significant research impact across the community.

Supporting the open science, the current work includes links and publications with 
open datasets and implementation codes of the super-resolution methods (Appendices 
A and B). We believe that this information may be useful to researchers, especially those 
in their early career of publication, to quickly benchmark their methods. Our belief, 
founded by the literature on open science, is that the research community should strive 
to advance science through dissemination of results and associated datasets.

5 https:// www. chemi stryw orld. com/ news/ open- data- linked- to- higher- citat ions- for- journ al- artic les/ 30107 23. artic le

https://www.chemistryworld.com/news/open-data-linked-to-higher-citations-for-journal-articles/3010723.article


Page 13 of 21Maiseli and Abdalla  EURASIP Journal on Advances in Signal Processing         (2024) 2024:78  

5  Latest developments of super‑resolution imaging
Super-resolution imaging has continued to be advanced for its immense domestic and 
industrial applications. Scientists envisage to stimulate their understanding on micro-
scopic objects. This quest for new knowledge may be critical in the development of sci-
ence and technology.

In optical microscopy, there has been struggles by scientists to further improve label-
free super-resolution (LFSR) imaging  [225, 226], which employs principles of light 
scattering in nanoscale materials for spatial resolution enhancement. LFSR has dem-
onstrated remarkable achievements in microbiology to study cellular, molecular, and 
genetic processes from plants and animals. An interesting article by Astratov et al. [225] 
provides a roadmap of LFSR imaging, exposing current and future developments of this 
promising field in biomedical imaging. Furthermore, scholars have been investigating 
the impact of integrating optical microscopy and image post-processing techniques to 
address diffraction limits in optical systems [20, 31, 227].

Deep (and machine) learning gives us a promising future of super-resolution imag-
ing. Scholars have established different learning models and techniques with high per-
formance to extend resolution of images and videos [228–231]. It may be important for 
scholars to investigate the impact of combining deep learning techniques and optical 
microscopy.

Perhaps an area that still needs intensive scientific inquiry is the implementation of 
super-resolution imaging algorithms in practical electronics devices. This research 
direction has received little attention because of several hardware and software limi-
tations  [232], including computational issues and compression artifacts. Electronics 
manufacturing (and semiconductor) industries may develop dedicated hardware for 
real-time processing of complex super-resolution algorithms. On 28th February 2023, 
Nvidia responded to the challenge by releasing a RTX Video Super-resolution driver for 
their GeForce RTX 40 and 30 Series Graphics Processing Units.6 The innovation has 
allowed for streaming of high-quality (super-resolved) videos content in Google Chrome 
and Microsoft Edge browsers.

6  Conclusion
This work has tracked the developments and achievements of the image super-resolu-
tion technology over the last seventy years. Challenges and potential opportunities have 
been provided for researchers to further advance this technology. One notable observa-
tion from our work is that the super-resolution technology, despite being in existence 
for over 70 years, has unsatisfactorily made its way to practical devices. Several super-
resolution methods have been developed but not directly applied in the real-world envi-
ronment, partly due to complexity and memory demands of such methods. Therefore, 
the super-resolution problem seems to remain an active research area for several years 
ahead.

6 https:// blogs. nvidia. com/ blog/ rtx- video- super- resol ution/

https://blogs.nvidia.com/blog/rtx-video-super-resolution/
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Appendix A: Datasets for testing super‑resolution methods

1. University of Southern Califonia: https:// sipi. usc. edu/ datab ase/
2. DIV2K Dataset: https:// data. vision. ee. ethz. ch/ cvl/ DIV2K/
3. Peyman Milanfar: www. soe. ucsc. edu/ ~milan far/ DataS ets/
4. Flickr1024: https:// yingq ianwa ng. github. io/ Flick r1024/
5. SISR: https:// cvnote. ddlee. cc/ 2019/ 09/ 22/ image- super- resol ution- datas ets
6. RELLISUR: https:// openr eview. net/ forum? id= aqCD8 RINP54
7. SelfExSR: https:// github. com/ jbhua ng0604/ SelfE xSR
8. PROBA‑V: https:// kelvi ns. esa. int/ proba-v- super- resol ution/

Appendix B: Implementation codes for super‑resolution methods

 1. https:// ccia. ugr. es/ pi/ super resol ution/ softw are. html
 2. https:// www. ece. lsu. edu/ ipl/ Softw are. html
 3. https:// facul ty. idc. ac. il/ toky/ old_ cours es/ video Proc- 07/ proje cts/ Super Res/ srpro ject. 

html
 4. http:// www. ok. sc.e. titech. ac. jp/ res/ CSR/ MTSR/ index. html
 5. https:// www. mathw orks. com/ matla bcent ral/ filee xchan ge/ 30488- super resol ution- 

demo
 6. https:// www. mathw orks. com/ matla bcent ral/ filee xchan ge/ 49538- super resol ution 

demo
 7. http:// staff. utia. cas. cz/ sroub ekf/ resea rch/ bsr_ gui. html
 8. http:// soell erlab. ex. ac. uk/ pages/ PYME. html
 9. https:// github. com/ saira jk/ Image- Super- Resol ution- Appli cation
 10. https:// yapen gtian. org/
 11. http:// zoi. utia. cas. cz/ mobil esr
 12. http:// people. rennes. inria. fr/ Aline. Roumy/ resul ts/ SR_ BMVC12. html
 13. http:// mmlab. ie. cuhk. edu. hk/ proje cts/ FSRCNN. html
 14. https:// www. mathw orks. com/ matla bcent ral/ filee xchan ge/ 33839- image- super- resol 

ution- itera tive- back- proje ction- algor ithm
 15. https:// github. com/ topics/ super- resol ution?l= matlab
 16. https:// github. com/ topics/ single- image- super- resol ution
 17. https:// www. robots. ox. ac. uk/ ~vgg/ softw are/ SR/
 18. http:// mmlab. ie. cuhk. edu. hk/ proje cts/ SRCNN. html
 19. https:// github. com/ jspan/ PHYSI CS_ SR
 20. https:// matla b1. com/ shop/ matlab- code/ matlab- code- high- resol ution- image- set- 

low- resol ution- images/
 21. https:// elad. cs. techn ion. ac. il/ softw are/
 22. http:// frees ource code. net/ matla bproj ects/ 59355/ image- super- resol ution--- itera tive- 

back- proje ction- algor ithm- in- matla b#. Ym5JV dNBzIU
 23. https:// jiaya. me/ resea rch/
 24. https:// www. vision. uji. es/ srtoo lbox/

https://sipi.usc.edu/database/
https://data.vision.ee.ethz.ch/cvl/DIV2K/
http://www.soe.ucsc.edu/%7emilanfar/DataSets/
https://yingqianwang.github.io/Flickr1024/%20
https://cvnote.ddlee.cc/2019/09/22/image-super-resolution-datasets
https://openreview.net/forum?id=aqCD8RINP54
https://github.com/jbhuang0604/SelfExSR
https://kelvins.esa.int/proba-v-super-resolution/
https://ccia.ugr.es/pi/superresolution/software.html
https://www.ece.lsu.edu/ipl/Software.html
https://faculty.idc.ac.il/toky/old_courses/videoProc-07/projects/SuperRes/srproject.html
https://faculty.idc.ac.il/toky/old_courses/videoProc-07/projects/SuperRes/srproject.html
http://www.ok.sc.e.titech.ac.jp/res/CSR/MTSR/index.html
https://www.mathworks.com/matlabcentral/fileexchange/30488-superresolution-demo
https://www.mathworks.com/matlabcentral/fileexchange/30488-superresolution-demo
https://www.mathworks.com/matlabcentral/fileexchange/49538-superresolutiondemo
https://www.mathworks.com/matlabcentral/fileexchange/49538-superresolutiondemo
http://staff.utia.cas.cz/sroubekf/research/bsr_gui.html
http://soellerlab.ex.ac.uk/pages/PYME.html
https://github.com/sairajk/Image-Super-Resolution-Application
https://yapengtian.org/
http://zoi.utia.cas.cz/mobilesr
http://people.rennes.inria.fr/Aline.Roumy/results/SR_BMVC12.html
http://mmlab.ie.cuhk.edu.hk/projects/FSRCNN.html
https://www.mathworks.com/matlabcentral/fileexchange/33839-image-super-resolution-iterative-back-projection-algorithm
https://www.mathworks.com/matlabcentral/fileexchange/33839-image-super-resolution-iterative-back-projection-algorithm
https://github.com/topics/super-resolution?l=matlab
https://github.com/topics/single-image-super-resolution
https://www.robots.ox.ac.uk/%7evgg/software/SR/
http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html
https://github.com/jspan/PHYSICS_SR
https://matlab1.com/shop/matlab-code/matlab-code-high-resolution-image-set-low-resolution-images/
https://matlab1.com/shop/matlab-code/matlab-code-high-resolution-image-set-low-resolution-images/
https://elad.cs.technion.ac.il/software/
http://freesourcecode.net/matlabprojects/59355/image-super-resolution---iterative-back-projection-algorithm-in-matlab#.Ym5JVdNBzIU
http://freesourcecode.net/matlabprojects/59355/image-super-resolution---iterative-back-projection-algorithm-in-matlab#.Ym5JVdNBzIU
https://jiaya.me/research/
https://www.vision.uji.es/srtoolbox/
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 25. https:// compp hotol ab. north weste rn. edu/ proje ct/ spati al- spect ral- repre senta tion- for-
x- ray- fluor escen ce- image- super- resol ution/

 26. https:// xinli. facul ty. wvu. edu/ repro ducib le- resea rch/ repro ducib le- resea rch- in- 
image- proce ssing
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