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1 Introduction
Maximum length binary sequences (MLBS) are a special form of pseudo-random noise 
that can be created from linear feedback shift registers (LFSR) [1]. The theory of MLBSs 
has been developed decades ago [1], and while there are many different applications 
of them [2–5], they are in particular useful for system identification purposes [6–8] as 
easy-to-implement broadband excitation signals with various applications [9–12].

Since the estimation of spectra and spectral densities is a well-known signal process-
ing technique [13], their application to MLBSs should be straightforward. Yet, there are 
many discrepancies and inconsistencies in the literature concerning the exact properties 
of MLBSs like in particular their spectrum and their power spectral density (which are 
unfortunately often used synonymously), and how these properties are affected by the 
basic time steps of the sequence and the sampling time, to name only a few aspects. We 
address these issues by giving clear and consistent definitions with well-defined ranges 
of validity.
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The importance of choosing appropriate parameters for the MLBS excitation signal 
(according to the expected dynamics of the system that is to be identified) is highlighted, 
for example, by the occurrence of a system identification error when a PI controller is 
used [14] that can be mitigated to some extent if the MLBS’s order is sufficiently high 
[14].

In practice, one typically doesn’t use the “pure” MLBS (which is a discrete series of 
numbers) but rather a continuous-time realization (typically generated by means 
of a zero-order hold (ZOH) process). However, when measurements are performed 
(e.g., with a digital sampling oscilloscope), these time-continuous signals are converted 
back to discrete-time data by means of sampling. In our contribution, we will therefore 
distinguish as precisely as possible between the base MLBS, its time-continuous repre-
sentation, and a sampled MLBS signal and explicitly elaborate the links between them.

For the characterization of these MLBS signals, Fourier analysis is of course an impor-
tant technique as for other signals as well, e.g., via a fast Fourier transform (FFT) [15]. 
However, since not only time-discrete and time-continuous signals have to be distin-
guished but also periodic and non-periodic signals (and even deterministic vs. stochastic 
signals) [16, 17], statements concerning the spectrum of an MLBS signal have to be han-
dled with care. Last but not least, many references work with formulas that are normal-
ized so that a physically meaningful interpretation is difficult. Therefore, we will provide 
definitions of the different signal processing steps (i.e., transformation into the frequency 
domain, autocorrelation function, and power spectral density) with special focus on the 
relevant scaling factors. Afterward, an application of these definitions to the different 
MLBS representations leads us to transparent interpretations of the results. Specifically, 
we will discuss the influence of different parameters such as the number of bits of the 
base MLBS, the base time or the observation time.

The paper is organized as follows:
Section 2 gives detailed definitions of terms and formulas to create a solid mathemati-

cal basis and lists the main properties of MLBSs that are of major importance for the 
scope of this paper.

In Sect. 3, the discrete Fourier transform (DFT) and the power spectral density (PSD) 
of MLBSs are calculated, with clear reference to scaling factors that ensure the physical 
interpretability of these results.

Finally, in Sect.  4, the results obtained for the pure discrete-time sequence are 
extended for a continuous-time realization of an MLBS that is sampled afterward. An 
example highlights the pitfalls one might encounter designing an MLBS for system 
identification purposes and how this work helps to circumvent them. The procedures 
outlined in this last section also allow for a description of the impacts of hardware limi-
tations (finite rise times of the signal-generating devices or time-step restrictions of their 
internal clocks) on the PSD of the signal.

2  Definitions and properties of an MLBS
Figure 1 shows an example for a 4-bit linear feedback shift register based on [2].

Each bit aik can hold the values 0 or 1: aik ∈ {0, 1} ⊂ R . The upper index 
i ∈ {0, 1, ..., n− 1} , where n is the total number of bits in the register, denotes the 
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position, and the lower index k ∈ N0 denotes the time step for the time t = kTbase with 
the so-called base time Tbase ∈ R

+.
The state of the whole shift register at time step k is given by the n-tuple (

aik
)
=

(
an−1
k , an−2

k , ..., a1k , a
0
k

)
.

After each time step, the values of all bits are shifted one tab to the right, aik+1 = ai+1
k  , 

for i ∈ {0, 1, ..., n− 2} . Due to the feedback loop, the value of the highest bit an−1
k+1 at time 

step k + 1 is calculated as a sum (modulo 2) of the values of some bits at the previous 
time step k. Which bits are fed back is called the taps and is a crucial property of the shift 
register that will be discussed later. In the example shown in Fig. 1 with n = 4 , the bits at 
position 0 and 1 are fed back via an XOR gate, performing the modulo 2 addition. Thus,

The output of the shift register at time step k is the value of a0k , and the total output is 

represented by the sequence 
{
a0k
}
=

{
a00, a

0
1, a

0
2, ..., a

0
p−1, a

0
0, a

0
1, ...

}
.

A shift register with a length of n bits represents one of 2n different states 
(
aik
)
 at each 

time step k. As proven by Golomb [1], the succession of these states is periodic with 
period 0 < p ≤ 2n − 1 , since every state is determined by the previous state and there 
are only a finite number of different states: aik+p = aik . The state all zeroes produces a 
trivial output sequence. (This state will be maintained infinitely.) The term “maximum 
length” denotes a feedback shift register whose output sequence periodically produces 
all other 2n − 1 states. The output has the maximum period p = 2n − 1 , so whatever the 
initial state is (except all zeroes), the register will eventually hold every possible initial 
state. It is therefore sufficient to only consider the initial state all ones and—except 
explicitly stated otherwise—this will be assumed to be the standard initial state through-
out this work: 

(
ai0
)
= (1, 1, ..., 1).

Since the history of every bit ai with i ∈ {0, 1, ..., n− 2} is identical to the history of 
the previous bit ai+1 with a delay of one time step, for k ≥ n− 1 every bit’s state can be 
traced back to a previous state of an−1 . This allows for a generalization of Eq. (1) in the 
form of a linear recurrence [1]:

(1)a3k+1 = a1k ⊕ a0k .

(2)

an−1
k+1 = cn−1a

n−1
k ⊕ cn−2a

n−2
k ⊕ ...⊕ c0a

0
k

= cn−1a
n−1
k ⊕ cn−2a

n−1
k−1 ⊕ ...⊕ c0a

1
k−1

...

= cn−1a
n−1
k ⊕ cn−2a

n−1
k−1 ⊕ ...⊕ c0a

n−1
k−(n−1)

Fig. 1 Example for a 4-bit linear feedback shift register



Page 4 of 23Orth and Klingbeil  EURASIP Journal on Advances in Signal Processing         (2024) 2024:80 

Figure 2 shows the general structure of the LFSR according to Eq. (2).
The taps are thus given by the tuple (cn−1, ..., c1, c0) with cj ∈ {0, 1} ⊂ R . For the 

example in Fig. 1, this tuple is (c3, c2, c1, c0) = (0, 0, 1, 1) and its characteristic polyno-
mial [18] is P(x) = x4 + x + 1 . A list of suitable taps that produce LFSRs with maxi-
mum period length for a given length n can be found in [19].

In the following, we assume that the taps have been chosen in a way such that an 
MLBS is obtained.

An MLBS in the sense of this work is then created by mapping the output of the 
shift register to −1 and +1 , respectively, via bk = −ejπa

0
k with the imaginary unit j or 

simply bk = 2a0k − 1 . Note that the superscript 0 of the bit is omitted for the MLBS. 
The MLBS is represented by the sequence {bk} = {b0, b1, b2, ..., bp−1, b0, b1, ...}.

In the literature, the mapping to −1 and +1 is sometimes reversed [20, 21], or even 
both versions of the mapping are used [1].

Fig. 2 General structure of a LFSR

Fig. 3 Examples of a 4-bit and a 7-bit MLBS, each with initial state all ones 
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Figure 3 shows two examples for a 4-bit and a 7-bit MLBS.
Being deterministic, an MLBS cannot be truly random but it has some “random-

ness characteristics” as postulated by Golomb [1], accounting for the name pseudo-
random noise sequence: 

R-1 In every period, the disparity between the number of +1 s and the number of −1 s 
does not exceed 1.

R-2 In every period, half the runs (i.e., a sequence of identical values) have length 
one, one-fourth have length two, and so on. Notably, there are one run of length n of 
+1 s and one run of length n− 1 of −1s.

R-3 The autocorrelation function Rbb[l] (definition: Eq. (14)) has only two values: 

The property R-3 is responsible for the broad spectrum of an MLBS, as will be dis-
cussed later.

Further properties, especially considering cross-correlations, are given in [20].
The autocorrelation function Rbb[l] calculated with Eq.  (3) is shown in Fig. 4 for a 

4-bit and a 7-bit MLBS, respectively.
Since the signal is periodic, so is its autocorrelation function, and the distinct peaks 

occur at 0 and at multiples of the period p. The scaling factor 1/p in Eq. (3) ensures 
that the peaks have unit height and the negative “floor” decreases to zero as the num-
ber of bits increases. Thus, even for a lag of only one single time step, the shifted 

(3)Rbb[l] =
1

p

p−1∑

k=0

bk+lbk =
{
1 for l = 0 mod p

− 1
p else

Fig. 4 Autocorrelation function Rbb[l] of a 4-bit MLBS (top) and a 7-bit MLBS (bottom)
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signal looks almost completely uncorrelated to the original one. That means, although 
an MLBS is deterministic its autocorrelation function approximates a pure random 
process.

It is important to note that the MLBS as a sequence {bk} exists independently of any 
time scale and here we strictly distinguish between sequences and time series. If the 
MLBS is to be played as a time series, the time steps are given by the above-mentioned 
base time Tbase with fbase = 1

Tbase
.

3  Discrete spectrum
The discrete Fourier transform (DFT) [22] can be calculated via

where N is the length of the dataset (see Appendix 1.2 for a discussion of the scaling fac-
tor 1/N and the notation). For the MLBS, N = p is used.

The total length pTbase of the time series determines the frequency resolution via

while the maximum frequency that contains information (as per the Nyquist–Shannon 
sampling theorem) is given by

Note that Eq. (6) is valid here since p is always odd for an MLBS.
When the length of the dataset matches one full period, N = p , the absolute values 

|Bn| of the DFT of an MLBS sequence {bk} are given by

(see Appendix 3 for the derivation). Examples are shown in Fig. 5 for a 4-bit and a 7-bit 
MLBS, respectively. The scaling of the frequency axis is done by assuming Tbase = 1 s for 
both sequences.

First of all, the DFT produces distinct peaks that can be attributed to certain frequen-
cies, and Fig. 5 illustrates the effects of Eqs. (5), and (6). The higher the number of bits, 
the better becomes the approximation of Eq. (6). Simultaneously, increasing the number 
of bits results in smaller frequency bins so that the amplitudes also become smaller.

Secondly, the spectrum of an MLBS is flat, every frequency component is equally pre-
sent (except a near-zero DC value). This property underlines the white noise character-
istic of an MLBS. In the literature, however, the reader often finds the statement that the 
spectrum of an MLBS has a sinc (fTbase)-shape and the flatness thus would only apply to 
the lowest frequencies. This is not correct for an MLBS as a sequence. The error occurs 
by using the term “MLBS” for the sequence itself and the time series that additionally 

(4)DFTn[xk ] = Xn = 1

N

N−1∑

k=0

xk e
−j2πnk/N

,

(5)�f = 1

pTbase
= 1

p
fbase ,

(6)fmax = 1

2

p− 1

p
fbase ≈

1

2
fbase.

(7)|Bn| =
{

1
p for n = 0
√
p+1
p for n ∈ {1, 2, ..., p− 1}
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gets filtered by a ZOH process synonymously. The latter will be discussed in the next 
section.

The property R-1 results in a remaining nonzero mean value of the MLBS and is 
responsible for the nonzero DC value that occurs in its DFT. The higher the number of 
bits, the lower this value becomes. However, because of the increased frequency resolu-
tion that comes with a longer period, higher bit numbers enable low-frequency system 
excitation and, hence, more reliable system identification results for low frequencies, as 
was documented in [14].

4  Sampled MLBS
Often, the MLBS is used as an (discrete-time) input sequence for an arbitrary waveform 
generator (AWG) whose (continuous-time) voltage output can approximately be 
described as the discrete-time MLBS processed by a ZOH element. (Note that this is 
only a good approximation if the base time is sufficiently larger than the rise time of the 
AWG and if ringing phenomena can be neglected—both will be assumed in the follow-
ing.) Any measurement of this continuous-time signal will be sampled, and we denote 
the time difference between the samples as Tsample and the sample frequency as 
fsample = 1

Tsample
 , respectively.

In the following, we assume Tbase to be constant to evaluate the effects of the other 
parameters.

A mathematical description of a ZOH-processed continuous-time MLBS is 
obtained by the convolution of the MLBS with a rectangular pulse of width Tbase . 
Since the sampled result is again a discrete sequence, a simpler description of this 
process, avoiding the continuous-time domain, can be made by assuming that fsample 
is an integer multiple of fbase , fsample = k0fbase , with k0 ∈ N , so that the sampled 

Fig. 5 Absolute values |Bn| of the DFT of a 4-bit and a 7-bit MLBS with Tbase = 1 s for exactly one full period 
each
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MLBS is produced by repeating the values of the base MLBS k0 − 1 times and every 
k0-th sample matches the base MLBS sample. For convenience, we denote the MLBS 
consisting of repeated values as “sampled MLBS” because the same result would be 
obtained by firstly generating a continuous-time signal by a ZOH process and then 
sampling this signal to obtain the sampled MLBS.

A comparison of the sampled MLBS, the base MLBS and the ideal continuous-time 
ZOH-processed MLBS is shown in Fig. 6.

The sampling process alters the autocorrelation function and the spectrum of the 
MLBS. Calculating Rββ [l] for the sampled MLBS sequence {βk} with k0 = 3 results in 
the autocorrelation function shown in Fig. 7.

Fig. 6 Example of a sampled 4-bit MLBS compared to the base MLBS and the ZOH-processed MLBS

Fig. 7 Autocorrelation function Rββ [l] of a 4-bit MLBS sampled with k0 = 3
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Comparing this result with Fig. 4, one notices that the peaks occur at k0-times the 
lag for the base MLBS as expected due to the higher number of samples. But there are 
also smaller side-peaks broadening the distinct peaks of the base MLBS. This again is 
to be expected: For the application of Eq. (14) with N = k0p , the sampled MLBS can 
be regarded as k0 instances of the base MLBS, with one sampling step between each 
instance. For lag l = 0 mod k0p all of these k0 base MLBSs overlap. Increasing the lag 
l results in l less overlapping base MLBSs up to no overlap for k0 ≤ l ≤ N − k0 . For 
N − k0 + 1 ≤ l ≤ N , the overlap increases again, resulting in

Thus, the sampling results in an approximation of triangles instead of the distinct peaks 
of the base MLBS. While the resolution of this approximation can be increased with k0 , 
the negative “floor” remains unaffected (and still depends on the number of bits).

In order to obtain the spectrum of a sampled MLBS, another degree of freedom 
can be introduced that has been left out for the pure MLBS in the previous section: 
The sampling/observation time does not need to be restricted to only one full period. 
However, to circumvent the problems arising from sampling only a fraction of a 
period [21] we shall restrict ourselves to sampling that matches full periods. Thus, 
the total length of the dataset is NTsample with N = k0n0p and the sampling matches a 
total of n0 periods ( n0 ∈ N).

The frequency resolution is then given by

which contains Eq. (5) as a special case for k0 = 1 , n0 = 1 . Likewise,

Equation (9) can be regarded as a generalized version of Eq. (6).
The two degrees of freedom, the sampling frequency (determined by k0 ) and the 

number n0 of periods, thus alter the spectrum of the base MLBS in independent ways:

• The frequency resolution �f  , Eq. (8), can be increased by including more periods 
in the dataset, while it is unaffected by the sampling time.

• The maximum frequency fmax , Eq.  (9), on the other hand is unaffected by the 
number of periods and only increases with the sampling frequency.

To calculate the DFT of a sampled MLBS, the base MLBS needs to be convoluted with 
a scaled rectangular function

Rββ [l] =
{

1
k0p

(
(k0 − |l|)p− |l|

)
for l ∈ {0,±1, ...,±k0} mod k0p,

− 1
p else.

(8)�f = 1

NTsample
= 1

k0n0pTsample
= 1

n0p
fbase,

(9)fmax =
{

1
2
k0n0p−1
k0n0p

fsample if N is odd
1
2
k0n0p
k0n0p

fsample if N is even
≈ 1

2
fsample =

1

2
k0fbase.

rect
k0,N

k = 1

k0
rect
k0,N

k
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of length N with

to obtain the representation

with

(defined in [16] with the same definition of the DFT as Eq. (20)) of the sampled MLBS. 
Due to the convolution theorem [16], the absolute values |Bn| of the sampled MLBS’s 
DFT are now given by the product of the absolute values of the DFT of the base MLBS 
(Eq. (7)) and those of the DFT of that rectangular function. Applying Eq. (4) yields

and with Eq. (7) one obtains

for n  = 0.
Thus, with f = n�f = n

NTsample
= nk0

NTbase
 , they approximate the | sinc (fTbase)|-shape,

Figure  8 shows that this is indeed the case, even for a very low sampling rate with 
k0 = 2 . The visible deviation for k0 = 2 can be attributed to the bad approximation 
sin(πn/N ) ≈ πn/N  of the denominator in Eq. (10) for low sampling rates k0. (Note that 
N = k0n0p and that the numerator is independent of k0. ) Sampling with k0 = 10 leads 
to a nearly undisturbed spectrum up to half fmax , see Fig. 9. The maximum frequency 
increases with k0 according to Eq. (9).

The expected | sinc (fTbase)|-shape of the amplitudes does not cover the near-zero 
DC value of the sampled MLBS.

Increasing the number n0 of periods included in the DFT calculation results in an 
increased frequency resolution but as shown in Fig.  10 this does not provide addi-
tional information. Particularly the very low-frequency region is not “enhanced” (for 
system identification purposes) by adding more periods because only the number of 
zeroes is increased. This is in contrast to what the expected | sinc (fTbase)|-shape might 
suggest if one thinks increasing the frequency resolution should lead to a better “fit” 
to this expected shape.

rect
k0,N

k =
{
1 for 0 ≤ k < k0
0 for k0 ≤ k ≤ N − 1

[βk ] = [bk ] ∗
[
rect
k0,N

k

]

βn =
N−1∑

k=0

bkrect
k0,N

n−k

DFTn

[
rect
k0,N

k

]
= 1

k0

sin(πnk0/N )

sin(πn/N )
e−jπn(k0−1)/N

,

(10)|Bn|expected =
∣∣∣∣
√
p+ 1

p

∣∣∣∣ ·
∣∣∣∣
1

k0

sin(πnk0/N )

sin(πn/N )

∣∣∣∣ ≈
∣∣∣∣
√
p+ 1

p

sin(πnk0/N )

πnk0/N

∣∣∣∣

|B(f )|expected ≈
∣∣∣∣
√
p+ 1

p

sin(π fTbase)

π fTbase

∣∣∣∣ =
∣∣∣∣
√
p+ 1

p
sinc (fTbase)

∣∣∣∣.
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Until now, the discussion only included amplitude spectra. Unfortunately, in the 
literature, the amplitude spectra depicted herein are sometimes said to follow a 
sinc 2(fTbase)-shape (what they don’t) and called power spectra (what they aren’t).

The raw discrete power spectral density Sββ [n] (not scaled with the frequency reso-
lution 1

�f  nor with an ohmic resistor 1
R0

—see Eq.  (28) for a version of the PSD that 
accounts for this scaling and physical units) of a sampled MLBS is obtained according 
to Eq.  (26) as the DFT of the autocorrelation function Rββ [l] . Since the 

Fig. 8 Absolute values |Bn| of the DFT of a 4-bit MLBS with Tbase = 1 s for exactly one full period and sampled 
with different k0 in comparison with the expected | sinc (fTbase)|-shape

Fig. 9 Absolute values |Bn| of the DFT of a 4-bit MLBS with Tbase = 1 s for exactly one full period and sampled 
with k0 = 10 in comparison with the expected | sinc (fTbase)|-shape
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autocorrelation function of a sampled MLBS approximates a triangle (see Fig. 7), the 
PSD will approximate the sinc 2(fTbase)-shape [7],

as shown in Fig 11.

Sββ [n]expected ≈ p+ 1

p2
sin2(πnk0/N )

(πnk0/N )2
,

Sββ(f )expected ≈ p+ 1

p2
sin2(π fTbase)

(π fTbase)
2

= p+ 1

p2
sinc 2(fTbase),

Fig. 10 Absolute values |Bn| of the DFT of a 4-bit MLBS with Tbase = 1 s for exactly 3 full periods and sampled 
with k0 = 3 in comparison with the expected | sinc (fTbase)|-shape

Fig. 11 Raw discrete PSD Sββ [n] of a 4-bit MLBS with Tbase = 1 s for exactly one full period and sampled with 
k0 = 3 in comparison with the expected sinc 2(fTbase)-shape
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However, the discrete PSD will suffer from the same deviation from this expected 
shape due to the approximation made for the amplitude spectra (Eq.  (10)) if the sam-
pling rate k0 isn’t high enough.

One particular frequency of interest is the one where the PSD drops by −3 dB [7, 10] 
given by Sββ(f−3 dB)expected = 1

2 as

which corresponds to n−3 dB ≈ 0.443N
k0

.

4.1  Guidelines

For system identification purposes, the user can now follow these guidelines (in accord-
ance with [9]): 

A Estimate the bandwidth of interest, i.e.,  estimate the minimum and maximum fre-
quency fBW,min and fBW,max , respectively, that are to be excited.

B Equation (11) with f−3 dB = fBW,max leads to the necessary Tbase.
C Given Tbase , Eq.  (5) with �f = fBW,min gives the necessary period p and thus the 

required number n of bits for the MLBS.
D A common advice is to sample 10 times faster than fBW,max [23], 

fsample = 10fBW,max ≈ 4.43fbase , leading to k0 = 5.
E For the number n0 of periods in the observation, there are different aspects to con-

sider, like time constraints for the measurement or the possibility to average over 
multiple periods for a better signal-to-noise ratio [9–11].

F Lastly, the amplitude of the MLBS signal has to be chosen. Since high amplitudes 
offer a better signal-to-noise ratio but can also excite unwanted nonlinear dynam-
ics [9, 10], this decision strongly depends on the system itself and might not be set a 
priori, requiring some iterations. The precise definition of the PSD (28), including the 
correct scaling factors, allows for a better estimation of the suitable signal amplitude.

Deviations from these guidelines may be necessary due to constraints on the available 
memory [9].

4.2  Application example

Consider, for example, a radio-frequency system whose transfer function shall be iden-
tified in the frequency range from fBW,min = 600 kHz to fBW,max = 20 MHz using an 
arbitrary waveform generator (AWG) to provide an MLBS as broadband excitation sig-
nal. In order to reach sufficient signal power at 20 MHz , a base time less than 22.15 ns 
is necessary (see guideline  B), so, e.g., Tbase = 20 ns is chosen. If the AWG’s rise time 
isn’t sufficiently faster, the excitation signal will suffer from distortions. As mentioned 
above, in the literature, the raw discrete PSD Sββ(f ) sometimes gets confused with 
the amplitude spectrum B(f), leading to T ∗

base = 0.603/fBW,max ≈ 30 ns and thus to 
S∗ββ(20 MHz) ≈ 0.25 , i.e., only half the intended value. Following the above guideline C, a 

(11)f−3 dB ≈ 0.443
1

Tbase
,
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period p ≥ 84 is required to excite the system down to 600 kHz , leading to a shift register 
length of n = 7 . In this example, the wrong T ∗

base would lead to p∗ ≥ 56 and thus to only 
n∗ = 6 . So the wrong T ∗

base does not only affect the power at fBW,max but also leads to not 
being able to identify the system at fBW,min due to the MLBS’s period being too short. 
As discussed above, the necessary number of bits to reach fBW,min cannot be reduced by 
simply lengthening the excitation signal via recording n0 > 1 periods. Lastly, when the 
AWG’s output is amplified with a solid-state amplifier to an amplitude of û = 150 V , the 
average power delivered to a pure resistive load of R0 = 50� is P̄ = û2

R0
= 450 W , which 

is in accordance with Eq. (32). If one would neglect the scaling factor �f  while calculat-
ing the PSD (Eq. (28)), Eq. (32) would result in P̄∗ ≈ 160 W ·MHz , which does not only 
have the wrong unit but also, if one wouldn’t pay attention to the unit at all, quickly leads 
to thinking of P̄∗∗ ≈ 160 W , underestimating the average power by a factor of almost 3. 
If the system can handle 500 W, this wrong estimation can lead to the fatal conclusion 
that increasing the amplitude by a factor of 

√
3 ≈ 1.7 for a better signal-to-noise ratio 

would still be tolerable, ultimately damaging the system.
If hardware limitations like the AWG’s rise time or other filtering effects shall be taken 

into account for the modeling of the excitation signal, the formulas presented herein can 
be applied to the filtered MLBS in a consistent way by using the convolution theorem.

5  Summary and conclusion
Clear definitions for MLBS signals were given which distinguish between a base MLBS 
on the one hand and a sampled MLBS (which is the result of a ZOH process applied to 
the base MLBS and re-sampling it) on the other hand. Furthermore, signal processing 
definitions such as the DFT, the autocorrelation function and the power spectral den-
sity were introduced with suitable scaling factors in order to allow a meaningful physical 
interpretation. One conclusion is that the spectrum of any base MLBS is white, whereas 
the spectrum of any sampled MLBS approximates a sinc function. This resolves contra-
dictory or at least inconsistent statements that can be found in the literature.

Appendix 1: Motivation of discrete‑time formulas and scaling factors
1.1 Autocorrelation functions

The autocorrelation function of a real-valued time-continuous function x(t) of finite 
energy is defined as

For a real-valued time-continuous function x(t) of finite power (like a bounded periodic 
function), however, this integral does not exist and one defines

rxx(τ ) =
∫ ∞

−∞
x(t + τ )x(t)dt.

(12)R̃xx(τ ) = lim
T→∞

1

T

∫
T/2

−T/2

x(t + τ )x(t)dt



Page 15 of 23Orth and Klingbeil  EURASIP Journal on Advances in Signal Processing         (2024) 2024:80  

instead. Please note that the division by T leads to a different physical unit and there 
exists no combined definition for both cases. However, the definition Eq.  (12) can in 
principle be applied to a signal of finite energy as well. The resulting autocorrelation 
function will then be zero, ultimately leading to the average power being zero as well—
which is indeed the correct value for a finite-energy signal.

For a periodic function with period T0 , the integral can be evaluated by setting 
T = n0T0 with n0 ∈ N:

Due to the periodicity, every integral over one full period gives the same result. Thus, 
the formula simplifies to just one integral over one full period, whose bounds can also be 
shifted:

It follows that the same Rxx(τ ) is obtained for an arbitrary observation time T that equals 
a finite number n0 of full periods:

Equation  (13) can now be used for the motivation of a corresponding definition for a 
periodic and time-discrete function. For that purpose, let the sampling be done in 
N time steps �t with T = N�t and tk = k�t , k ∈ {0, 1, ...,N − 1} . Further define 
xk = x(tk) = x(k�t) . The integral can then be approximated by a Riemann sum:

Assuming τ = l�t with l ∈ Z finally yields

which is regarded as a definition for the discrete case, no longer an approximation. We 
use brackets instead of parentheses to distinguish the discrete versions of our definitions 
from the time-continuous ones.

The scaling factor 1N  in Eq. (14) ensures that for a large number of samples, i.e., a short 
sampling time �t , the discrete formula properly approximates the continuous-time 
result from Eq. (13),

R̃xx(τ ) = lim
n0→∞

1

n0T0

∫
n0T0/2

−n0T0/2

x(t + τ )x(t)dt

Rxx(τ ) =
1

T0

∫
T0

0

x(t + τ )x(t)dt

(13)Rxx(τ ) =
1

T

∫
T

0

x(t + τ )x(t)dt

Rxx(τ ) ≈
1

N

N−1∑

k=0

x(k�t + τ )x(k�t)

(14)Rxx[l] =
1

N

N−1∑

k=0

xk+lxk ,

(15)Rxx(τ ) = Rxx(l�t) ≈ Rxx[l].
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Note that there are also definitions in the literature which omit this scaling factor [24, 25].
Motivated by these derivations, we consistently use the following definitions:

• T0 : shortest period of the signal
• T = n0T0 : observation time, equals an integer number of periods
• �f = 1

T  : frequency resolution

• �t = T0
N0

= T
N  : time resolution, equals sampling time

• N = n0N0 : total number of samples
• N0 : number of samples per shortest period

1.2 Fourier transforms

The Fourier transform of a real-valued time-continuous signal is defined as

which is in general meant in the sense of generalized functions/distributions [26]. Please 
note that parameters like the frequency f and the time t are of course not specified for 
distributions in the mathematical literature. In this work, however, we add them to clar-
ify the physical dependencies. Equation (16) can be evaluated as

if the integral exists.
For a periodic signal, we define

where T represents the observation time and shall match a number n0 ∈ N of full peri-
ods (T = n0T0) so that the Fourier coefficients can be obtained via

with the frequency resolution �f = 1
T .

In Eq. (18) as well as in further definitions, we write the function x including its param-
eter t as an argument x(t) for the operator FCf  . Although of course only the function 
itself is the argument, we add the parameter to distinguish time-continuous and time-
discrete versions and to visualize the physical meaning.

For a periodic and time-discrete signal, we define the discrete Fourier transform [22] 
as

(16)X(f ) = Ff (x(t)),

(17)X(f ) =
∫ ∞

−∞
x(t)e−j2π ft

dt

(18)FCf (x(t)) =
∫ T/2

−T/2

x(t)e−j2π ft
dt

(19)cn = 1

T
FCf (x(t))

∣∣∣
f=n�f

(20)Xn = DFTn[xk ] =
1

N

N−1∑

k=0

xk e
−j2πnk/N

.
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The scaling factor 1N  in Eq. (20) ensures that for a large number of samples, i.e., a short 
sampling time �t , the discrete formula properly approximates the Fourier coeffi-
cients (19) of a continuous-time periodic signal. A detailed derivation of Eq. (20) can be 
found in [22].

The zeroth component of the DFT is the DC component of the signal, while the others 
can be interpreted as one half of the amplitudes of the corresponding spectral compo-
nent [22].

A special shaping of the spectrum can also be done by means of windowing [13]. In 
this work, however, no windowing will be applied since we are dealing with periodic 
functions only and the sampling shall match full periods. (For computing purposes, this 
is equivalent to a rectangular or boxcar window of full period length.)

If the sampling does not match full periods and only certain frequencies are of inter-
est, a generalized Goertzel algorithm [27] can be used.

1.3 Power spectral densities

In the following, the signals x(t) shall be electrical voltages. In order to obtain correct 
physical units, our definitions for the power spectral density (PSD) will therefore always 
include an ohmic resistor R0 . For other uses of the PSD, where only its shape is relevant, 
such scaling factors might be omitted or a different normalization might be applied [28].

The Wiener–Khinchin theorem [29, 30] states that for the continuous-time case the 
PSD of a signal x(t) can be obtained by the Fourier transform of its autocorrelation 
function,

According to Eqs. (16) and (17), Eq. (21) can be evaluated via

if the integral exists. We therefore define

For a periodic signal, however, the autocorrelation function is periodic as well. Thus, the 
integral in Eq. (22) does not converge and Eq. (21) results in distributions [26]. There-
fore, we use

which can be evaluated according to Eq. (18) as

to define the PSD of a time-continuous periodic signal as

(21)S̃xx(f ) = Ff

(
R̃xx(τ )

)
.

(22)S̃xx(f ) =
∫ ∞

−∞
R̃xx(τ ) e

−j2π f τdτ

(23)P̃SDf (x(t)) =
1

R0
S̃xx(f ) =

1

R0
Ff

(
R̃xx(τ )

)
.

Sxx(f ) = FCf (Rxx(τ ))

(24)Sxx(f ) =
∫ T/2

−T/2
Rxx(τ ) e

−j2π f τdτ
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For a discrete-time periodic signal, the PSD can be defined in an analog way: Beginning 
with

which—according to Eq. (20)—can be calculated as

we define

Definition (28) also includes the scaling factor 1
�f

= T = N�t to ensure

for the frequencies fn = n�f  with the frequency resolution �f = 1
T = 1

N�t if the sam-
pling time �t is short enough. This can be proven by approximating the integral in 
Eq. (24) (with shifted bounds) by a Riemann sum using τ = l�t and Eq. (15):

The discrete version of the PSD is periodic with period N (inherited from the DFT [22]), 
as can be seen from Eq. (27):

1.4 Average powers

The average power P̄ of a real-valued time-continuous voltage signal x(t) can be calculated 
directly as

With the definitions of the PSD, the average power can also be calculated as

for a time-continuous signal, as

(25)PSDf (x(t)) =
1

R0

Sxx(f ) =
1

R0

FCf (Rxx(τ )).

(26)Sxx[n] = DFTn

[
Rxx[l]

]
,

(27)Sxx[n] =
1

N

N−1∑

l=0

Rxx[l] e−j2πnl/N ,

(28)PSDn[xk ] =
1

R0

1

�f
Sxx[n] =

1

R0

1

�f
DFTn

[
Rxx[l]

]
.

PSDf (x(t)) = PSDfn
(x(t)) ≈ PSDn[xk ]

PSDfn(x(t)) =
1

R0

∫ T

0

Rxx(τ ) e
−j2π fnτdτ ≈ 1

R0

1

�f
DFTn

[
Rxx[l]

]

Sxx[n+ N ] = 1

N

N−1∑

l=0

Rxx[l] e−j2π(n+N )l/N = Sxx[n]

(29)P̄ = 1

R0

lim
T→∞

1

T

∫
T/2

−T/2

|x(t)|2 dt.

(30)P̄ =
∫ ∞

−∞
P̃SDf (x(t)) df
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for a time-continuous and periodic signal, and as

for a time-discrete and periodic signal.
The following section will provide an example for this fact.

Appendix 2: Analytical example: cosine signal
A large variety of periodic functions can be represented by Fourier series. Therefore, our 
example in this appendix is a cosine signal which may be regarded as a building block of 
such a Fourier series.

Let x(t) = û cos(ω0t) with amplitude û ∈ R
+ measured in Volts, angular frequency 

ω0 = 2π f0 = 2π
T0

 and period T0.
The autocorrelation function calculated with Eq. (13) for T = n0T0 is

Sampling with T0 = N0�t , thus ω0 = 2π 1
N0�t , together with τ = l�t yields

which is consistent with the result obtained by directly applying Eq. (14) with N = n0N0 
(and N0 > 2 ) as the discrete definition (the necessary formulas can be found as 1.314 
3. and 1.341 3. in [31]):

The physical unit of the autocorrelation function is obviously V2 which is inherited from 
the signal’s unit.

Based on these results and Eq. (33), the PSD calculated with Eq. (23) as the continuous 
definition is

We obtain Dirac delta distributions [26].
Since the test signal is periodic, Eqs.  (24),  (25), and (33) can be applied (for an integer 

number n0 of periods, T = n0T0 ) to obtain

(31)P̄ =
∫ ∞

−∞
PSDf (x(t)) df

(32)P̄ =
N−1∑

n=0

PSDn[xk ]�f

(33)Rxx(τ ) =
1

T

∫
T

0

û
2
cos(ω0(t + τ)) cos(ω0t)dt =

û
2

2
cos(ω0τ ).

Rxx(l�t) = û2

2
cos

(
2π

N0
l

)
,

(34)Rxx[l] =
1

N

N−1∑

k=0

û2 cos

(
2π

N0
(k + l)

)
cos

(
2π

N0
k

)
= û2

2
cos

(
2π

N0
l

)

(35)P̃SDf (x(t)) =
1

R0
Ff

(
û2

2
cos(ω0τ )

)
= û2

4R0

(
δ(f − f0)+ δ(f + f0)

)
.
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From this result, it can be seen that including a higher number n0 of periods leads to a 
“convergence” to the Dirac pulses of Eq. (35).

Calculating the PSD with Eq. (28) as the discrete definition using Eq. (27) and (34) 
yields

If 
(

n
N ∓ 1

N0

)
∈ Z , the corresponding sum is equal to N. For 

(
n
N ∓ 1

N0

)
/∈ Z, the geomet-

ric series’ partial sum formula can be applied to obtain

For N = n0N0 with n0 ∈ N (sampling matches full periods) and with m ∈ Z, the condi-

tion 
(

n
N ∓ 1

N0

)
/∈ Z can be written as

For every n that fulfils formula (39), the denominators in Eq. (38) are unequal to 0, while 
the numerators equal 0, leading to the sum being 0. Thus, the sum can be expressed by 
scaled Kronecker deltas,

and Eq. (37) leads to

This is the discrete version of Eq. (35). In each discrete period of length N = n0N0 , two 
Kronecker deltas are obviously present. For the main period with n ∈ {0, 1, ...,N − 1} , 
they are located at n = n0 and at n = N − n0.

The Dirac deltas in the continuous version correspond to the Kronecker deltas in 
the discrete version, although both are fundamentally different.

All three expressions  (35),  (36), and  (40) have the same physical unit W
Hz

 because 
due to the property

(36)
PSDf (x(t)) =

1

R0

∫ T/2

−T/2

û2

2
cos(ω0τ ) e

−j2π f τ
dτ

= (−1)n0
û2

2R0π
sin(π fT )

f

f 2 − f 2
0

(37)

PSDn[xk ] =
1

R0

1

�f

1

N

N−1∑

l=0

û2

2
cos

(
2π

N0

l

)
e−j2πnl/N

= û2

4R0�f

1

N

N−1∑

l=0

(
e
−j2π

(
n
N − 1

N0

)
l + e

−j2π
(

n
N + 1

N0

)
l
)
.

(38)
N−1∑

l=0

e
−j2π

(
n
N ∓ 1

N0

)
l = 1− e

−j2π
(
n∓ N

N0

)

1− e
−j2π

(
n
N ∓ 1

N0

) .

(39)n  = ±n0 +mN .

N−1∑

l=0

e
−j2π

(
n∓n0
N

)
l = N

∞∑

m=−∞
δ[n∓ n0 −mN ],

(40)PSDn[xk ] =
û
2

4R0�f

∞∑

m=−∞

(
δ[n− n0 −mN ] + δ[n+ n0 −mN ]

)
.
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(where α carries the unit, whereas x is dimension-free) δ(f ∓ f0) has the unit 1
Hz

 . The 
Kronecker deltas δ[x] are of course dimension-free.

If the cosine-shaped voltage x(t) drops over an ohmic resistor R0 , the delivered average 
power in Watts calculated directly with Eq. (29) is P̄ = û2

2R0
.

The same result is firstly obtained via the continuous result (35) and Eq. (30):

Of course, Eq. (30) does not represent a classical integral in this case.
Secondly, the same result is delivered by the periodic equation’s result (36) and Eq. (31):

(The integral can be found as 3.723 10. in [31].)
Lastly, the discrete equation’s result  (40) together with Eq.  (32) leads to the identical 

result:

The step from the first equation to the second line is possible because of the comment 
after Eq. (40) concerning the main period.

Appendix 3: DFT of an MLBS
Calculating the absolute values of the DFT for an MLBS sequence {bk} with Eq. (20) (with 
N = p ) yields

For n = 0, Eq.  (41) can be evaluated directly, using the fact that for the base MLBS ∑p−1
k=0 bk = 1 holds (R-1), delivering |B0| = 1

p . The same result is obtained for the sam-
pled MLBS {βk} with N = k0n0p and k0, n0 > 1 since in this case 

∑N−1
k=0 βk = k0n0 holds.

Now assume 0 < n ≤ p− 1 . With l = m− k , Eq. (42) becomes

δ(αx) = 1

|α|δ(x)

P̄ =
∫ ∞

−∞

û2

4R0

(
δ(f − f0)+ δ(f + f0)

)
df = û2

2R0

P̄ = (−1)n0
û2

R0π

∫ ∞

0

f sin(π fT )

f 2 − f 20
df = û2

2R0
.

P̄ =
N−1∑

n=0

(
û2

4R0�f

∞∑

m=−∞

(
δ[n− n0 −mN ] + δ[n+ n0 −mN ]

))
�f

= û2

4R0

N−1∑

n=0

(δ[n− n0] + δ[n+ n0 − N ]) = û2

2R0

(41)|Bn| =
1

p

�����




p−1�

k=0

bk e
−j2πnk/p


 ·




p−1�

k=0

bk e
+j2πnk/p




(42)= 1

p

√√√√
p−1∑

k=0

p−1∑

m=0

bkbme
−j2πn(k−m)/p.
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Since {bk} is periodic with b−k = bp−k , the sum 
∑p−1−k

l=−k  can be rearranged to 
∑p−1

l=0  , 
independent of k, and simplified using Eq. (3):

Together this leads to
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|Bn| =
1

p

√√√√√
p−1∑

k=0

p−1−k∑

l=−k

bkbk+l e
j2πnl/p .

|Bn| =
1

p

√√√√
p−1∑

l=0

pRbb[l] ej2πnl/p

= 1

p

√√√√√√√
p−

p−1∑

l=1

ej2πnl/p

︸ ︷︷ ︸
=−1

|Bn| =
{

1
p for n = 0
√
p+1
p for n ∈ {1, 2, ..., p− 1}

.
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