
Optimized power and speed of Split‑Radix,
Radix‑4 and Radix‑2 FFT structures
Mahsa Shirzadian Gilan1* and Behrouz Maham2 

1  Introduction
The Fourier transform is an essential method in most digital signal processing (DSP)
applications, including image and signal processing, telecommunications, and optics.
However, their widespread use comes at the cost of high computational demands. This is
particularly true for the discrete Fourier transform (DFT), where the number of compu-
tations required grows to M2 for a transformation size of M. As M increases, the calcu-
lations become exponentially complex [1–3]. To address this challenge, the fast Fourier
transform (FFT) was developed as an established technique in signal processing. It sig-
nificantly reduces the complexity of DFT calculations from M2 to M log2M , making it a
more efficient approach for large datasets.

Based on existing literature, numerous FFT algorithms, such as the fast Hartley trans-
form (FHT), have been proposed. However, Split-Radix, Radix-4, and Radix-2 algorithms

Abstract 

Fast Fourier transform (FFT) is a fundamental building block for digital signal process-
ing applications where high processing speed is crucial. Resource utilization in imple-
menting FFT structures can be minimized by optimizing the performance of multipli-
ers and adders used within the design. FFTs are also widely used in various machine
learning algorithms. To achieve increased processor efficiency and reduced resource
utilization, we propose a hardware design for Radix-2, Radix-4, and Split-Radix FFT
architectures that utilizes a novel parallel prefix adder. This design offers lower power
consumption, smaller chip area, and faster operation compared to existing architec-
tures. Our performance analysis focuses on metrics such as power consumption, clock
speed, and hardware complexity for Radix-2, Radix-4, and Split-Radix FFT algorithms
implemented with the proposed adder. We compare these metrics using our proposed
arithmetic structure against existing adder designs. The results indicate that the Split-
Radix FFT architecture achieves lower power consumption and smaller chip area
compared to Radix-4 and Radix-2 methods. Additionally, the Split-Radix FFT exhibits
a higher clock speed. Therefore, based on these findings, the Split-Radix algorithm
appears to be a compelling choice for implementation on field-programmable gate
arrays due to its high speed and lower power consumption.

Keywords:  Power consumption, Speed, Split-Radix, Radix-4, Radix-2, Parallel prefix
adder

Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you
modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of
it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy
of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by-​nc-​nd/4.​0/.

RESEARCH

Gilan and Maham ﻿
EURASIP Journal on Advances in Signal Processing (2024) 2024:81
https://doi.org/10.1186/s13634-024-01178-4

EURASIP Journal on Advances
in Signal Processing

This study was supported by the
Ministry of Science and Higher
Education of the Republic of
Kazakhstan through project
AP13068587, titled ”57-65 GHz
Wireless Communication Front-
End for Secure 5G Applications”.

*Correspondence:
m.shirzadian@uok.ac.ir

1 Faculty of Engineering,
University of Kurdistan, Sanandaj,
Iran
2 School of Engineering,
Nazarbayev University, Astana,
Kazakhstan

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13634-024-01178-4&domain=pdf

Page 2 of 17Gilan and Maham ﻿EURASIP Journal on Advances in Signal Processing (2024) 2024:81

remain the most widely employed [4, 5]. In DSP, the discrete Fourier transform (DFT)
transforms a signal, denoted by y(n) in the time domain, to its frequency domain repre-
sentation, Y(k). Both y(n) and Y(k) can be complex or real numbers. Calculating Y(k) for
each frequency value (k) requires M complex multiplications and M complex additions.
Since there are M values of Y(k), an M-point DFT necessitates M complex addition and
multiplication blocks. Furthermore, the total number of addition and multiplication
operations to compute this M-point DFT scales quadratically with M ( M2 ). This com-
plexity becomes significant when dealing with large datasets. It is important to note that
convolution in the time domain corresponds to multiplication in the frequency domain
[5, 6]. Fourier transforms decompose signals into their fundamental sinusoidal compo-
nents of various frequencies across the entire sequence. In contrast, wavelet transforms
break down signals into localized components that have a defined location in both time
and frequency. Some works have explored the combination of these techniques, known
as fractal-wavelet analysis [7–12].

FFT algorithm leverages a key strategy called “divide-and-conquer.” This method
breaks down the computation of a large DFT into calculations of smaller DFTs. To
understand its efficiency, let us consider a signal y(n) with an even length, i.e., M is divis-
ible by 2. Dividing y(n) into two equal-sized sub-arrays requires performing some mul-
tiplication and addition operations on each sub-array to compute their respective DFTs
[13, 14]. Moreover, calculating the DFTs of both sub-arrays separately would seem to
require twice the number of operations for the original DFT. The power of the FFT algo-
rithm lies in its ability to exploit clever mathematical relationships between the DFTs of
the sub-arrays and the DFT of the original signal, y(n). By utilizing these relationships,
the FFT significantly reduces the total number of calculations needed compared to the
conventional approach. This translates to faster computation times, making FFT a cor-
nerstone for various DSP applications.

The classification process in FFT involves dividing the signal y(n) into smaller sub-
arrays and calculating Y(k) from the DFTs of these sub-arrays [15]. This divide-and-con-
quer strategy has a dramatic reduction in calculations when the length of the sequences
is a power of 2. In a Radix-2 FFT, the sequence y(n) with length M is divided into two
sub-arrays based on their even or odd indices [13, 16]. One sub-array consists of all even-
indexed samples, and the other contains all odd-indexed samples. The formulas used in
subsequent sections will leverage this separation. The main contribution and novelty of
this work lie in achieving increased processor efficiency and reduced resource usage.
This is achieved by proposing a hardware design of FFT architectures that utilizes a new
parallel prefix adder. Compared to existing architectures, the designed FFT architecture
offers lower power consumption, smaller chip area and faster operation speed [16, 17].

In FFT processors, Radix-2, Radix-4 and Split-Radix algorithms are commonly used
to handle complex arithmetic operations. These algorithms involve various arithmetic
operations, including addition and multiplication. Addition can be implemented in two
ways: serial or parallel. Serial adders, such as full adders (FAs) and ripple carry adders
(RCAs), are slow due to their bit-by-bit processing, have higher power consumption, and
require more time for implementation. In contrast, parallel adders are significantly faster
because they add multiple bits simultaneously. Designing high-speed, low-power paral-
lel prefix (PP) adders is crucial for efficient FFT implementations. PP adders, such as

Page 3 of 17Gilan and Maham ﻿EURASIP Journal on Advances in Signal Processing (2024) 2024:81 	

Kogge and Stone (KS) [18], Brent and Kung (BK) [19], Ladner and Fischer (LF) [20], and
Han and Carlson (HC) [21], are popular choices due to their efficiency. Notably, paral-
lel prefix adders offer a key advantage over other adder architectures. They can calcu-
late the carry bits for all stages simultaneously, leading to faster operation. While the
reference [22] explores using a Brent–Kung speculative adder for high-speed applica-
tions, this approach requires a larger area for processing due to its more complex design,
potentially increasing hardware complexity.

1.1 � Motivations and contributions

Traditional multiplication and addition circuits often lack optimization in terms of area
usage, power consumption and processing speed. Developing high-speed FFT proces-
sors necessitates more efficient arithmetic units. This research proposes well-designed
circuits that use an efficient adder to achieve improved performance. The key innova-
tion lies in implementing Split-Radix, Radix-2, and Radix-4 FFT structures with a novel
parallel prefix (PP) adder. This approach offers significant advantages over existing
FFT designs using PP adders. It reduces power consumption and hardware footprint
(area) while simultaneously enhancing processing speed. Furthermore, the paper pre-
sents a methodology for deploying adders on field-programmable gate arrays (FPGAs).
This methodology provides a foundational building block for various DSP filters. The
performance of the proposed design is evaluated based on key metrics, i.e., power con-
sumption, delay, operating frequency, number of lookup tables (LUTs) utilized, and
power-delay product. We first implemented four different conventional parallel prefix
adders. To address limitations in existing designs, we then introduced a novel PP adder
that achieves increased speed and lower power consumption. This novel PP adder was
subsequently used to construct Split-Radix, Radix-2, and Radix-4 FFT processors.
The performance of these processors was evaluated based on area, delay, and power
consumption.

In this paper, we propose a novel parallel prefix adder for implementing Radix-2,
Radix-4, and Split-Radix FFT algorithms. We conducted a performance analysis based
on power consumption, speed, operating frequency, and resource utilization for systems
using conventional adders and our proposed arithmetic structure. Simulation results
demonstrate that the new parallel prefix adder exhibits impressive performance com-
pared to these conventional structures, particularly in terms of lower power consump-
tion and higher speed. This makes it an ideal candidate for DSP applications where high
processing speed is essential. By enhancing the performance of adder blocks, we can
minimize resource utilization and consequently reduce the number of computational
stages required in different FFT structures. All conventional adders used for comparison
were implemented using Xilinx software on an Intel core processor. Our proposed adder
offers several advantages such as optimized area, high speed and lower power consump-
tion. Notably, it achieves a power-delay product of 0.380 Wns, making it a compelling
choice for designing various blocks in signal processing applications.

1.2 � Organizations

The remainder of the work is organized as follows. Section 2 describes the implemen-
tation of the FFT structures, including both conventional and proposed arithmetic

Page 4 of 17Gilan and Maham ﻿EURASIP Journal on Advances in Signal Processing (2024) 2024:81

structures. Section 3 presents the findings from the simulations. Finally, Sect. 4 summa-
rizes the key takeaways of the paper.

2 � Methodology
In this paper, we explore the potential of various FFT algorithms, including Split-Radix,
Radix-4, and Radix-2. While the Radix-2 algorithm is commonly used in FFT processors
to handle complex number arithmetic operations, i.e., addition and multiplication, all
three algorithms can be implemented with efficient adders. Traditional multiplication
and addition circuits often lack optimization in terms of area usage, power consumption
and processing speed. However, high-speed FFT processors necessitate more efficient
arithmetic units. This research addresses this challenge by introducing well-designed
circuits that use a novel parallel prefix adder to achieve improved performance. The key
innovation lies in implementing Split-Radix, Radix-2 and Radix-4 FFT structures with
this novel adder. This approach offers significant advantages over existing FFT designs
using PP adders. It simultaneously reduces power consumption, minimizes hardware
footprint (area), and enhances processing speed.

2.1 � Radix‑2 butterfly algorithm

In DFT, when M is a power of 2, we can separate the even and odd points in the DFT
formula. As a result, the common DFT equation converts to the following formulas,

In a radix-2 FFT, the input data are typically arranged in a sequential order. How-
ever, the output data after the FFT computation exhibits a bit-reversed order. Hardware
implementations often require rearranging the bit-reversed output back to a sequential
format for further processing. Figure 1 illustrates a 32-point radix-2 FFT structure. It

(1)Y2k =

M
2 −1
∑

n=0

(

yn + yn+M/2

)

·Wkn
M/2,

(2)Y2k+1 =

M
2 −1
∑

n=0

(

yn − yn+M/2

)

.Wn
M/2 ·W

kn
M/2,

Fig. 1  Different parts of 32-point FFT structure

Page 5 of 17Gilan and Maham ﻿EURASIP Journal on Advances in Signal Processing (2024) 2024:81 	

consists of multiple stages, each containing registers and a radix-2 butterfly unit. The
number of registers in each stage depends on the size of the input data. Between con-
secutive stages, the outputs are multiplied by complex twiddle factors [16, 23].

The Radix-2 butterfly structure significantly reduces the number of multipliers and
adders required for the FFT computation. For instance, without the Radix-2 FFT, the
first stage necessitates 16 multipliers and 32 adders. However, using the Radix-2 FFT
with the butterfly structure, only 1 multiplier and 2 adders are needed in each stage. It
is important to note that the number of registers remains the same. In this work, the
Radix-2 FFT implementation uses the decimation-in-time (DIT) algorithm. DIT algo-
rithms process data in the time domain first, with the input being bit-reversed and the
output in natural order. In contrast, decimation-in-frequency (DIF) algorithms process
data in the frequency domain first, having the input in natural order and the output bit-
reversed. The Radix-2 FFT structure is a core component of the FFT, enabling efficient
computation of complex number operations within the FFT algorithm.

The synthesis output of the FFT simulation suggests that employing Radix-2 structure
for a 32-point FFT would be efficient in terms of speed and area [13, 14]. The flow dia-
gram of the Radix-2 FFT structure is depicted in Fig. 2. The multiplier block is succeeded
by a PP adder block. The final output is determined by the value of Cin . If Cin = 1 , then
the equal real and imaginary parts are computed. Otherwise, unequal real and imaginary
parts are calculated.

2.2 � Radix‑4 butterfly algorithm

In DFT, when M is a power of 4, we can convert Y2k to Y4k and Y4k+2 as well as Y2k+1 to
Y4k+1 and Y4k+3 so that the following formulas are obtained [14]:

Fig. 2  Flow diagram of Radix-2 FFT structure

Page 6 of 17Gilan and Maham ﻿EURASIP Journal on Advances in Signal Processing (2024) 2024:81

The graph obtained from this method for Radix-4 DIF-FFT with 16-point is shown in
Fig. 3 with the conversion size M = 16 [24, 25].

2.3 � Split‑Radix butterfly algorithm

This method is a combination of two aforementioned methods so that only in the third for-
mula, we change Y2k+1 to Y4k+1 and Y4k+3 so that the following formulas are obtained. The
structure of Split-Radix 3/6 FFT by block diagram is shown in Fig. 4.

(3)Y4k =

M
4 −1
∑

n=0

(

Yn + Yn+M/4 + Yn+M/2 + Yn+3M/4

)

·W 0
M ·Wkn

M/4,

(4)Y4k+1 =

M
4 −1
∑

n=0

(

Yn − Yn+M
4
− Yn+M/2 + Yn+3M/4

)

·Wn
M ·Wkn

M/4,

(5)Y4k+2 =

M
4 −1
∑

n=0

(

Yn − Yn+M
4
+ Yn+M

2
− Yn+ 3M

4

)

·W 2n
M ·Wkn

M
4

,

(6)Y4k+3 =

M
4 −1
∑

n=0

(

Yn + Yn+M
4
− Yn+M

2
− Yn+ 3M

4

)

·W 3n
M ·Wkn

M
4

.

(7)Y2k+1 =

M
2 −1
∑

n=0

(

Yn − Yn+M/2

)

·Wn
M/2 ·W

kn
M/2,

Fig. 3  Structure of 16-point Radix-4 FFT by signal flow graph

Page 7 of 17Gilan and Maham ﻿EURASIP Journal on Advances in Signal Processing (2024) 2024:81 	

Split-Radix 3/6 FFT approach is defined based on the following equations:

(8)Y4k+1 =

M
4 −1
∑

n=0

(

Yn − jYn+M
4
− Yn+M/2 + jYn+3M/4

)

·Wn
M ·Wkn

M/4,

(9)Y4k+3 =

M
4 −1
∑

n=0

(

Yn + jYn+M/4 − Yn+M
2
− jYn+3M/4

)

·W 3n
M ·Wkn

M/4.

(10)Y (k) = Ak +Wk
2 rW

k
3 mBk + Ck +W−k

3 mEk +W−k
2 rW−k

3 mFk ,

(11)Ak =

M
3 −1
∑

n=0

x3nW
nk
M
3

,

(12)Bk =

M
6 −1
∑

n=0

x6n + 2r + 3mWnk
M
6

,

(13)Ck =

M
6 −1
∑

n=0

x6n + 2rWnk
M
6

,

(14)Ek =

M
6 −1
∑

n=0

x6n − 2rWnk
M
6

,

(15)Fk =

M
6 −1
∑

n=0

x6n − 2r − 3mWnk
M
6

.

Fig. 4  Structure of Split-Radix FFT by block diagram

Page 8 of 17Gilan and Maham ﻿EURASIP Journal on Advances in Signal Processing (2024) 2024:81

The structure of Split-Radix FFT by block diagram is given in Fig. 4. If the range of
n is considered from 0 to N6 in the aforementioned equations, Y(k) will be completely
obtained. The design of the suggested Split-Radix FFT is summarized. The primary input
array with a length equal to M is divided into five arrays. This process for each of new
sub-series is successively repeated until the size of all sub-DFT’s would not be divisible
by 6 [26, 27].

We consider the performance of the suggested structure by investigating the computa-
tional complexity. Moreover, it will be compared with the other structures. We suppose
that AN and MN are the number of additions and multiplications, respectively. Moreo-
ver, a 3-point DFT needs 12 real additions and 4 real multiplications [28, 29].

2.4 � Conventional PP adders

PP adders significantly outperform serial adders by performing addition on multiple
bits simultaneously. They offer a good theoretical foundation for balancing power con-
sumption, speed, and occupied area in circuit design, making them ideal for designing
high-performance integrated circuits due to their balance between speed, power, and
area consumption (VLSI synthesis). The flow diagram of a 16-bit PP adder often includes
three stages, i.e., pre-computation, prefix network, and post-computation. Each stage
performs specific operations to calculate generate, propagate, carry and sum signals.
There are various types of PP adders, including Kogge–Stone (KS), Brent–Kung (BK),
Ladner–Fischer (LF), and Han–Carlson (HC) adders. One of the most widely used and
significant adders is the Kogge–Stone parallel prefix adder (KSPP), illustrated in Fig. 5.
The KSPP comprises 5 stages. In stage 1, the pre-processing stage calculates the generate
( gi ) and propagate ( pi ) values. Stages 2 to 4 form a prefix network where the final carry
( ci ) is determined based on the gi and pi values from the previous stage, and the sum ( si )

Fig. 5  Different stages of KSPP adder

Page 9 of 17Gilan and Maham ﻿EURASIP Journal on Advances in Signal Processing (2024) 2024:81 	

is calculated in the final stage. Moreover, BKPP, LFPP and HCPP adders are designed as
shown in Figs. 6, 7 and 8, respectively.

As observed from Fig. 6, the BKPP adder comprises 8 stages. The first stage serves as
a pre-processing stage, calculating generate ( gi ) and propagate ( pi ) values for each bit
position. Stages 2 to 7 form a prefix network that utilizes these values to determine the
final carry for each bit. This approach is similar to the Ladner–Fischer Parallel Prefix

Fig. 6  Different stages of BKPP adder

Fig. 7  Different stages of LFPP adder

Page 10 of 17Gilan and Maham ﻿EURASIP Journal on Advances in Signal Processing (2024) 2024:81

(LFPP) adder in Fig. 7. In the LFPP adder, stage 1 also performs the pre-processing to
calculate gi and pi values. Stages 2–4 form the prefix network stage, and the final stage
computes the sum for each bit position.

The Han–Carlson parallel prefix (HCPP) adder in Fig. 8 is a hybrid design that com-
bines elements from both the BKPP and KSPP adders. Similar to the previous adders,
stage 1 performs the pre-processing for gi and pi values. Stages 2–5 form the prefix
network, and the last stage calculates the final sum. Interestingly, the HCPP structure
shares stages 1 and 6 with the BKPP adder; while, stages 2–5 have the same structure as
the KSPP adder. This hybrid approach offers potential benefits in terms of lower power
consumption and smaller area footprint on the chip due to reduced wiring connections
and gates, but it introduces an additional stage compared to the BKPP and LFPP adders.

2.5 � Implementation of Radix‑2, Radix‑4 and Split‑Radix using proposed arithmetic

structures

In this paper, we introduce a novel adder design that, when combined with the previ-
ously mentioned FFT structures, significantly reduces the number of multipliers and
adders required for FFT computations. For instance, without the Radix-2 FFT, the first
stage in Fig. 1 would necessitate 16 multipliers and 32 adders. However, with the imple-
mentation of the radix-2 FFT, only 1 multiplier and 2 adders are needed in each stage. It
is important to note that the number of registers remains unchanged. This reduction in
multipliers and adders translates to significant area savings. Additionally, by employing
parallel prefix adders, we achieve improved performance compared to traditional serial
adders. Parallel prefix adders excel due to their ability to perform addition on multiple
bits simultaneously, unlike serial adders which process bits one after another.

Fig. 8  Different stages of HCPP adder

Page 11 of 17Gilan and Maham ﻿EURASIP Journal on Advances in Signal Processing (2024) 2024:81 	

The proposed architecture depicted in Fig. 9 offers reduced complexity compared to
conventional PP adders. Similar to other parallel prefix adders, Stage 1 calculates the
generate and propagate values. Stages 2–4 utilize these values to compute the final
carry, and the sum is determined in the last stage. The new parallel prefix adder exhib-
its improved performance and efficiency compared to previously reported adders. This
makes it particularly attractive for applications where speed is a critical factor. The
proposed adder has been simulated, and the detailed results are presented in the next
section.

3 � Simulation results
The simulations for this work were conducted using Xilinx Vivado and ISE. The
M-point input array was converted to its 16-bit binary equivalents by applying twid-
dle factors and performing computations within the input block. Simulations were
performed for Radix-2, Radix-4 and Split-Radix FFT algorithms. The new arithmetic
structure demonstrates significant advantages, particularly in terms of power con-
sumption, number of LUTs, operating frequency and delay compared to other struc-
tures. This makes it highly suitable for DSP applications where high processing speed
is essential. By enhancing the performance of adder blocks, we can minimize resource
utilization and consequently reduce the number of computational stages required in
FFT implementations. Table 1 summarizes the performance of various adders using
metrics such as area, speed, power consumption and power-delay product. As shown
in Table 1, the HCPP adder exhibits a lower delay (12.147 ns) compared to KSPP and
LFPP adders. This delay is further broken down into logic delay (5.417 ns) and router
delay (6.73 ns). Additionally, the HCPP adder utilizes only 24 LUTs, demonstrating a
more compact design compared to the KSPP (38 LUTs), BKPP (33 LUTs), and LFPP

Fig. 9  Our proposed adder

Page 12 of 17Gilan and Maham ﻿EURASIP Journal on Advances in Signal Processing (2024) 2024:81

(26 LUTs) adders. While the BKPP adder has a lower delay than other adders, it occu-
pies a large area based on the number of LUTs. Our proposed adder offers a compel-
ling combination of optimized area, high speed, and lower power consumption (with
a power-delay product of 0.380 Wns), making it a preferred choice for designing vari-
ous blocks in signal processing applications.

We present the results of the synthesis, focusing on the number of utilized LUTs.
Tables 2, 3, and 4 present the device utilization summary for different FFT struc-
tures when our proposed adder is used. These tables show the utilization of slice
LUTs for Radix-2, Radix-4, and Split-Radix structures, respectively. As observed in
the tables, the Split-Radix structure exhibits the lowest LUT utilization at 4% , fol-
lowed by Radix-4 at 71% , and Radix-2 at 84% . Tables 5, 6, and 7 present the number
of calculation operations (multiplications and additions) required for different FFT
structures with sizes M = 64 , M = 256 and M = 1024 , respectively. As expected, the
number of multiplications and additions increases for all structures as the data size
(M) increases. However, the tables also reveal that the Split-Radix structure consist-
ently requires fewer multiplications and additions compared to Radix-2 and Radix-4
structures for all data sizes evaluated.

We have compared the processing power, the number of LUTs, working fre-
quency and delay for different algorithms in Figs. 10, 11, 12 and 13 for chips using

Table 1  Comparison of our proposed adder with the conventional adders

Number of
bonded IOB

Delay (ns) Number of
slice LUTs

Total power (W) Power
delay
product

I-Buf O-Buf Logic Router Leakage IOs

KSPP 32 17 6.955 5.417 38 0.064 0.017 0.969

BKPP 33 17 6.070 5.159 33 0.064 0.017 0.909

LFPP 33 17 6.931 5.417 26 0.064 0.017 1.000

HCPP 32 17 6.730 5.417 24 0.064 0.017 0.983

Our pro-
posed adder

32 17 4.609 3.852 23 0.029 0.017 0.380

Table 2  Device utilization summary for 16 point FFT using Radix-2 Algorithm

It describes the logic utilization based on the number of slice registers, the number of slice LUTs and the number of fully
used LUT-FF pairs

Device utilization summary (estimated values) (·)

Logic utilization Used Available Utilization (%)

Number of slice registers 503,020 708,480 71

Number of slice LUTs 297,561 354,240 84

Number of fully used LUT · FF pairs 152,704 254,508 60

Timing summary

Speed grade: − 2

 Minimum period: 2.977 ns (maximum frequency: 335.914 MHz)

 Minimum input arrival time before clock: 7.304 ns

 Minimum output required time after clock: 0.659 ns

 Minimum combinational path delay: no path found

Page 13 of 17Gilan and Maham ﻿EURASIP Journal on Advances in Signal Processing (2024) 2024:81 	

Table 3  Device utilization summary for 16 point FFT using Radix-4 Algorithm

It describes the logic utilization based on the number of slice registers, the number of slice LUTS and the number of fully
used LUT-FF pairs

Device utilization summary (estimated values) (·)

Logic utilization Used Available Utilization (%)

Number of slice registers 123,406 708,480 17

Number of slice LUTs 213,700 354,240 60

Number of fully used LUT · FF pairs 82,598 254,508 32

Timing summary

Speed grade: − 3

 Minimum period: 2.652 ns (maximum frequency: 365.914 MHz) Minimum input arrival time before clock:
7.304 ns

 Minimum output required time after clock: 0.350 ns

 Minimum combinational path delay: no path found

Table 4  Device utilization summary for FFT using Split-Radix algorithm

It describes the logic utilization based on the number of slice registers, the number of slice LUTS and the number of fully
used LUT-FF pairs

Device utilization summary (estimated values)

Logic utilization Used Available Utilization (%)

Number of slice registers 28,339 708,480 4

Number of slice LUTs 35,424 354,240 10

Number of fully used LUT · FF pairs 203,606 254,508 8

Timing summary

Speed grade: − 4

 Minimum period: 2.105 ns (maximum frequency: 450.914 MHz) Minimum input arrival time before clock:
7.304 ns

 Minimum output required time after clock: 0.150 ns

 Minimum combinational path delay: no path found

Table 5  The number of sums and multiplications for M = 64

FFT Radix-2 Radix-4 Split-Radix

The number of multiplication 462 208 196

The number of sum 1321 976 964

Table 6  Number of sums and multiplications for M = 256

FFT Radix-2 Radix-4 Split-Radix

The number of multiplication 1800 1392 1284

The number of sum 5896 5488 5380

Table 7  Number of sums and multiplications for M = 1024

FFT Radix-2 Radix-4 Split-Radix

The number of multiplication 10,248 7856 7172

The number of sum 30,728 28,336 27,652

Page 14 of 17Gilan and Maham ﻿EURASIP Journal on Advances in Signal Processing (2024) 2024:81

conventional adders and our proposed adder. According to the values obtained from
the simulations in Fig. 10, the power consumption of the Split-Radix algorithm is less
than the other methods which is 17 mW and 22 mW for the circuit using proposed
adder and conventional adders, respectively which this means that the system is more
optimized. Moreover, in the case of using our proposed adder for all FFT algorithms,
the consumed power is less than those of conventional adders. As expected, Split-
Radix FFT deemed more suitable for FPGA implementation than the Radix-4 and
Radix-2 algorithms and it is well-suited for a low-power FFT processor because it
requires the fewest arithmetic operations among all FFT algorithms.

Radix-2
, co

nventional adder

Radix-2
, proposed adder

Radix-4
, co

nventional adder

Radix-4
, proposed adder

Split-R
adix, c

onventional adder

Split-R
adix, p

roposed adder

15

20

25

30

P
ow

er
 c

on
su

m
pt

io
n

(m
W

)

Fig. 10  The power consumption (mW) for different adders and algorithms

Radix-2
, co

nventional adder

Radix-2
, proposed adder

Radix-4
, co

nventional adder

Radix-4
, proposed adder

Split-R
adix, c

onventional adder

Split-R
adix, p

roposed adder
15

20

25

30

35

40

N
um

be
r

of
 L

U
T

s

Fig. 11  Number of LUTs for different adders and algorithms

Page 15 of 17Gilan and Maham ﻿EURASIP Journal on Advances in Signal Processing (2024) 2024:81 	

Figure 11 demonstrates that using our proposed adder leads to lower resource utiliza-
tion compared to conventional adders. For instance, the Split-Radix algorithm with the
proposed adder utilizes fewer resources than the Radix-4 algorithm with a conventional
adder. The chips are made up of many LUTs, and the less the number of LUTs used, the
more resources are available for the system to perform other calculations. As a result,
it increases the speed of the system which can be seen in the Split-Radix method [27].
Operating frequency in Fig. 12 refers to the number of cycles a processor can execute
per second. A higher operating frequency generally translates to faster execution of
instructions. Based on the results, the Split-Radix algorithm achieves a higher operating
frequency, indicating faster operation.

Radix-2
, co

nventional adder

Radix-2
, proposed adder

Radix-4
, co

nventional adder

Radix-4
, proposed adder

Split-R
adix, c

onventional adder

Split-R
adix, p

roposed adder
100

102

104

106

108

110

O
pe

ra
tin

g
fr

eq
ue

nc
y

(H
z)

Fig. 12  Operating frequency (Hz) of the system for different adders and algorithms

Radix-2
, co

nventional adder

Radix-2
, proposed adder

Radix-4
, co

nventional adder

Radix-4
, proposed adder

Split-R
adix, c

onventional adder

Split-R
adix, p

roposed adder
0

1

2

3

4

5

6

7

D
el

ay
 (

ns
)

Fig. 13  Delay (ns) of the system for different adders and algorithms

Page 16 of 17Gilan and Maham ﻿EURASIP Journal on Advances in Signal Processing (2024) 2024:81

Figure 13 shows the delay experienced by different FFT algorithms implemented
with both the conventional adder and the proposed adder. The results indicate that the
proposed adder offers lower delay compared to conventional adders for all algorithms.
Additionally, the Split-Radix algorithm exhibits the lowest delay among all algorithms
based on this metric. Specifically, the delays for Radix-2, Radix-4, and Split-Radix with
the proposed adder are 3 ns, 1.2 ns, and 0.5 ns, respectively.

4 � Conclusion
In this paper, we have proposed a new arithmetic structure. The aforementioned struc-
ture demonstrates impressive performance compared to other structures. It is particu-
larly suitable for use in DSP applications where high processing speed is crucial. By
enhancing the performance of adder blocks, the resource utilization and number of
computational stages in the implementation of FFT algorithms can be minimized. Our
proposed adder offers optimized area, high speed and lower power consumption, mak-
ing it a preferred choice for designing various blocks in signal processing applications.
According to the results of device utilization and computational complexity, Radix-4
and Split-Radix methods are better than Radix-2 method. In the simulation results sec-
tion, the power consumption, the used chip surface, the working frequency, and delay
in the aforementioned methods are compared. From comparing the results, we can see
that Radix-4 and Split-Radix are better than Radix-2 algorithm and they work more effi-
ciently. Finally, according to the changes applied in the Split-Radix algorithm, it has a
very high efficiency, which is suitable for complex applications.

Author contributions
Mahsa Shirzadian Gilan proposed the main idea and analyzed the result. She performed the simulations, evaluation,
methodology and editing the paper. Behrouz Maham edited and evaluated the paper. All authors read and approved
the final manuscript.

Funding
This research is supported by the Ministry of Science and Higher Education of the Republic of Kazakhstan, under the
project AP13068587 entitled “57–65 GHz Wireless Communication Front-End for Secure 5 G Applications”.

Declaration

Competing interests
The authors declare that they have no competing interests.

Received: 16 May 2024 Accepted: 14 August 2024

References
	1.	 Y.S. Algnabi, R. Teymourzadeh, M. Othman, FPGA implementation of pipeline digit-slicing multiplier-less radix 22 DIF

SDF butterfly for fast Fourier transform structure (IMEN) (2018). CoRR arXiv:​1806.​04570
	2.	 S.J. Saenz, J.J. Raygoza, E.C. Becerra, FPGA design and implementation of Radix-2 fast Fourier transform algorithm

with 16 and 32 points, in IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC). Ixtapa,
Mexico, vol. 2015 (2015), 1–6

	3.	 M.S. Gilan, B. Maham, Diversity achieving full-duplex DF relaying with joint relay-antenna selection under Nakagami-
m fading environment. Int. J. Commun. Syst. 36(5), e5427 (2023)

	4.	 M. Schlemon, J. Naghmouchi, FFT optimizations and performance assessment targeted towards satellite and
airborne radar processing, in IEEE 32nd International Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD). Porto, Portugal, vol. 2020 (2020), pp. 313–320

	5.	 L. Santhosh, A. Thomas, Implementation of radix 2 and radix 22 FFT algorithms on Spartan6 FPGA, in 2013 Fourth
International Conference on Computing, Communications and Networking Technologies (ICCCNT), Tiruchengode, India
(2013), pp. 1–4

http://arxiv.org/abs/1806.04570

Page 17 of 17Gilan and Maham ﻿EURASIP Journal on Advances in Signal Processing (2024) 2024:81 	

	6.	 M.S. Gilan, B. Maham, Performance analysis of power-efficient IRS-assisted full duplex NOMA systems. Phys. Com-
mun. 64, 102338 (2024)

	7.	 E. Guariglia, R.C. Guido, Chebyshev wavelet analysis. J. Funct. Spaces 1, 5542054 (2020)
	8.	 M.V. Berry, Z.V. Lewis, On the Weierstrass–Mandelbrot fractal function. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci.

370(1743), 459–484 (1980)
	9.	 Y. Wang, S. Cui, Hyperspectral image feature classification using stationary wavelet transform, in 2014 International

Conference on Wavelet Analysis and Pattern Recognition (2014), pp. 104–108
	10.	 E. Guariglia, Harmonic Sierpinski gasket and applications. Entropy 20, 714 (2018)
	11.	 X. Zheng, Y.Y. Tang, J. Zhou, A framework of adaptive multiscale wavelet decomposition for signals on undirected

graphs. IEEE Trans. Signal Process. 67(7), 1696–1711 (2019)
	12.	 E. Guariglia, S. Silvestrov, Fractional-Wavelet Analysis of Positive Definite Distributions and Wavelets on D’(C) Engineering

Mathematics II. (Springer, Berlin, 2016), pp.337–353
	13.	 K.K. Parthi, VLSI Digital Signal Processing Systems (Wiley, Hoboken, 1999)
	14.	 Z. Ying-Xi, S. Lei, Design of mixed-radix FFT algorithm based on FPGA, in 2022 7th International Conference on Com-

munication, Image and Signal Processing (CCISP), Chengdu, China (2022), pp. 418–422
	15.	 M.S. Gilan, R. Paranjape, Beam tracking in phased array antenna based on the trajectory classification. Trans. Emerg.

Telecommun. Technol. 34(6), e4769 (2023)
	16.	 G. Akkad, A. Mansour, B. ElHassan, F.L. Roy, M. Najem, FFT Radix-2 and Radix-4 FPGA acceleration techniques using

HLS and HDL for digital communication systems, in 2018 IEEE International Multidisciplinary Conference on Engineer-
ing Technology (IMCET), Beirut, Lebanon (2018), pp. 1–5

	17.	 W.-S. Gan, A. Seth, S.M. Kuo, Versatile and portable DSP platform for learning embedded signal processing, in 2011
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic (2011), pp.
2888–2891

	18.	 P.M. Kogge, H.S. Stone, A parallel algorithm for the efficient solution of a general class of recurrence equations. IEEE
Trans. Comput. 22(8), 786–793 (1973)

	19.	 R.P. Brent, H.T. Kung, A regular layout for parallel adders. IEEE Trans. Comput. 31(3), 260–264 (1982)
	20.	 R.E. Ladner, M.J. Fisher, Parallel prefix computation. J. Assoc. Comput. Mach. 27(4), 831–838 (1980)
	21.	 T. Hans, D.A. Carlson, Fast area-efficient VLSI adders, in Proceedings of the 8th IEEE Symposium on Computer Arithmetic

(1987), pp. 49–56
	22.	 G. Thakur, H. Sohal, S. Jain, FPGA-based parallel prefix speculative adder for fast computation application, in 2020

Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC) (2020), pp. 206–210
	23.	 P.T.L. Pereira et al., Energy-quality scalable design space exploration of approximate FFT hardware architectures. IEEE

Trans. Circuits Syst. I Regul. Pap. 69(11), 4524–4534 (2022)
	24.	 A. Sankaran, M.S. Reddy, K. Arunkumar, M. Bhaskar, Design and implementation of 1024 point pipelined radix 4 FFT

processor on FPGA for biomedical signal processing applications, in IEEE International Symposium on Smart Electronic
Systems (iSES) (Formerly iNiS). Chennai, India, vol. 2020 (2020), pp. 1–6

	25.	 E. Delaye, A. Sirasao, C. Dudha, S. Das, Deep learning challenges and solutions with Xilinx FPGAs, in 2017 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), Irvine, CA, USA (2017), pp. 908–913

	26.	 S. Magar, S. Shen, G. Luikuo, M. Fleming, R. Aguilar, An application specific DSP chip set for 100 MHz data rates,
in ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing, New York, NY, USA (1988), pp.
1989–1992

	27.	 S. Li, X. Yue, P. Wang, Research and FPGA implementation of security control system based on high alphabet modu-
lation, in 2018 IEEE 4th International Conference on Computer and Communications (ICCC), Chengdu, China (2018), pp.
2710–2714

	28.	 S. Liu, et al., Memory-efficient architecture for accelerating generative networks on FPGA, in 2018 International
Conference on Field-Programmable Technology (FPT), Naha, Japan (2018), pp. 30–37

	29.	 T. Siu, C.-W. Sham, F.C.M. Lau, Operating frequency improvement on FPGA implementation of a pipeline large-FFT
processor, in 2017 19th International Conference on Advanced Communication Technology (ICACT), PyeongChang,
Korea (South) (2017), pp. 5–9

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	Optimized power and speed of Split-Radix, Radix-4 and Radix-2 FFT structures
	Abstract
	1 Introduction
	1.1 Motivations and contributions
	1.2 Organizations

	2 Methodology
	2.1 Radix-2 butterfly algorithm
	2.2 Radix-4 butterfly algorithm
	2.3 Split-Radix butterfly algorithm
	2.4 Conventional PP adders
	2.5 Implementation of Radix-2, Radix-4 and Split-Radix using proposed arithmetic structures

	3 Simulation results
	4 Conclusion
	References

