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1  Introduction
The Fourier transform is an essential method in most digital signal processing (DSP) 
applications, including image and signal processing, telecommunications, and optics. 
However, their widespread use comes at the cost of high computational demands. This is 
particularly true for the discrete Fourier transform (DFT), where the number of compu-
tations required grows to M2 for a transformation size of M. As M increases, the calcu-
lations become exponentially complex [1–3]. To address this challenge, the fast Fourier 
transform (FFT) was developed as an established technique in signal processing. It sig-
nificantly reduces the complexity of DFT calculations from M2 to M log2M , making it a 
more efficient approach for large datasets.

Based on existing literature, numerous FFT algorithms, such as the fast Hartley trans-
form (FHT), have been proposed. However, Split-Radix, Radix-4, and Radix-2 algorithms 
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remain the most widely employed [4, 5]. In DSP, the discrete Fourier transform (DFT) 
transforms a signal, denoted by y(n) in the time domain, to its frequency domain repre-
sentation, Y(k). Both y(n) and Y(k) can be complex or real numbers. Calculating Y(k) for 
each frequency value (k) requires M complex multiplications and M complex additions. 
Since there are M values of Y(k), an M-point DFT necessitates M complex addition and 
multiplication blocks. Furthermore, the total number of addition and multiplication 
operations to compute this M-point DFT scales quadratically with M ( M2 ). This com-
plexity becomes significant when dealing with large datasets. It is important to note that 
convolution in the time domain corresponds to multiplication in the frequency domain 
[5, 6]. Fourier transforms decompose signals into their fundamental sinusoidal compo-
nents of various frequencies across the entire sequence. In contrast, wavelet transforms 
break down signals into localized components that have a defined location in both time 
and frequency. Some works have explored the combination of these techniques, known 
as fractal-wavelet analysis [7–12].

FFT algorithm leverages a key strategy called “divide-and-conquer.” This method 
breaks down the computation of a large DFT into calculations of smaller DFTs. To 
understand its efficiency, let us consider a signal y(n) with an even length, i.e., M is divis-
ible by 2. Dividing y(n) into two equal-sized sub-arrays requires performing some mul-
tiplication and addition operations on each sub-array to compute their respective DFTs 
[13, 14]. Moreover, calculating the DFTs of both sub-arrays separately would seem to 
require twice the number of operations for the original DFT. The power of the FFT algo-
rithm lies in its ability to exploit clever mathematical relationships between the DFTs of 
the sub-arrays and the DFT of the original signal, y(n). By utilizing these relationships, 
the FFT significantly reduces the total number of calculations needed compared to the 
conventional approach. This translates to faster computation times, making FFT a cor-
nerstone for various DSP applications.

The classification process in FFT involves dividing the signal y(n) into smaller sub-
arrays and calculating Y(k) from the DFTs of these sub-arrays [15]. This divide-and-con-
quer strategy has a dramatic reduction in calculations when the length of the sequences 
is a power of 2. In a Radix-2 FFT, the sequence y(n) with length M is divided into two 
sub-arrays based on their even or odd indices [13, 16]. One sub-array consists of all even-
indexed samples, and the other contains all odd-indexed samples. The formulas used in 
subsequent sections will leverage this separation. The main contribution and novelty of 
this work lie in achieving increased processor efficiency and reduced resource usage. 
This is achieved by proposing a hardware design of FFT architectures that utilizes a new 
parallel prefix adder. Compared to existing architectures, the designed FFT architecture 
offers lower power consumption, smaller chip area and faster operation speed [16, 17].

In FFT processors, Radix-2, Radix-4 and Split-Radix algorithms are commonly used 
to handle complex arithmetic operations. These algorithms involve various arithmetic 
operations, including addition and multiplication. Addition can be implemented in two 
ways: serial or parallel. Serial adders, such as full adders (FAs) and ripple carry adders 
(RCAs), are slow due to their bit-by-bit processing, have higher power consumption, and 
require more time for implementation. In contrast, parallel adders are significantly faster 
because they add multiple bits simultaneously. Designing high-speed, low-power paral-
lel prefix (PP) adders is crucial for efficient FFT implementations. PP adders, such as 
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Kogge and Stone (KS) [18], Brent and Kung (BK) [19], Ladner and Fischer (LF) [20], and 
Han and Carlson (HC) [21], are popular choices due to their efficiency. Notably, paral-
lel prefix adders offer a key advantage over other adder architectures. They can calcu-
late the carry bits for all stages simultaneously, leading to faster operation. While the 
reference [22] explores using a Brent–Kung speculative adder for high-speed applica-
tions, this approach requires a larger area for processing due to its more complex design, 
potentially increasing hardware complexity.

1.1 � Motivations and contributions

Traditional multiplication and addition circuits often lack optimization in terms of area 
usage, power consumption and processing speed. Developing high-speed FFT proces-
sors necessitates more efficient arithmetic units. This research proposes well-designed 
circuits that use an efficient adder to achieve improved performance. The key innova-
tion lies in implementing Split-Radix, Radix-2, and Radix-4 FFT structures with a novel 
parallel prefix (PP) adder. This approach offers significant advantages over existing 
FFT designs using PP adders. It reduces power consumption and hardware footprint 
(area) while simultaneously enhancing processing speed. Furthermore, the paper pre-
sents a methodology for deploying adders on field-programmable gate arrays (FPGAs). 
This methodology provides a foundational building block for various DSP filters. The 
performance of the proposed design is evaluated based on key metrics, i.e., power con-
sumption, delay, operating frequency, number of lookup tables (LUTs) utilized, and 
power-delay product. We first implemented four different conventional parallel prefix 
adders. To address limitations in existing designs, we then introduced a novel PP adder 
that achieves increased speed and lower power consumption. This novel PP adder was 
subsequently used to construct Split-Radix, Radix-2, and Radix-4 FFT processors. 
The performance of these processors was evaluated based on area, delay, and power 
consumption.

In this paper, we propose a novel parallel prefix adder for implementing Radix-2, 
Radix-4, and Split-Radix FFT algorithms. We conducted a performance analysis based 
on power consumption, speed, operating frequency, and resource utilization for systems 
using conventional adders and our proposed arithmetic structure. Simulation results 
demonstrate that the new parallel prefix adder exhibits impressive performance com-
pared to these conventional structures, particularly in terms of lower power consump-
tion and higher speed. This makes it an ideal candidate for DSP applications where high 
processing speed is essential. By enhancing the performance of adder blocks, we can 
minimize resource utilization and consequently reduce the number of computational 
stages required in different FFT structures. All conventional adders used for comparison 
were implemented using Xilinx software on an Intel core processor. Our proposed adder 
offers several advantages such as optimized area, high speed and lower power consump-
tion. Notably, it achieves a power-delay product of 0.380 Wns, making it a compelling 
choice for designing various blocks in signal processing applications.

1.2 � Organizations

The remainder of the work is organized as follows. Section 2 describes the implemen-
tation of the FFT structures, including both conventional and proposed arithmetic 
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structures. Section 3 presents the findings from the simulations. Finally, Sect. 4 summa-
rizes the key takeaways of the paper.

2 � Methodology
In this paper, we explore the potential of various FFT algorithms, including Split-Radix, 
Radix-4, and Radix-2. While the Radix-2 algorithm is commonly used in FFT processors 
to handle complex number arithmetic operations, i.e., addition and multiplication, all 
three algorithms can be implemented with efficient adders. Traditional multiplication 
and addition circuits often lack optimization in terms of area usage, power consumption 
and processing speed. However, high-speed FFT processors necessitate more efficient 
arithmetic units. This research addresses this challenge by introducing well-designed 
circuits that use a novel parallel prefix adder to achieve improved performance. The key 
innovation lies in implementing Split-Radix, Radix-2 and Radix-4 FFT structures with 
this novel adder. This approach offers significant advantages over existing FFT designs 
using PP adders. It simultaneously reduces power consumption, minimizes hardware 
footprint (area), and enhances processing speed.

2.1 � Radix‑2 butterfly algorithm

In DFT, when M is a power of 2, we can separate the even and odd points in the DFT 
formula. As a result, the common DFT equation converts to the following formulas,

In a radix-2 FFT, the input data are typically arranged in a sequential order. How-
ever, the output data after the FFT computation exhibits a bit-reversed order. Hardware 
implementations often require rearranging the bit-reversed output back to a sequential 
format for further processing. Figure  1 illustrates a 32-point radix-2 FFT structure. It 
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Fig. 1  Different parts of 32-point FFT structure
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consists of multiple stages, each containing registers and a radix-2 butterfly unit. The 
number of registers in each stage depends on the size of the input data. Between con-
secutive stages, the outputs are multiplied by complex twiddle factors [16, 23].

The Radix-2 butterfly structure significantly reduces the number of multipliers and 
adders required for the FFT computation. For instance, without the Radix-2 FFT, the 
first stage necessitates 16 multipliers and 32 adders. However, using the Radix-2 FFT 
with the butterfly structure, only 1 multiplier and 2 adders are needed in each stage. It 
is important to note that the number of registers remains the same. In this work, the 
Radix-2 FFT implementation uses the decimation-in-time (DIT) algorithm. DIT algo-
rithms process data in the time domain first, with the input being bit-reversed and the 
output in natural order. In contrast, decimation-in-frequency (DIF) algorithms process 
data in the frequency domain first, having the input in natural order and the output bit-
reversed. The Radix-2 FFT structure is a core component of the FFT, enabling efficient 
computation of complex number operations within the FFT algorithm.

The synthesis output of the FFT simulation suggests that employing Radix-2 structure 
for a 32-point FFT would be efficient in terms of speed and area [13, 14]. The flow dia-
gram of the Radix-2 FFT structure is depicted in Fig. 2. The multiplier block is succeeded 
by a PP adder block. The final output is determined by the value of Cin . If Cin = 1 , then 
the equal real and imaginary parts are computed. Otherwise, unequal real and imaginary 
parts are calculated.

2.2 � Radix‑4 butterfly algorithm

In DFT, when M is a power of 4, we can convert Y2k to Y4k and Y4k+2 as well as Y2k+1 to 
Y4k+1 and Y4k+3 so that the following formulas are obtained [14]:

Fig. 2  Flow diagram of Radix-2 FFT structure
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The graph obtained from this method for Radix-4 DIF-FFT with 16-point is shown in 
Fig. 3 with the conversion size M = 16 [24, 25].

2.3 � Split‑Radix butterfly algorithm

This method is a combination of two aforementioned methods so that only in the third for-
mula, we change Y2k+1 to Y4k+1 and Y4k+3 so that the following formulas are obtained. The 
structure of Split-Radix 3/6 FFT by block diagram is shown in Fig. 4.
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Fig. 3  Structure of 16-point Radix-4 FFT by signal flow graph
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Split-Radix 3/6 FFT approach is defined based on the following equations:
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Fig. 4  Structure of Split-Radix FFT by block diagram
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The structure of Split-Radix FFT by block diagram is given in Fig. 4. If the range of 
n is considered from 0 to N6  in the aforementioned equations, Y(k) will be completely 
obtained. The design of the suggested Split-Radix FFT is summarized. The primary input 
array with a length equal to M is divided into five arrays. This process for each of new 
sub-series is successively repeated until the size of all sub-DFT’s would not be divisible 
by 6 [26, 27].

We consider the performance of the suggested structure by investigating the computa-
tional complexity. Moreover, it will be compared with the other structures. We suppose 
that AN and MN are the number of additions and multiplications, respectively. Moreo-
ver, a 3-point DFT needs 12 real additions and 4 real multiplications [28, 29].

2.4 � Conventional PP adders

PP adders significantly outperform serial adders by performing addition on multiple 
bits simultaneously. They offer a good theoretical foundation for balancing power con-
sumption, speed, and occupied area in circuit design, making them ideal for designing 
high-performance integrated circuits due to their balance between speed, power, and 
area consumption (VLSI synthesis). The flow diagram of a 16-bit PP adder often includes 
three stages, i.e., pre-computation, prefix network, and post-computation. Each stage 
performs specific operations to calculate generate, propagate, carry and sum signals. 
There are various types of PP adders, including Kogge–Stone (KS), Brent–Kung (BK), 
Ladner–Fischer (LF), and Han–Carlson (HC) adders. One of the most widely used and 
significant adders is the Kogge–Stone parallel prefix adder (KSPP), illustrated in Fig. 5. 
The KSPP comprises 5 stages. In stage 1, the pre-processing stage calculates the generate 
( gi ) and propagate ( pi ) values. Stages 2 to 4 form a prefix network where the final carry 
( ci ) is determined based on the gi and pi values from the previous stage, and the sum ( si ) 

Fig. 5  Different stages of KSPP adder
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is calculated in the final stage. Moreover, BKPP, LFPP and HCPP adders are designed as 
shown in Figs. 6, 7 and 8, respectively.

As observed from Fig. 6, the BKPP adder comprises 8 stages. The first stage serves as 
a pre-processing stage, calculating generate ( gi ) and propagate ( pi ) values for each bit 
position. Stages 2 to 7 form a prefix network that utilizes these values to determine the 
final carry for each bit. This approach is similar to the Ladner–Fischer Parallel Prefix 

Fig. 6  Different stages of BKPP adder

Fig. 7  Different stages of LFPP adder
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(LFPP) adder in Fig. 7. In the LFPP adder, stage 1 also performs the pre-processing to 
calculate gi and pi values. Stages 2–4 form the prefix network stage, and the final stage 
computes the sum for each bit position.

The Han–Carlson parallel prefix (HCPP) adder in Fig. 8 is a hybrid design that com-
bines elements from both the BKPP and KSPP adders. Similar to the previous adders, 
stage 1 performs the pre-processing for gi and pi values. Stages 2–5 form the prefix 
network, and the last stage calculates the final sum. Interestingly, the HCPP structure 
shares stages 1 and 6 with the BKPP adder; while, stages 2–5 have the same structure as 
the KSPP adder. This hybrid approach offers potential benefits in terms of lower power 
consumption and smaller area footprint on the chip due to reduced wiring connections 
and gates, but it introduces an additional stage compared to the BKPP and LFPP adders.

2.5 � Implementation of Radix‑2, Radix‑4 and Split‑Radix using proposed arithmetic 

structures

In this paper, we introduce a novel adder design that, when combined with the previ-
ously mentioned FFT structures, significantly reduces the number of multipliers and 
adders required for FFT computations. For instance, without the Radix-2 FFT, the first 
stage in Fig. 1 would necessitate 16 multipliers and 32 adders. However, with the imple-
mentation of the radix-2 FFT, only 1 multiplier and 2 adders are needed in each stage. It 
is important to note that the number of registers remains unchanged. This reduction in 
multipliers and adders translates to significant area savings. Additionally, by employing 
parallel prefix adders, we achieve improved performance compared to traditional serial 
adders. Parallel prefix adders excel due to their ability to perform addition on multiple 
bits simultaneously, unlike serial adders which process bits one after another.

Fig. 8  Different stages of HCPP adder
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The proposed architecture depicted in Fig. 9 offers reduced complexity compared to 
conventional PP adders. Similar to other parallel prefix adders, Stage 1 calculates the 
generate and propagate values. Stages 2–4 utilize these values to compute the final 
carry, and the sum is determined in the last stage. The new parallel prefix adder exhib-
its improved performance and efficiency compared to previously reported adders. This 
makes it particularly attractive for applications where speed is a critical factor. The 
proposed adder has been simulated, and the detailed results are presented in the next 
section.

3 � Simulation results
The simulations for this work were conducted using Xilinx Vivado and ISE. The 
M-point input array was converted to its 16-bit binary equivalents by applying twid-
dle factors and performing computations within the input block. Simulations were 
performed for Radix-2, Radix-4 and Split-Radix FFT algorithms. The new arithmetic 
structure demonstrates significant advantages, particularly in terms of power con-
sumption, number of LUTs, operating frequency and delay compared to other struc-
tures. This makes it highly suitable for DSP applications where high processing speed 
is essential. By enhancing the performance of adder blocks, we can minimize resource 
utilization and consequently reduce the number of computational stages required in 
FFT implementations. Table 1 summarizes the performance of various adders using 
metrics such as area, speed, power consumption and power-delay product. As shown 
in Table 1, the HCPP adder exhibits a lower delay (12.147 ns) compared to KSPP and 
LFPP adders. This delay is further broken down into logic delay (5.417 ns) and router 
delay (6.73 ns). Additionally, the HCPP adder utilizes only 24 LUTs, demonstrating a 
more compact design compared to the KSPP (38 LUTs), BKPP (33 LUTs), and LFPP 

Fig. 9  Our proposed adder
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(26 LUTs) adders. While the BKPP adder has a lower delay than other adders, it occu-
pies a large area based on the number of LUTs. Our proposed adder offers a compel-
ling combination of optimized area, high speed, and lower power consumption (with 
a power-delay product of 0.380 Wns), making it a preferred choice for designing vari-
ous blocks in signal processing applications.

We present the results of the synthesis, focusing on the number of utilized LUTs. 
Tables  2, 3, and 4 present the device utilization summary for different FFT struc-
tures when our proposed adder is used. These tables show the utilization of slice 
LUTs for Radix-2, Radix-4, and Split-Radix structures, respectively. As observed in 
the tables, the Split-Radix structure exhibits the lowest LUT utilization at 4% , fol-
lowed by Radix-4 at 71% , and Radix-2 at 84% . Tables 5, 6, and 7 present the number 
of calculation operations (multiplications and additions) required for different FFT 
structures with sizes M = 64 , M = 256 and M = 1024 , respectively. As expected, the 
number of multiplications and additions increases for all structures as the data size 
(M) increases. However, the tables also reveal that the Split-Radix structure consist-
ently requires fewer multiplications and additions compared to Radix-2 and Radix-4 
structures for all data sizes evaluated.

We have compared the processing power, the number of LUTs, working fre-
quency and delay for different algorithms in Figs.  10, 11, 12 and 13 for chips using 

Table 1  Comparison of our proposed adder with the conventional adders

Number of 
bonded IOB

Delay (ns) Number of 
slice LUTs

Total power (W) Power 
delay 
product

I-Buf O-Buf Logic Router Leakage IOs

KSPP 32 17 6.955 5.417 38 0.064 0.017 0.969

BKPP 33 17 6.070 5.159 33 0.064 0.017 0.909

LFPP 33 17 6.931 5.417 26 0.064 0.017 1.000

HCPP 32 17 6.730 5.417 24 0.064 0.017 0.983

Our pro-
posed adder

32 17 4.609 3.852 23 0.029 0.017 0.380

Table 2  Device utilization summary for 16 point FFT using Radix-2 Algorithm

It describes the logic utilization based on the number of slice registers, the number of slice LUTs and the number of fully 
used LUT-FF pairs

Device utilization summary (estimated values) (·)

Logic utilization Used Available Utilization (%)

Number of slice registers 503,020 708,480 71

Number of slice LUTs 297,561 354,240 84

Number of fully used LUT · FF pairs 152,704 254,508 60

Timing summary

Speed grade: − 2

 Minimum period: 2.977 ns (maximum frequency: 335.914 MHz)

 Minimum input arrival time before clock: 7.304 ns

 Minimum output required time after clock: 0.659 ns

 Minimum combinational path delay: no path found
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Table 3  Device utilization summary for 16 point FFT using Radix-4 Algorithm

It describes the logic utilization based on the number of slice registers, the number of slice LUTS and the number of fully 
used LUT-FF pairs

Device utilization summary (estimated values) (·)

Logic utilization Used Available Utilization (%)

Number of slice registers 123,406 708,480 17

Number of slice LUTs 213,700 354,240 60

Number of fully used LUT · FF pairs 82,598 254,508 32

Timing summary

Speed grade: − 3

 Minimum period: 2.652 ns (maximum frequency: 365.914 MHz) Minimum input arrival time before clock: 
7.304 ns

 Minimum output required time after clock: 0.350 ns

 Minimum combinational path delay: no path found

Table 4  Device utilization summary for FFT using Split-Radix algorithm

It describes the logic utilization based on the number of slice registers, the number of slice LUTS and the number of fully 
used LUT-FF pairs

Device utilization summary (estimated values)

Logic utilization Used Available Utilization (%)

Number of slice registers 28,339 708,480 4

Number of slice LUTs 35,424 354,240 10

Number of fully used LUT · FF pairs 203,606 254,508 8

Timing summary

Speed grade: − 4

 Minimum period: 2.105 ns (maximum frequency: 450.914 MHz) Minimum input arrival time before clock: 
7.304 ns

 Minimum output required time after clock: 0.150 ns

 Minimum combinational path delay: no path found

Table 5  The number of sums and multiplications for M = 64

FFT Radix-2 Radix-4 Split-Radix

The number of multiplication 462 208 196

The number of sum 1321 976 964

Table 6  Number of sums and multiplications for M = 256

FFT Radix-2 Radix-4 Split-Radix

The number of multiplication 1800 1392 1284

The number of sum 5896 5488 5380

Table 7  Number of sums and multiplications for M = 1024

FFT Radix-2 Radix-4 Split-Radix

The number of multiplication 10,248 7856 7172

The number of sum 30,728 28,336 27,652
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conventional adders and our proposed adder. According to the values obtained from 
the simulations in Fig. 10, the power consumption of the Split-Radix algorithm is less 
than the other methods which is 17 mW and 22 mW for the circuit using proposed 
adder and conventional adders, respectively which this means that the system is more 
optimized. Moreover, in the case of using our proposed adder for all FFT algorithms, 
the consumed power is less than those of conventional adders. As expected, Split-
Radix FFT deemed more suitable for FPGA implementation than the Radix-4 and 
Radix-2 algorithms and it is well-suited for a low-power FFT processor because it 
requires the fewest arithmetic operations among all FFT algorithms.
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Fig. 10  The power consumption (mW) for different adders and algorithms
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Figure 11 demonstrates that using our proposed adder leads to lower resource utiliza-
tion compared to conventional adders. For instance, the Split-Radix algorithm with the 
proposed adder utilizes fewer resources than the Radix-4 algorithm with a conventional 
adder. The chips are made up of many LUTs, and the less the number of LUTs used, the 
more resources are available for the system to perform other calculations. As a result, 
it increases the speed of the system which can be seen in the Split-Radix method [27]. 
Operating frequency in Fig. 12 refers to the number of cycles a processor can execute 
per second. A higher operating frequency generally translates to faster execution of 
instructions. Based on the results, the Split-Radix algorithm achieves a higher operating 
frequency, indicating faster operation.
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Fig. 12  Operating frequency (Hz) of the system for different adders and algorithms
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Figure  13 shows the delay experienced by different FFT algorithms implemented 
with both the conventional adder and the proposed adder. The results indicate that the 
proposed adder offers lower delay compared to conventional adders for all algorithms. 
Additionally, the Split-Radix algorithm exhibits the lowest delay among all algorithms 
based on this metric. Specifically, the delays for Radix-2, Radix-4, and Split-Radix with 
the proposed adder are 3 ns, 1.2 ns, and 0.5 ns, respectively.

4 � Conclusion
In this paper, we have proposed a new arithmetic structure. The aforementioned struc-
ture demonstrates impressive performance compared to other structures. It is particu-
larly suitable for use in DSP applications where high processing speed is crucial. By 
enhancing the performance of adder blocks, the resource utilization and number of 
computational stages in the implementation of FFT algorithms can be minimized. Our 
proposed adder offers optimized area, high speed and lower power consumption, mak-
ing it a preferred choice for designing various blocks in signal processing applications. 
According to the results of device utilization and computational complexity, Radix-4 
and Split-Radix methods are better than Radix-2 method. In the simulation results sec-
tion, the power consumption, the used chip surface, the working frequency, and delay 
in the aforementioned methods are compared. From comparing the results, we can see 
that Radix-4 and Split-Radix are better than Radix-2 algorithm and they work more effi-
ciently. Finally, according to the changes applied in the Split-Radix algorithm, it has a 
very high efficiency, which is suitable for complex applications.
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