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Abstract 

The unconstrained partitioned-block frequency-domain adaptive filter (PBFDAF) 
offers superior computational efficiency over its constrained counterpart. However, 
the correlation matrix governing the natural modes of the unconstrained PBFDAF 
is not full rank. Consequently, the mean coefficient behavior of the algorithm depends 
on the initialization of adaptive coefficients and the Wiener solution is non-unique. 
To address the above problems, a new theoretical model for the deficient-length 
unconstrained PBFDAF is proposed by constructing a modified filter weight vec-
tor within a system identification framework. Specifically, we analyze the transient 
and steady-state convergence behavior. Our analysis reveals that modified weight 
vector is independent of its initialization in the steady state. The deficient-length 
unconstrained PBFDAF converges to a unique Wiener solution, which does not match 
the true impulse response of the unknown plant. However, the unconstrained PBFDAF 
can recover more coefficients of the parameter vector of the unknown system 
than the constrained PBFDAF in certain cases. Also, the modified filter coefficient yields 
better mean square deviation (MSD) performance than previously assumed. The pre-
sented alternative performance analysis provides new insight into convergence prop-
erties of the deficient-length unconstrained PBFDAF. Simulations validate the analysis 
based on the proposed theoretical model.
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1 Introduction
In audio signal processing, adaptive filters are frequently used to model systems with thou-
sands of taps. To reduce the computational burden, frequency-domain adaptive filters 
(FDAFs), particularly partitioned-block FDAFs (PBFDAFs), are commonly employed [1–7]. 
By utilizing the fast Fourier transform (FFT) for the calculation of the block convolution 
and correlation, the FDAFs offer significant computational advantages over time-domain 
and sub-band adaptive filters [8–11]. However, the FDAF algorithm might not be suit-
able for certain real-time applications that demand a very low input–output latency. The 
PBFDAF algorithm can alleviate this limitation by dividing the whole impulse response into 
shorter and equal-length sub-blocks. The block convolution can be accomplished through a 
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series of shorter block convolutions [12–14]. The PBFDAF algorithm reduces the algorithm 
latency, but at the expense of lower convergence speed [15]. In recent years, deep neural 
networks (DNNs) have been integrated with the FDAF algorithms to enhance their conver-
gence performance [16–18].

The constrained and unconstrained PBFDAFs are two prevalent versions of PBFDAFs 
[19–21]. The unconstrained PBFDAFs omit the gradient constraint on the time-domain 
weight vector, and hence, FFT computations are reduced in the weight update of each 
partition [19, 22]. When a specific adaptive filtering algorithm is developed, it is of 
importance to study the statistical convergence behaviors [1, 23–29]. Considerable effort 
has been dedicated to investigate the convergence properties of PBFDAFs [24–29]. More 
recently, a thorough analysis of the PBFDAF algorithm is conducted and some inter-
esting properties are discovered in [27–29]. Specifically, the transient and steady-state 
convergence behaviors of the PBFDAFs with 50% overlap in exact-modeling scenarios 
are described by the theoretical models in [27] and [29]. Subsequently, following a simi-
lar approach as in [27], the statistical performance of the PBFDAFs in under-modeling 
cases is comprehensively investigated in [28]. However, the analysis of the unconstrained 
PBFDAFs presented in [28] is somewhat difficult to follow due to the singularity of the 
autocorrelation matrix governing the mean convergence mode. Additionally, the steady-
state filter weight vector depends on its initialization, and the mean square deviation 
(MSD) is influenced by the initial conditions. Consequently, the MSD cannot accurately 
reflect the true system modeling capability of the unconstrained PBFDAFs

To resolve the aforementioned problems, this paper provides a new theoretical 
framework for the deficient-length unconstrained PBFDAFs in a system identification 
scenario. Motivated by methods in [28] and [29], the presented analysis is based on a 
modified filter weight vector. We firstly perform the mean analysis of the unconstrained 
PBFDAFs algorithm. Our findings reveal that the steady-state modified weight vector is 
independent of the initial values and converges to the unique Wiener solution. We also 
show that the unconstrained PBFDAFs can recover more coefficients of the unknown 
plant than the constrained version in certain cases, which is not revealed before and 
is a very nice property for system identification purpose. We then derive closed-form 
expressions for the steady-state values of MSD and extra mean square error (EMSE). The 
MSD calculated using the modified filter weight vector is lower than that obtained from 
the original one, which indicates that the unconstrained PBFDAFs exhibit a stronger sys-
tem modeling capability than previously assumed. Moreover, the presented statistical 
analysis of the unconstrained PBFDAFs is much easier to follow compared to our previ-
ous work [28]. Finally, simulations support the theoretical results based on the proposed 
theoretical model.

2  Unconstrained PBFDAFs
In this paper, the system identification is considered as the adaptive filtering task. The 
input–output relation of the linear time-invariant system is described by

(1)d(n) = x(n)Two + v(n),
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where x(n) = [x(n), . . . , x(n−M + 1)]T is the input signal vector of length M, 
wo = [w0, . . . ,wM−1]

T is the parameter vector of the system, d(n) is the desired 
response, v(n) is the zero-mean additive noise and (·)T denotes transpose operation. 
To obtain the parameter vector wo , one can solve the well-known Wiener–Hopf equa-
tions. However, this non-iterative solution requires substantial data and computational 
resources to compute unknown statistical matrices, such as the autocorrelation matrix 
of the reference signal. In scenarios such as acoustic echo control and acoustic feedback 
cancelation, it is preferable to estimate the impulse response iteratively using adaptive 
filtering algorithms due to their computational efficiency and effective tracking capabil-
ity [1].

We now introduce the unconstrained PBFDAF algorithm, which processes data in blocks 
rather than individual samples. Once a block of data is collected, the PBFDAF algorithm 
performs the block convolution and weight updates. The adaptive filter of length M1 = PL 
is partitioned into P subfilters, each with a length of L. This paper focuses on the under-
modeling scenario, i.e., the length of the parameter vector is longer than that of adaptive 
filter (M1 < M) . The time-domain input signal vector, desired signal vector, output vector 
and error signal vector for the kth block are defined as follows

The output of the PBFDAFs follows

where X p(k) = diag{Fxp(k)} is the input matrix in the frequency domain of dimension 
N = 2L , diag(·) generates a diagonal matrix, F is the N × N  FFT matrix and Ŵp(k) is 
the frequency-domain weight vector. The window matrix G01 = [0L, IL] is used to dis-
card the filter output corresponding to circular convolution, where 0L is a zero matrix of 
dimension L and IL denotes the L× L identity matrix.

The time-domain error signal is

Using FFT, the vector e(k) can be transformed to frequency domain, denoted as 
E(k) = F[0L×1, e

T (k)]T . Then, the unconstrained PBFDAF algorithm update is given by 
[1, 12]

(2)xp(k) =[x((k − p− 1)L), . . . , x((k − p+ 1)L− 1)]T ,

(3)d(k) =[d(kL), . . . , d((k + 1)L− 1)]T ,

(4)y(k) =[y(kL), . . . , y((k + 1)L− 1)]T ,

(5)e(k) =[e(kL), . . . , e((k + 1)L− 1)]T .

(6)y(k) = G01F
−1

P−1∑

p=0

X p(k)Ŵp(k),

(7)e(k) = d(k)− y(k).

(8)Ŵp(k + 1) = Ŵp(k)+ µ�−1
X

H
p (k)E(k),
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where µ is the step size and (·)H denotes Hermitian operations. The matrix 
� = E

[

X
H
p (k)X p(k)

]

 and � = IN represent the normalized and unnormalized 

PBFDAFs, respectively.

3  Statistical analysis
This section starts with a summary of the analysis results for the deficient-length uncon-
strained PBFDAFs algorithm developed in [28]. Following this, we construct a modified 
filter weight vector for an alternative performance analysis. We then proceed to analyze 
the convergence behaviors of the unconstrained PBFDAFs. It should be mentioned that 
the presented analysis is based on the results in [28], but it provides a more comprehen-
sive understanding of the performance characteristics of the underlying algorithm.

3.1  Analysis of deficient‑length unconstrained PBFDAF in [28]

By transforming the frequency-domain weight vector Ŵp(k) back to time domain, we 
have

In [29], it is demonstrated that the output vector y(k) can be expressed in terms of the 
vectors ŵp(k) as

where ŵ(k) = [ŵT
0 (k), . . . , ŵ

T
P−1(k)]

T represents the augmented filter weight vector of 
length NP, Xp(k) = G01F

−1
X p(k)F = [xp,0(k), . . . , xp,N−1(k)] is the time-domain input 

matrix of size L× N  and Xa(k) = [X0(k), . . . ,XP−1(k)] is the augmented input matrix of 
size L× NP

The parameter vector of the unknown plant can be divided into two parts 
wo = [wT

∗ ,w
T
r ]

T . The modeling part of the system w∗ = [wT
0 , . . . ,w

T
P−1]

T corresponds 
to the first M1 coefficients of the parameter vector wo , where wp = [wpL, . . . ,w(p+1)L−1]

T 
is a vector of length L. The under-modeling part wr = [wPL, . . . ,wM−1]

T is of length 
M2 = M −M1 . We define the weight-error vector as

where w = [wT
0 , . . . ,w

T
P−1]

T is the zero-padded parameter vector of length NP and 
wp = [wT

p , 01×L]
T . As shown in [28], the update equation of the weight-error vector is 

given by

where θ = blkdiag(σ , . . . , σ ) is the NP×NP block diagonal matrix, σ = (F−1�F)−1 
and Xr(k) = [xr(kL), . . . , xr(kL+ L− 1)]T is the L×M2 input matrix with 

(9)ŵp(k) = F−1Ŵp(k) = [ŵp,0(k), . . . , ŵp,N−1(k)]
T .

(10)ŷ(k) =

P−1∑

p=0

Xp(k)ŵp(k) = Xa(k)ŵ(k),

(11)w̃(k) = w − ŵ(k),

(12)

w̃(k + 1) =w̃(k)− µθXT
a (k)Xa(k)w̃(k)

− µθXT
a (k)Xr(k)wr(k)

− µθXT
a (k)v(k),
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xr(n) = [x(n− PL), . . . , x(n−M + 1)]T . Using (12), the expectation of the weight-error 
vector w̃(k) is given by

where A0(k) = θXT
a (k)Xa(k) , B0(k) = θXT

a (k)Xr(k) and E(·) is the statistical expecta-
tion operator.

The convergence characteristics of the deficient-length unconstrained PBFDAFs are 
accurately described by the theoretical model proposed in [28]. However, this model has 
two limitations. First, the analysis of the mean and mean square performance is mathemati-
cally complicated. This is because of the correlation matrix E[A0(k)] is singular and has 
zero eigenvalues. Second, because the correlation matrix E[A0(k)] is rank-deficient, the fil-
ter coefficients are dependent on their initial values in the steady state. In [30], the behav-
iors of several popular adaptive filtering algorithms are investigated when the covariance 
matrix of the input signal is singular. A similar convergence behavior of the LMS algorithm 
is revealed in [30], e.g., the steady-state weights are biased and depend on the weight ini-
tialization. However, it should be mentioned that the deficient rank of the input covariance 
matrix is due to the underlying signal characteristic in [30], while it is caused by the overlap 
between successive partitions in the PBFDAF algorithm. In [29], we have demonstrated that 
the bias in the steady-state weights of the unconstrained PBFDAF can be eliminated, allow-
ing PBFDAF to recover the true impulse response in exact-modeling scenarios. Hence, the 
MSD calculated using the weight-error vector cannot accurately reflect the system mod-
eling capability of the unconstrained PBFDAFs.

3.2  Proposed model

To overcome the above difficulties, we now present an alternative theoretical model, which 
was originally applied to analyze the performance of the unconstrained PBFDAF in exact-
modeling scenarios [29]. In [28], the main difficulty in performance analysis lies in the sin-
gularity of correlation matrix E[A0(k)] since there are identical columns in the augmented 
input matrix Xa(k) . Specifically, we have xp,0(k) = xp+1,L(k) for 0 ≤ p ≤ P − 2 . This moti-
vates us to remove the identical columns in the matrix Xa(k) . Subsequently, we construct a 
new weight vector ĥ(k) to remain the time-domain output vector y(k) unchanged.

To illustrate our main idea, we partition the adaptive filter of length M1 = 2 into P = 2 
blocks, i.e., L = 1 . The output of the filter is calculated by

By removing the same columns of the data matrix and reconstructing the weight vector 
in (14), the output vector y(k) can also be expressed by

(13)
E[w̃(k + 1)] =(I− µE[A0(k)])E[w̃(k)]

− E[B0(k)]wr(k),

(14)y(k) =
�
x(k) x(k − 1) x(k − 1) x(k − 2)

�






ŵ0,0(k)
ŵ0,1(k)
ŵ1,0(k)
ŵ1,1(k)




.

(15)y(k) =
�
x(k) x(k − 1) x(k − 2)

�





ŵ0,0(k)
ŵ0,1(k)+ ŵ1,0(k)

ŵ1,1(k)



.
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Since the data matrix in (14) contains the identical columns, its correlation matrix is 
singular. As suggested in [28], the steady-state values of ŵ0,1(k) and ŵ1,0(k) depend on 
their initial values. In contrast, the data matrix in (15) does not contain any identical 
columns and its correlation matrix is invertible. Hence, the steady-state coefficients 
ŵ0,1(k)+ ŵ1,0(k) do not depend on its initial values. Our subsequent study shows that 
this property not only simplifies the convergence behavior analysis but also allows us to 
focus on the influence of the under-modeling part on the steady-state performance of 
the algorithm. Finally, based on the proposed model, we demonstrate that the modeling 
part of the system can be recovered in certain cases

In general, by deleting the columns of xp,L(k) 0 ≤ p ≤ P − 2 in the augmented 
input matrix Xa(k) , we obtain the modified input matrix Xb(k) with dimensions 
L× (NP − P + 1) . The modified input matrix Xb(k) and input matrix Xa(k) are related 
through the following equations

where the matrices β and α are of size (NP − P + 1)× NP and NP × (NP − P + 1) , 
respectively. We generate the matrix β by removing the (2p− 1)L th (p = 1, . . . ,P − 1) 
columns of the identity matrix INP . We generate the matrix α by first constructing a 
matrix α0 , where the 2p− 1)L th (p = 1, . . . ,P − 1) rows of the identity matrix INP are 
added to the 2pLth row. Then, by removing (2p− 1)L th (p = 1, . . . ,P − 1) rows of the 
matrix α0 , we obtain the matrix α0.

Substituting (17) into (10), we may express the output vector y(k) as [29]

where ĥ(k) = αŵ(k) = [ĥT0 (k), . . . , ĥ
T
P−1(k)]

T is the modified weight vector of length 
NP − P + 1,

Using the modified matrix Xb(k) , the desired signal vector d(k) can be expressed as

(16)Xb(k) = Xa(k)β .

(17)Xa(k) = Xb(k)α,

(18)y(k) = Xb(k)ĥ(k),

ĥ0(k) =[ŵ0,0(k), . . . , ŵ0,L−1(k)
︸ ︷︷ ︸

L

,

ŵ0,L+1(k), . . . , ŵ0,N−1(k)
︸ ︷︷ ︸

L−1

]T ,

ĥp(k) =[ŵp,0(k)+ ŵp−1,L(k), . . . , ŵp,L−1(k)
︸ ︷︷ ︸

L

,

ŵp,L+1(k), . . . , ŵp,N−1(k)
︸ ︷︷ ︸

L−1

]T , 1 ≤ p ≤ P − 2

ĥP−1(k) =[ŵP−1,0(k)+ ŵP−2,L(k), . . . , ŵP−1,L−1(k)
︸ ︷︷ ︸

L

,

ŵP−1,L(k), . . . , ŵP−1,N−1(k)
︸ ︷︷ ︸

L

]T .



Page 7 of 20Luo et al. EURASIP Journal on Advances in Signal Processing         (2024) 2024:82  

where ho = αw = [hT0 , . . . ,h
T
P−1]

T is the modified augmented weight vector with 
hp = [wT

p , 01×(L−1)]
T for 0 ≤ p ≤ P − 2 and hP−1 = [wT

P−1, 01×L]
T . The modified 

weight-error vector is given by

Substituting (18) and (19) into (7), we may rewrite the error vector as

The connection between the theoretical model in [28] and the proposed model is 
depicted in Fig.  1. The elements [w̄,Xa(k), ŵ(k)] and [ho,Xb(k), ĥ(k)] are the primary 
components of the model in [28] and that of the proposed model, respectively. The pri-
mary components of the two models can be related by the matrices α and β . As shown in 
(18) and (19), the two model are equivalent in calculating the output y(k) and the desired 
signal vector d(k) . Hence, the mean square convergence behavior of the algorithm can 
be described by the proposed model.

3.3  Mean convergence behavior

Two assumptions are used for the following derivation. [A1] The noise signal v(n) and 
the input signal x(n) are independent and both have zero mean. [A2] Independence 
assumption: The input matrix Xb(k) and the weight vector ĥ(k) and are mutually inde-
pendent [1].

Premultiplying the matrix α on both sides of (12) and using (17), we obtain

where A(k) = αθXT
a (k)Xa(k)β and B(k) = αθXT

a (k)Xr(k) . Using the independence 
assumption [A2], we have

Since the matrix E[A(k)] does not contain any identical columns, it does not have zero 
eigenvalues and is invertible. Hence, the steady-state value of the weight-error vector is

(19)d(k) = Xb(k)ho + Xr(k)wr(k)+ v(k),

(20)h̃(k) = ho − ĥ(k).

(21)e(k) = Xb(k)h̃(k)+ Xr(k)wr(k)+ v(k).

(22)
h̃(k + 1) =h̃(k)− µA(k)h̃(k)− µB(k)wr

− µαθXT
a (k)v(k),

(23)
E[h̃(k + 1)] =[I− µE(A(k))]E[h̃(k)]

− µE[B(k)]wr .

Fig. 1 Connection between the theoretical model in [28] and the proposed model
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It is apparent that the steady-state weight-error vector h̃(∞) is independent of the initial 
weight-error vector h̃(0) , which is quite different from the original weight-error vector 
w̃(k).

We now investigate the Wiener solution of the modified weight-error vector h̃(k) and 
examine whether it converges to the Wiener solution. By replacing the modified weight-
error vector h̃(k) with a fixed vector h̃ in (21), we may write the MSE as

where Rb = E[XT
b (k)Xb(k)] and Rbr = E[XT

b (k)Xr(k)] . The Wiener solution of (24) 
satisfies

Since the matrix Rb is full rank, we can obtain the Wiener solution using (26)

Equation (27) indicates that, within our theoretical framework, the Wiener solution is 
uniquely determined by the under-modeling part and the statistical characteristics of 
the input signal. In contrast, the theoretical model proposed in [28] results in infinitely 
many Wiener solutions. In Appendix A, we demonstrated that E[h̃(∞)] = h̃opt , which 
indicates that the modified weight-error vector h̃(k) converges to the Wiener solution. 
Moreover, the correlation matrix Rbr is nonzero regardless of the input signal. Conse-
quently, the vector E[h̃(∞)] is not a zero vector and ĥ(k) cannot converge to ho in the 
mean sense.

As aforementioned, the vector E[ĥ(∞)] does not match ho that consists of the first PL 
elements of the unknown plant. Does it mean that we cannot obtain any useful informa-
tion about the unknown plant from ĥ(k) ? The answer is no as we will immediately show.

3.3.1  White noise input

We will demonstrate that we can recover (calculate) the first PL+ L coefficients of the 
parameter vector wo for white noise input. For M2 ≥ L , the under-modeling vector 
can be divided into two parts wr = [wT

r1,w
T
r2]

T , where wr1 = [wPL, . . . ,wPL+L−1] and 
wr2 = [wPL+L, . . . ,wPL+M2−1] . For M2 < L , we may zero-pad the vector wr to obtain 
wr0 = [wT

r , 01×(L−M2)]
T.

For white noise input signal, the matrix Rbr can be represented as

(24)E[h̃(∞)] = −(E[A(k)])−1E[B(k)]wr .

(25)
J =

1

L
E�e(k)�2

=
1

L
(h̃TRbh̃ + h̃TRbrwr + wT

r R
T
br h̃)+ σ 2

v ,

(26)
∂J

∂h̃
= 2Rbh̃ + 2Rbrwr = 0.

(27)h̃opt = −R−1
b Rbrwr .
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where K = diag{σ 2
x [L, L− 1, . . . , 1]T } is a L× L diagonal matrix and σ 2

x = E[x2(n)] is the 
variance of the input signal. We partition the matrix R−1

b  into four submatrices

where R1 , R2 , R3 and R4 are the submatrix of dimensions 
(NP − P − L+ 1)× (NP − P − L+ 1) , (NP − P − L+ 1)× L , L× (NP − P − L+ 1) 
and L× L , respectively. Substituting (28) and (29) into (27), we obtain

Note that for white noise input, only the first L entries of vector wr contribute to the bias 
of the steady-state filter weight vector E[h̃(∞)] . We split E[ĥ(∞)] into

where the vectors ĥ1(∞) and ĥ2(∞) are of length NP − P − L+ 1 and L, respectively. 
Using (30) and (31), we have

Using (32), We can then obtain

Substituting (33) into (30), we obtain the vector h̃(∞) and ho can be computed by

Since the modeling part w∗ of length PL can be recovered by (34) and the first L coeffi-
cient of the under-modeling part wr can be recovered by (33), we obtain the first PL+ L 
coefficients of the weight vector wo from the weight vector E[ĥ(∞)] , which is referred to 
as h̆ = [wT

∗ ,w
T
r1]

T.

3.3.2  Correlated input

At this point, we investigate the recovery of the true weight vector wo for corre-
lated input. By permuting the entries of the vector E[ĥ(∞)] , we obtain the vector 
b̂ = [b̂T1 , b̂

T
2 ] , where

(28)Rbr =

[
0(NP−P−L+1)×L 0(NP−P−L+1)×(M2−L)

K 0L×(M2−L)

]

,

(29)R−1
b =

[
R1 R2

R3 R4

]

,

(30)E[h̃(∞)] = −

[
R2Kwr1

R4Kwr1

]

.

(31)E[ĥ(∞)] =

[
ĥ1(∞)

ĥ2(∞)

]

,

(32)ĥ2(∞) = R4Kwr1.

(33)wr1 = K−1R−1
4 ĥ2(∞).

(34)ho = E[ĥ(∞)] + E[h̃(∞)].



Page 10 of 20Luo et al. EURASIP Journal on Advances in Signal Processing         (2024) 2024:82 

are of lengths PL and PL− P + 1 , respectively. The vector b̂ and E[ĥ(∞)] can be related 
as

where P is a (NP − P + 1)× (NP − P + 1) permutation matrix. Premultiplying both 
sides of (34) by the permutation matrix P , we have

where bo = Pho = [wT
∗ , 01×(PL−P+1)]

T and b̃ = PE[h̃(∞)] . Using (27), the vector b̃ can 
be represented as b̃ = Qwr , where Q = −PR−1

b Rbr is of dimension (NP − P + 1)×M2 . 
We split Q as Q = [QT

1 ,Q
T
2 ]

T , where the submatrices Q1 and Q2 are of dimensions 
PL×M2 and (PL− P + 1)×M2 , respectively. We then rewrite (36) as

Provided that the matrix Q2 is of full column rank, wr can be obtained by

Substituting (38) into (37), the modeling part w∗ can be expressed as

Using (38) and (39), the true impulse response wo can be recovered.
To guarantee that Q2 is of full column rank, it should have M2 ≤ PL− P + 1 . How-

ever, this is not a sufficient condition. For instance, for a first-order autoregressive (AR) 
process as input, the matrix Q2 has rank at most L, and hence, the true impulse response 
cannot be recovered in this case.

The results in Sects. 3.3.1 and 3.3.2 are of particularly interest and show we can indeed 
obtain useful information about the true system impulse response using the unconstrained 
PBFDAFs. Specifically, the unconstrained PBFDAFs can recover more coefficients of the 
unknown plant than the constrained version in certain cases. Also, we can use (32) to 

b̂1 =E[ŵ0,0(∞), . . . , ŵ0,L−1(∞)
︸ ︷︷ ︸

L

,

ŵ1,0(∞)+ ŵ0,L(∞), . . . , ŵ1,L−1(∞)
︸ ︷︷ ︸

L

, . . .

ŵP−1,0(∞)+ ŵP−2,L+1(∞), . . . , ŵP−1,L−1(∞)
︸ ︷︷ ︸

L

]T ,

b̂2 =E[ŵ0,L+1(∞), . . . , ŵ0,N−1(∞)
︸ ︷︷ ︸

L−1

,

ŵ1,L+1(∞), . . . , ŵ1,N−1(∞)
︸ ︷︷ ︸

L−1

, . . .

ŵP−1,L(∞), . . . , ŵP−1,N−1(∞)
︸ ︷︷ ︸

L

]T ,

(35)b̂ = PE[ĥ(∞)],

(36)bo = b̂+ b̃,

(37)
[

w∗

0(PL−P+1)×1

]

=

[
b̂1

b̂2

]

+

[
Q1wr

Q2wr

]

.

(38)wr = −(QT
2 Q2)

−1QT
2 b̂2.

(39)w∗ = b̂1 +Q1wr .
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determine whether the unconstrained PBFDAF is sufficient length or deficient length. In 
other words, if ĥ2(∞) is a zero vector (or very close to a zero vector), it indicates that wr is a 
zero vector and we are using a sufficient-length adaptive algorithm.

3.4  Mean square convergence behavior

Using (21) and invoking the independence assumption, the EMSE produced by the algo-
rithm is

where Rrr = E[XT
r (k)Xr(k)] . The last three terms of (40) are introduced by the under-

modeling part wr . To continue with our analysis, it is required to calculate the covari-
ance matrix E[h̃(k)h̃T (k)] . Using (22), we have

To facilitate the derivation of the recursion of the covariance matrix, we introduce the 
vectorization operator vec(·) , which stacks the input matrix into one column. Applying 
the operator vec(·) to the matrix product MQN , we have [31]

where ⊗ denotes the Kronecker product.
We define the vectorization of the covariance matrix as z(k) = vec(h̃(k)h̃T (k)) . Using 

(41) and (42), z(k) satisfies the difference equation

where the matrices H and θ(k) are

(40)

ξex(k) =
1

L
tr(E[h̃(k)h̃T (k)]Rb

+ E[h̃(k)wT
r ]R

T
br

+ E[wr h̃
T (k)]Rbr

+ E[wrw
T
r ]Rrr),

(41)

E[h̃(k + 1)h̃T (k + 1)] =E[h̃(k)h̃T (k)]

− µE[A(k)h̃(k)h̃T (k)]

− µE[B(k)wr h̃
T (k)]

− µE[h̃(k)h̃T (k)AT (k)]

− µE[h̃(k)wT
r B

T (k)]

+ µ2E[A(k)h̃(k)h̃T (k)AT (k)]

+ µ2E[B(k)wr h̃
T (k)AT (k)]

+ µ2E[A(k)h̃(k)wT
r B

T (k)]

+ µ2E[B(k)wrw
T
r B

T (k)]

+ µ2σ 2
v E[αθX

T
a (k)Xa(k)θ

TαT ].

(42)vec(MQN) = (NT⊗M)vec(Q),

(43)z(k + 1) = Hz(k)+ θ(k),

(44)H = I− µD+ µ2J,
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The matrices D and J in (44) are given by D = E[A(k)]⊗I+ I⊗E[A(k)] and 
J = E[A(k)⊗A(k)] . The vectors θ i(k) in (45) are given by

where σ 2
v  is the additive noise variance. We then obtain the MSD learning curve

Since the control matrix H is invertible, the steady-state value of the vector z(k) is

Using (51), the steady-state value of the EMSE is given by

In [28], the MSD is evaluated using the original weight vector ŵ(k) which depends on 
the initialization ŵ(0) . Here, we evaluate the MSD using the modified weight vector ĥ(k) 
that is independent of the initialization ĥ(0) . Also, we observe from (51) and (52) that 
the steady-state MSD and EMSE are influenced by the degree of under-modeling and 
the system noise level.

We now show that as the step size µ converges to zero, the steady-state modified MSD 
does not decrease to zero. Substituting (44) and (45) into (51), we get

(45)θ(k) =

4∑

i=1

θ i(k).

(46)
θ1(k) =(−µE[B(k)]⊗I+ µ2E[B(k)⊗A(k)])

×vec(h̃(k)wT
r ),

(47)
θ2(k) =(−µI⊗E[B(k)] + µ2E[A(k)⊗B(k)])

×vec(wr h̃
T (k)),

(48)θ3(k) =µ2E[B(k)⊗B(k)]×vec(wrw
T
r ),

(49)θ4(k) =µ2σ 2
v vec[E(αθX̄

T
a (k)X̄a(k)θ

TαT )],

(50)δm(k) = tr(E[h̃(k)h̃T (k)]) = tr(vec−1[z(k)]).

(51)z(∞) = (I−H)−1θ(∞).

(52)

ξex(∞) =
1

L
tr(vec−1[z(∞)]Rb

+ E[h̃(∞)wT
r ]R

T
br

+ E[wr h̃
T (∞)]Rbr

+ E[wrw
T
r ]Rrr).

(53)

z(∞) = (−µD+ µ2J)−1
4∑

i=1

θ i(k)

= µ−1(−D+ µJ)−1
4∑

i=1

θ i(k).
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In Appendix B, we prove that as the step size µ converges to zero, the vector z(∞) con-
verges to

As shown in (54), the MSD will not decrease to zero due to the influence of under-mod-
eling part wr . Substituting (52) into (49) and (53), we have the minimum value δm,min(∞) 
and ξex,min(∞) for the MSD and EMSE, respectively.

The aim of this paper is not to replace the model in [28] with the presented one, but 
the presented model can be used as useful supplement to the model in [28], as will be 
explained. The mean weight behavior E[ŵ(k)] of the deficient-length unconstrained 
PBFDAF has been described in [28], while the presented model describes mean the 
weight behavior E[ĥ(k)] instead. The model in [28] and the presented model are indeed 
equivalent in describing the MSE performance of the deficient-length unconstrained 
PBFDAF. However, the steady-state MSD calculated using the vector ĥ(k) is smaller 
than that obtained using the vector ŵ(k) . This is because the MSD calculated with ĥ(k) 
is independent of its initial condition ĥ(0) . Consequently, the unconstrained PBFDAFs 
exhibit better modeling capability than previously assumed. Also, in the under-modeling 
scenarios, the steady-state MSD and EMSE have nonzero lower bounds regardless of the 
step size. In contrast, for the unconstrained PBFDAFs with sufficient length, both MSD 
and EMSE tend to zero as the step size is decreased [27]. A comparison of the theoretical 
model in [28] and the proposed theoretical is summarized in Table 1.

4  Simulation results
The proposed theoretical model is verified via Monte Carlo simulations (over 1000 
independent runs). We consider a system identification scenario where the system to 
be modeled has an impulse response of length M = 15 . The adaptive filter, with a total 
length of M1 = 8 , is partitioned into two subfilters P = 2 , each of length L = 4 . The 
reference signal x(n) is either white uniform noise or an AR(15) process generated by 
applying the filter H(z) = 1/(1+ 0.3z−1 + 0.3z−7 − 0.4z−15) to white Gaussian noise. 
The white noise v(n) is scaled to achieve a signal-to-noise ratio (SNR) of 10 dB.

We study the mean convergence behavior for correlated inputs. Figure  2 shows 
the transient behavior of the mean modified weight-error vector E[h̃(k)] with a step 
size of 0.03. For clarity, the learning curves of the first six entries of the weight-error 

(54)
z(∞)µ→0 =−D−1(E[B(k)⊗I])× vec(h̃(k)wT

r )

+ (I⊗E[B(k)])× vec(wr h̃
T (k)).

Table 1 Comparison of the theoretical model in [28] and the proposed theoretical model

Mean convergence behavior Mean square convergence behavior

Theoretical model in [28]  • Steady-state solution depends on the 
initial coefficients

• Large steady-state MSD

Proposed model • Steady-state solution does not depend on 
the initial coefficients

• Smaller steady-state MSD

• For white noise input, PL+ L coefficients of 
the impulse response can be recovered

• For correlated input, a maximum of 
NP − P + 1 coefficients of the impulse 
response can be recovered
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vector E[h̃(∞)] are presented. As shown in Fig.  1, the experimental results closely 
match the predicted learning curves calculated by (23). Figure 3 presents the steady-
state modified weight-error vector E[h̃(∞)] . The theoretical predictions, calculated 
via (24), correspond well with the experimental results, and the mean weight-error 
vector E[h̃(∞)] is nonzero. This implies the modified weight vector h̃(k) converges to 
a biased solution, i.e., the deficient-length unconstrained PBFDAFs cannot converge 
to ho that consists of the first PL coefficients of unknown plant.

Figure 4 shows the recovery of the weight vector h̆ for white input. Figure 4a illus-
trates the steady-state weight vector b̂1 corresponding to the samples that lack a 
recovery weight vector. The vector b̂1 is obtained from (37). Due to the influence of 
under-modeling part, the steady-state weight vector b̂1 does not match the modeling 
part w∗ for white noise input. Figure 4b presents the vector h̆ obtained from (33) and 
(34). It is apparent that the first PL+ L coefficients of the true weight vector wo can be 
recovered for white noise input.

We demonstrate that the unknown parameter vector can be recovered when using 
the AR(15) process as input. Figure  5a suggests that the weight vector b̂1 and the 
steady-state weight vector E[ŵcn(∞)] of the constrained PBFDAFs do not match the 

Fig. 2 Transient behavior of the modified weight-error vector h̃(k)

Fig. 3 Steady-state behavior of the modified weight-error vector h̃(k)
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modeling part w∗ . The results of the constrained PBFDAFs are obtained from [28]. 
Figure 5b shows that the vector wo calculated by (38) and (39) is consistent with the 
impulse response. Figures  4 and  5 confirm that more coefficients of the unknown 
plant can be recovered using the unconstrained PBFDAFs compared to the con-
strained PBFDAFs, which is not revealed in the previous works. This is because the 
steady-state weight vector E[ĥ(∞)] is independent on the initialization of the fil-
ter coefficient and we can extract part of steady-state weight error from the vector 
E[ĥ(∞)].

We examine the mean square convergence behavior for correlated inputs. Figure 6 the 
learning curves of the MSD and EMSE. The theoretical learning curves of the MSD and 
EMSE are obtained from (50) and (51), respectively. The used step sizes are 0.03 and 0.1. 
As shown in Fig.  6, there is a good agreement between theoretically derived learning 
curve and the experimental learning curve. We also repeat this experiment using SNR = 
30 dB and obtain the very similar learning curves as that in Fig. 6, which is because the 
MSD and EMSE are dominated by the under-model part and the system noise does not 
affect the steady-state MSD and EMSE significantly in this case.

Figure 7 depicts the variation of the MSD and EMSE across a range of step sizes from 
0.003 to 0.62. The stability bound of the step size is obtained by the method introduced 
in [27]. The MSD and EMSE of the constrained version are calculated via (77) and (78) 
in [28], respectively. Specifically, the unconstrained PBFDAF shows a higher MSD but a 
lower EMSE than the constrained PBFDAF, which is consistent with the results in [28]. 

Fig. 4 Recovery of the weight vector h̆ for white inputs. a Steady-state weight vector b̂1 . b Recovered weight 
vector h̆



Page 16 of 20Luo et al. EURASIP Journal on Advances in Signal Processing         (2024) 2024:82 

Fig. 5 Recovery of the weight vector h̆ for correlated inputs. a Steady-state weight vector b̂1 . b Recovered 
weight vector wo

Fig. 6 Learning curves of the deficient-length unconstrained PBFDAFs. a MSD. b EMSE
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Figure 7a illustrates that the steady-state MSD derived from the modified weight vector 
h̃(k) is lower than that obtained from w̃(k) . This reduction in MSD is attributed to the 
steady-state MSD, and δm(∞) does not depend on the initial conditions of the adaptive 
coefficients. In exact-modeling scenarios, the steady-state MSD and EMSE of the uncon-
strained PBFDAFs decrease as the step size is reduced [29]. However, in under-modeling 
scenarios, the steady-state MSD and EMSE remain almost unchanged when the step size 
is very small due to the under-modeling part wr . Additionally, the values δm,min(∞) and 
ξex,min(∞) accurately represent the lower bounds for the steady-state MSD and EMSE, 
respectively.

5  Conclusion
This paper provided a new statistical performance analysis of the deficient-length 
unconstrained PBFDAFs. Our findings indicate that the theoretical analysis is signifi-
cantly simplified and more comprehensible compared to our previous work in [28] due 
to the utilization of the new weight vector ĥ(k) . The developed theoretical model reveals 
new properties of unconstrained PBFDAFs in under-modeling scenarios and provides 
insights into the convergence behavior of the unconstrained PBFDAFs. For instance, 
the first PL+ L coefficients of the unknown plant can be recovered using the uncon-
strained PBFDAF for white noise input, whereas the constrained PBFDAF of the same 
order can only identify the first PL entries. In certain cases, the true impulse response 
can be recovered using the unconstrained PBFDAF for correlated input. A comparison 

Fig. 7 Steady-state MSD and EMSE as a function of step size. a MSD. b EMSE
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of steady-state MSD shows that the modified weight vector yields a lower MSD than the 
original one, which indicates that the unconstrained PBFDAFs exhibit a stronger system 
modeling capability than previously assumed. The theoretical model matches the simu-
lation results well.

Appendix A Proof of E[h̃(∞)] = h̃opt

Using (17) and the definition of E[A(k)] and E[B(k)] , we have

Since the matrices Rb and E[A(k)] are invertible, the matrix αθαT is invertible. We have

Appendix B Detailed derivation of z(∞)µ→0 in (54)
Using (51), we have

Since the matrix D is invertible, we have
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