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Abstract 

Due to the advancement in biomedical technologies, to diagnose problems in peo-
ple, a number of psychological signals are extracted from patients. We should be 
able to ensure that psychological signals are not altered by adversaries and it should 
be possible to relate a patient to his/her corresponding psychological signal. As 
far as our awareness extends, none of the existing methods possess the capability 
to both identify and verify the authenticity of the ECG signals. Consequently, this paper 
introduces an innovative dual-layer data-embedding approach for electrocardiogram 
(ECG) signals, aiming to achieve both signal identification and authenticity verifica-
tion. Since file name-based signal identification is vulnerable to modifications, we 
propose a robust watermarking method which will embed patient-related details such 
as patient identification number, into the medically less-significant portion of the ECG 
signals. The proposed robust watermarking algorithm adds data into ECG signals such 
that the patient information hidden in an ECG signal can resist the filtering attack (such 
as high-pass filtering) and noise addition. This is achieved via the use of error buffers 
in the embedding algorithm. Further, modification-sensitive fragile watermarks are 
added to ECG signals. By extracting and checking the fragile watermark bits, we can 
determine whether an ECG signal is modified or not. To ensure the security of the pro-
posed mechanism, two secret keys are used. Our evaluation demonstrates the useful-
ness of the proposed system.

Keywords: ECG signal, Authenticity, Information hiding, Watermarking, Biomedical 
signal processing, Discrete cosine transform

1 Introduction
In the recent years, large amount of psychological signals are used for examining 
patients’ health. Due to the advancement of communication and the Internet tech-
nologies, these psychological signals are transmitted and shared among healthcare 
professionals to provide better health care services. Therefore, it is important to cor-
rectly link a patient’s details such as an identification number with the person’s cor-
responding psychological signal. Traditionally, a patient’s details are included in the 
meta-data of the psychological signal, which can easily be corrupted. In addition to 
this problem, it is also important to ensure the authenticity of the psychological sig-
nal. These two problems are applicable to all the physiological signals, such as elec-
trocardiogram (ECG), electroencephalogram (EEG), mechanomyogram (MMG), and 
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electrooculography (EOG); however, in this paper, we limit our attention to ECG 
signals.

Examining ECG signals is a promising way to diagnose problems related to heart. 
In a modern day healthcare environment, a massive number of ECG signals are gen-
erated every day. To provide better and real-time healthcare services, ECG signal is 
remotely monitored [1, 2]. Since ECG signals may be examined in various healthcare 
facilities, it is vital to ensure that the patient details associated with those ECG signals 
are preserved. It is also possible that the ECG signals may be modified unintention-
ally. Hence, it is necessary to make sure that the healthcare professional is accessing 
the un-altered version of the ECG signal. We believe that data-hiding is a promising 
technique to address the aforementioned requirements.

The electrical activity that takes place within the heart is represented by an ECG 
signal. A medically significant portion of a typical ECG signal is shown in Fig. 1. In an 
ECG signal, points P, Q, R, S, and T are considered to be important, together with the 
related time intervals that are popularly known as PR-segment, QRS-complex, ST-
segment, QT-interval, and PR-interval.

One of the conventional ways to relate patient details with their corresponding ECG 
signal is to include them in the file name of an ECG signal. However, filenames can be 
easily modified. To solve this problem, patient details can be included in the ECG sig-
nal itself using data-hiding techniques which are commonly referred as watermarking 
techniques [3, 4]. Watermarking techniques are primarily developed for multimedia 
contents such as an audio, image [5, 6], and video [8] to hide information (gener-
ally the copyright-related information) into the multimedia signal without noticea-
bly reducing the perceptual quality of the original multimedia signal. The majority 
of them are developed for image watermarking which handles two-dimensional data. 
Therefore, they will not satisfy the requirement for ECG data hiding. For the afore-
mentioned reason, it will also be difficult to use other health-image-related data hid-
ing mechanisms such as sonar images [7] for ECG data hiding.
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Fig. 1 A typical ECG signal that shows important points P, Q, R, S, T, and time durations QT interval, PR 
segment, and QRS segment
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Although ECG signals are also one-dimensional signals similar to audio signals, we 
cannot apply audio watermarking methods for ECG data-hiding due to the difference 
in requirements and other constrains.

In addition to relate patient details with his/her corresponding ECG signals, it 
is also important to ensure the authenticity of an ECG signal. ECG signals can be 
intentionally or unintentionally modified for various purposes such as getting a life 
insurance policy. Therefore, a healthcare professional needs to know whether an ECG 
signal is authentic or not before he/she process or examines the signal. To the best of 
our knowledge, there are very limited number of approaches proposed in the litera-
ture to check the authenticity of an ECG signal.

In this paper, we propose a new double-layer data-hiding mechanism. The proposed 
approach contains two major parts: A robust watermarking mechanism and a frag-
ile watermarking mechanism. The purpose of the robust watermarking mechanism is 
to embed patient details into the ECG signal that can withstand unintentional filter-
ing and addition of noise. Conversely, the fragile watermarking involves incorporat-
ing watermarks that exhibit high sensitivity to all types of processing, facilitating the 
location identification of any unauthorized alterations within the ECG signal. Both 
layers of watermarks are added without lowering the medical significance of the ECG 
signal.

The main contribution of the proposed mechanism can be summarized as follows:

• The paper introduces a new algorithm designed to identify specific locations within 
an ECG signal for watermark embedding, regardless of its content or whether it has 
been subjected to attacks. This means it can pinpoint regions of interest within the 
ECG signal, even if the signal has been altered or tampered with.

• The paper presents a one-of-a-kind double-layer watermarking algorithm. What’s 
remarkable about this approach is that it allows for the addition of a second layer 
of watermarking without causing interference with the watermarks added in the 
first layer. This innovation is crucial for ensuring the security and robustness of 
the watermarked ECG signals.

• The proposed watermarking mechanism in this paper has demonstrated its 
robustness against common types of attacks, such as filtering and noise addition. 
This means that the watermarked ECG signals remain intact and can be reliably 
retrieved even in the presence of such attacks, making it a valuable tool for ensur-
ing data integrity and authenticity.

• In this work, fragile watermarks are employed to identify any modifications made 
to the original ECG signals. Fragile watermarks are sensitive to any alterations, 
and their presence or absence can be used to detect whether the ECG signal has 
been tampered with or modified. This contributes to the security and trustworthi-
ness of ECG signal data.

The remainder of the paper is organized as follows. Section  2 discusses the related 
data-hiding mechanisms and their drawbacks. Section 3 presents the proposed dou-
ble-layer data-hiding mechanism. The simulation results are shown in Sects. 4, and 5 
concludes the paper.
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2  Related work
In this section, we briefly examine contemporary techniques of data hiding that have 
been formulated specifically for ECG signals.

One of the pioneering works on data-hiding techniques for ECG signals was done 
by Engin et  al. [9]. In this work, using discrete wavelet transform (DWT), an ECG 
signal is divided into eight bands. These bands are ordered according to the total aver-
age power. The DWT coefficients are modified based on a pseudo-random sequence, 
which represents the patient-related information. The embedded watermark bits are 
extracted by comparing the watermarked ECG signal with the original un-water-
marked signal in DWT domain. Therefore, this method necessitates the availability 
of the un-watermarked ECG signal, thereby falling short of the initial watermarking 
intention as there remains a need to associate patients’ information with their respec-
tive un-watermarked ECG signals. Additionally, the procedure outlined in [9] can 
only extract less than 85% of embedded watermark bits without error.

A DWT-based reversible data-hiding technique is presented in [10] for ECG sig-
nals. Firstly, using B-spline wavelet transform, QRS complex is identified. In the next 
step, watermark bits are inserted by shifting a non-QRS high-frequency wavelet coef-
ficient bit, in the Haar lifting wavelet transform domain. The primary limitation of the 
approach detailed in [10] is its potential to disrupt vital medically important features 
in an ECG signal.

In [11], Jero et al. proposed a Curvelet-based ECG signal watermarking mechanism 
that considers the quality reduction due to watermark addition at the embedding 
end. An ECG signal is split into sub-bands using Curvelet transform. Watermarks are 
embedded into higher frequency bands using quantization index modulation. The 
approach described in [11] involves the possibility of implanting watermarks within 
the region of medical significance.

Using the optimized DWT, Swierkosz and Augustyniak proposed a mechanism in 
[12] to embed watermark bits into an ECG signal. To utilize the localized nature of 
the frequency content, in [12], watermarks are added in the time–frequency domain. 
Firstly, watermark signals are converted into a spreading sequence, and then, the 
sequence is added in the suitable regions in the time–frequency domain. While this 
method safeguards the medically crucial details within the ECG signal, the water-
marks introduced through this technique lack resilience against filtering attacks.

In [13], another DWT-based approach for ECG data-hiding is presented. Firstly, a 
two-dimensional matrix is generated from an ECG signal. In the next step, QR codes 
representing patient details are obtained. QR decomposition is applied to the QR 
code. By altering the detailed coefficients, watermarks are embedded into the ECG 
signal. The primary issue with this approach lies in its dependency on the un-water-
marked ECG signal for the extraction of the watermark.

In [14], authors proposed a tampered region detection mechanism for ECG sig-
nal using reversible watermarking. In this approach, artificial neural networks 
are employed to predict certain sample values form other samples. The difference 
between the estimated value and the actual value is modified to embed watermark 
bits. The watermarks introduced through this technique exhibit sensitivity to filtering. 
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As a result, the approach presented in [14] is unsuitable for concealing patient infor-
mation within an ECG signal for the purpose of identification.

In [15], coefficient-alignment-based ECG watermarking mechanism is presented. In 
this approach, watermark bits are added in the time domain. Firstly, two group of sam-
ples are generated. The watermark bits are embedded by changing the averages of those 
groups. While the suggested method in [15] improves computational efficiency, the 
watermarks it incorporates are not robust against filtering.

In [16], authors proposed a watermarking mechanism using lead-to-lead difference of 
values in the baseline of an ECG. In this approach, the watermark data containing the 
patient information is added as noise. In [16], special attention is paid to make the added 
data mimic the actual noise characteristics. The approach presented in [16] lacks any 
form of protection against filtering attacks.

Another reversible ECG watermarking method is proposed in [17]. In [17], random 
forest regression, support vector regression and artificial neural network are anticipate 
the ECG samples and prediction error expansion technique is used to embed water-
mark bits into ECG signals. A significant limitation of this approach is that its revers-
ible watermarking technique can be leveraged by adversaries to erase the incorporated 
patient information.

In the study presented in [18], the ECG signals undergo a watermarking process for 
patient identity protection. This is achieved by employing the Adaptive Normalization 
Factor and Least Significant Bit watermarking technique to prevent any potential mix-
up between the ECG signals and the patient’s personal information. Notably, this study 
does not focus on the medically more critical segment of the ECG signal, and alterations 
are also introduced within these medically significant regions.

In [19], ECG signals are embedded with patient-specific biomedical data to ensure 
the integrity of the patient-ECG connection. Various scenarios have been experimented 
with, involving different levels of signal modification resulting from the watermarking 
process. However, a notable limitation of this approach is its susceptibility to attacks like 
filtering, which can compromise the embedded watermarks.

3  Proposed double‑layered watermarking mechanism
In this section, the proposed patient double-layer information hiding mechanism is pre-
sented. In the proposed mechanism, firstly, we embed patient’s information in a robust 
manner without compromising the medical significance of an ECG signal. The purpose 
of this mechanism is to hide patient’s information in such a manner that it will not be 
removed by any un-intentional attacks such as filtering and noise addition. Secondly, 
after robust watermarks are embedded, fragile watchmakers are added to the ECG signal 
without disturbing the already added robust watermarks and psychological information 
in the ECG signal. Only the ECG signals which are watermarked in two layers are either 
stored, shared or transmitted for medical diagnostic purposes.

Before processing an ECG signal, the fragile watermark bits are extracted to check 
whether the ECG signal underwent any modifications. If the ECG signal is unmodified, 
then the robust watermark bits are extracted to identify the patient associated with that 
ECG signal. Figure 2 shows overall structure of the proposed mechanism.
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3.1  Robust watermarking

In this subsection, the proposed robust watermarking technique is explained in detail. 
The proposed technique embeds watermark bits in the less significant region of an ECG 
signal to preserve the medical usefulness of the signal. During the ECG signal process-
ing, ECG signals are filtered using bandpass filter with the band pass cut-off frequencies 
of 0.4 and 40 Hz as a preprocessing step. Therefore, the proposed robust mechanism 
is developed to withstand the aforementioned unintentional bandpass filtering attack. 
Further, the proposed watermarking technique is designed to withstand noise addition. 
To add information to the ECG signal regardless of the signal content, we have proposed 
a novel location-finding algorithm. The experiments showed us that the location-find-
ing algorithm can find the embedded location even when the embedded ECG signal is 
exposed to attacks such as filtering and noise addition.

3.1.1  Embedding area selection

In this paper, we proposed a computationally efficient technique to find the less signifi-
cant region of an ECG signal for robust watermark embedding. Let us denote an ECG 
signal by x(n). To remove the high frequency variations, a low pass filter with the cut-off 
frequency of fl1 is applied to x(n) as follows:

where “ filtL(x(n), fl1) ” performs low-pass filtering operation on x(n) with the cut-off fre-
quency of fl1.

To identify the peak of the R-wave signal, in the next step, indices of xl(n) which are 
higher than a predefined value T are calculated as follows:

where function find(xl(n) > T1) returns the indices of elements in xl(n) that are greater 
than T1 . The threshold T1 is chosen empirically. In the next step, we find the locations of 
local maximums in xl(n) using

where localMax(xl(n)) returns the local maximums by considering the gradients of xl(n) . 
A local maximum is identified when the gradient changes from positive to a negative 
value. Then, we identify the indices of xl(n) corresponding to higher values (i.e., > T  ) 
and local maximums as follows:

where ∧ denotes the logical AND operation. In order to utilize the unique properties of 
an ECG signal, we also identify the troughs neighboring the peak values (corresponding 
to Q and S signals). To accomplish that, first we define

where T2 is an empirically chosen parameter. Similar to Eq. (3), we define

(1)xl(n) = filtL(x(n), fl1),

(2)lh(n) = find(xl(n) > T1),

(3)lmax(n) = localMax(xl(n)),

(4)l1(n) = lh(n) ∧ lmax(n),

(5)lt(n) = find(xl(n) < T2),
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where localMin(xl(n)) returns the indices of local minimums of xl(n) . A local minimum 
is identified when the gradient changes from negative to a positive value. Then, from 
Eqs. (5) and (6), a parameter l2(n) is derived as,

From (7), we can see that l2(n) contains the locations of toughs in the signal which have 
values lower than T2 . To calculate the closeness of Q and S signal troughs to the identi-
fied peak locations l1(n) , for the ith element on l1(n) , in we define

where dist(l1(i), l2(n)) , identifies and returns the distances d1 and d2 (in terms of sam-
ples) between l1(i) and the closest trough locations in l2(n) on both sides of l1(i) as 
shown in Fig. 3.

A spike location l1(i) is considered to be valid only if it satisfies

where dm is a predefined parameter chosen via experiments and function max() returns 
the maximum value. A region is considered to be suitable for watermarking df  samples 
after a valid spike location l1(i) . This is depicted in Fig. 4.

The main advantages of this region selection process can be summarized as follows:

(6)lmin(n) = localMin(xl(n)),

(7)l2(n) = lt(n) ∧ lmin(n).

(8)[d1, d2] = dist(l1(i), l2(n)),

(9)dm ≥max(d1, d2),

Fig. 3 An example d1 and d2 calculated via Eq. (9). In this example, l1(i) represents the identified peak location

Fig. 4 An example of an ECG signal with identified robust watermark embedding region
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• It can clearly identify less-significant section of an ECG signal.
• The proposed technique can accurately re-identify the region after watermark bits 

are added.
• This technique is specifically designed to identify the location even after uninten-

tional filtering attack during the watermark extraction process.
• The proposed technique can work well with ECG signals that have considerable 

amount of fluctuations in the less significant region of the watermark signal.

3.1.2  Robust patient information embedding algorithm

Firstly, patient-related data such as patient identification number is converted into a 
binary sequence wp(n).

In the next step, we consider L number of consecutive samples from the selected 
region where L denotes the segment length. We denote a segment by x′(n) . Then, DCT 
coefficients of L samples are computed. Let us denote these coefficients as D(k), which 
are defined as follows [20]:

where k = 0, 1, ..., L− 1 , and

To make the embedded watermarks robust against unintentional filtering, from D(k), we 
select D′(k) coefficients corresponding to a frequency range [fl , fh] . The purpose of this 
selection is to avoid embedding into very low and high frequency components of the 
signal.

To embed multiple watermark bits into one segment, Nf  number of fragment pairs are 
generated from D′(k) based on a secret key p. The secret key p is made out of randomly 
generated indices corresponding to D′(k) that will assist in generating 2Nf  groups of 
DCT coefficients. From these fragments, we form Nf  fragment pairs. The fragment pair 
generation process is illustrated in Fig. 5. It should be noted that only one watermark bit 
is embedded into one fragment pair. To withstand filtering attach without compromising 
the quality of the ECG signal, multiple samples are used to hide a watermark.

We denote ith fragment pair by D1
i (k) and D2

i (k) . Fragment pairs absolute valued aver-
ages are calculated as follows:

(10)D(k) = r(k)

L−1
∑

n=0

x
′(n) cos

{

π(2n+ 1)k

2L

}

r(k) =







1√
L
, if k = 0

�

2
L , if 1 ≤ k < L

(11)m1 =E(|D1
i (k)|),

(12)m2 =E(|D2
i (k)|),

(13)m =E(|[D1
i (k),D

2
i (k)]|)
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where E(·) and | · | denote averaging and absolute value operation, respectively. The 
parameter m represents the absolute valued average of the fragment pair.

Let us denote the watermarked counterparts of D1
i (k) and D2

i (k) by Y 1
i (k) and Y 2

i (k) , 
respectively. We empirically chose a constant α(> 0.1) . In the proposed approach, 
watermark bits are embedded according to the following rule.

• Embedding of watermark bit “0′′:

 If (m1 −m2) ≥ α.m , then

 Y 1
i (k) = D1

i (k)

 Y 2
i (k) = D2

i (k)

 Otherwise (i.e., If (m1 −m2) < α.m ),

 Y 1
i (k) = D1

i (k)×
(

αm+m2
m1

)

,

 Y 2
i (k) = D2

i (k).
• Embedding of watermark bit “1′′:
 If (m2 −m1) ≥ α.m , then
 Y 1

i (k) = D1
i (k)

 Y 2
i (k) = D2

i (k) Otherwise (i.e., If (m2 −m1) < α.m ),
 Y 1

i (k) = D1
i (k),

 Y 2
i (k) = D2

i (k)×
(

αm+m1
m2

)

.

After all the watermark bits are embedded, from robust watermark embedded fragments 
pairs (i.e., Y 1

i (k) and Y 2
i (k) ), the watermarked ECG signal y(n) is constructed by applying 

Inverse Discrete Cosine Transform (IDCT).

Fig. 5 Fragment pair generation from a typical ECG signal. Fragment pairs are formed using the selected DCT 
coefficients. A secret key p determines the DCT coefficients belong to a particular fragment pair
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In the next step, fragile watermarks are added to y(n). We denote the fragile watermark 
added version of y(n) as yf (n) . Fragile watermark adding mechanism is specifically designed 
to cause negligible amount of distortion to the signal. Details of the proposed fragile water-
marking technique are described in Sub-section  3.2. For the illustrative convenience, we 
assume that the y(n) ≈ yf (n) , during the robust watermark extraction phase.

It is worthwhile to mention here that only a small number of bits are necessary to embed 
the patient identification data. In other words, we only require np number of bits to denote 
2np patients. For example, 26 bits can be used to represent more than 50 million patients. 
Since we require small number of bits to identify the patients, we embed patient informa-
tion multiple times in a given ECG signal. As a result, it is always possible to link patients’ 
information with their corresponding ECG signal even if the signal is exposed to an unin-
tentional filtering or noise addition.

3.1.3  Robust patient information extraction mechanism

At the patient information extraction end, only the received patient information embedded 
signal y′(n) and the secret key p are available. Clearly, at the absence of attacks, y′(n) = y(n)

.
To extract the patient information, first the information embedded region is identified 

from the y′(n) . To perform that the embedding area selection technique described previ-
ously is utilized. It should be noted that since the proposed embedding area selection tech-
nique uses certain frequency region and the medically significant QRS complex region, it is 
able to successfully detect the embedded area with and without un-intentional attacks.

From the identified regions, using the secret key p generate the fragment pair Y ′1
i (k) and 

Y ′2
i (k) . The fragment pair Y ′1

i (k) and Y ′2
i (k) is the received counterpart of the fragment pair 

Y 1
i (k) and Y 2

i (k) , respectively.
Let us define the absolute average values of Y ′1

i (k) and Y ′2
i (k) as

The embedded watermark bits w′
p(n) are extracted by comparing m′

1 and m′
2 as follows:

After all the embedded watermark bits are extracted patients’ information can be gath-
ered using majority rule.

Let us first consider the without attack scenario. From (14) we can write

(14)m
′
1 =E(|Y ′1

i (k)|),

(15)m
′
2 =E(|Y ′2

i (k)|).

(16)w′
p(n) =

{

0, if m′
1 > m′

2
1, if Otherwise.

(17)
m

′
1 =E(|Y ′1

i (k)|),
=E(|Y 1

i (k)|),

(18)
m

′
2 =E(|Y ′2

i (k)|),
=E(|Y 2

i (k)|).
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From Eqs. (17) and (18), and the embedding rule we can easily derive

Therefore, we can successfully extract the embedded watermark bit from a watermark 
embedded DCT fragment pair.

The proposed watermarking algorithm does not use frequency coefficients which are 
removed by conventional band-pass filtering. This is taken into account when select-
ing the values for fl and fh . Therefore, the patient information hidden by the proposed 
watermarking algorithm can resist the unintentional filtering.

Let us assume that the watermark signals experience noise addition attack. We realisti-
cally assume white noise. Therefore, we can write

where |n1(k)| and |n2(k)| are components added to |Y 1
i (k)| and |Y 2

i (k)| , respectively, due 
to the addition of noise. Now, let us consider

where ǫ = E(|n1(k)|)− E(|n2(k)|) . In order to successfully extract a watermark bit, we 
require (αm+ ǫ) ≥ 0 . Due to the nature of noise, we can assume that αm > ǫ . Hence, 
we can extract the embedded watermark bits without errors even the watermark embed-
ded ECG signal is exposed to noise addition attack.

From the embedding algorithm and the discussion above, one can see that the con-
stant α is introduced to create an error buffer.

3.2  Fragile watermarking

The primary purpose of fragile watermarking is to identify whether the ECG signal is 
modified by an unauthorized person or not. Similar to robust watermarks, the fragile 
watermarks should not degrade medical significance of the ECG signal. However, unlike 
robust watermarks, fragile watermarks should be embedded into all the sections of an 
ECG signal as it is important to ensure the authenticity of the medically significant sec-
tions (such as QRS complex) of an ECG signal.

Firstly, we convert a generic healthcare data such as hospital identification number 
and convert it to a binary sequence wf (n) ∈ {0, 1} . Then, using a secret key q(n) ∈ {0, 1} 

(19)
m′

1 −m′
2 =E(|Y 1

i (k)|)− E(|Y 2
i (k)|),

≥αm,

(20)
>0,

m′
1 >m′

2

(21)|Y ′1
i (k)| =|Y 1

i (k)| + |n1(k)|,

(22)|Y ′2
i (k)| =|Y 2

i (k)| + |n2(k)|,

(23)

m′
1 −m′

2 =E(|Y 1
i (k)| + |n1(k)|)

− E(|Y 2
i (k)| + |n2(k)|),

=E(|Y 1
i (k)|)+ E(|n1(k)|)

− E(|Y 2
i (k)|)− E(|n2(k)|),

≥αm+ ǫ,
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that is made out of a random binary sequence, we generate the encrypted version of 
wf (n) using

where ⊕ denotes the logical XOR operation.
In the next step, every sample in the ECG signal y(n) is transformed into a binary 

sequence. Let us denote the Least Significant Bit (LSB) of all the samples by 
yLSB(n) ∈ {0, 1} and its watermarked counterpart by yLSBf (n) . The fragile watermark bits 
are added using the following rule:

After all the LSBs are modified, from yLSBf (n) s, fragile watermarked ECG signal yf (n) is 
constructed.

At the extraction end, from y′f (n) , the LSBs y′LSBf (n) s are generated. The signal y′f (n) 
and sequence y′LSBf (n) are the received counterparts of yLSBf (n) and yf (n) , respectively. 
An ECG signal is considered to be unaltered when y′LSBf (n) = yLSBf (n) and only the 
authentic ECG signals are used for diagnosis as well as further processing.

Since fragile watermarks are embedded into every sample in the ECG signal, these 
watermark bits are embedded into every section of the ECG signal. As a result, it is pos-
sible to identify the altered sections of an ECG signal.

From the embedding rule, we can clearly see that to embed fragile watermark bits, for 
half of the yLSBf (n) s, we do not have to do any modifications. Further, when we need to 
modify, only the LSB is modified. Therefore, the quality degradation of an ECG signal 
due to fragile watermarking is negligible.

4  Simulation results
In this section, we evaluate the performance of the proposed mechanism via simula-
tions. For the simulations, 200 randomly selected single-channel ECG signals belonging 
to 20 different people are used. Each ECG signal has an approximate duration of 20 min, 
and all the ECG signals are sampled at a rate of 128 Hz. The simulations are performed 
using MATLAB in an HP workstation with Intel Core i7-4700 MQ processor, 16 GB ran-
dom access memory, and Windows 10 operating system.

The embedding rate is 130 bits/s. This includes fragile watermarking of 128 bits/s and 
robust watermarking of 2 bits/s. It is noteworthy to mention here that we do not require 
higher embedding capacity as we just need to include the patient information into the 
ECG signal.

4.1  Evaluation of the proposed robust watermarking mechanism

To evaluate the performance of the proposed robust watermarking mechanism, in the 
simulations, we used fl1 = 20Hz , fl = 8Hz , fh = 35Hz , T1 = 4000 , T2 = −100 , dm = 5 , 
df = 5 and α = 0.8 , unless mentioned otherwise.

(24)w′
f (n) = wf (n)⊕ q(n),

(25)yLSBf (n) =
{

0, if wf (n) = 0
1, if wf (n) = 1
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Figure 6 shows an example robust watermarked ECG signal together with the origi-
nal ECG signal. From Fig. 6, we can see that the patient information addition does not 
modify the perceptually significant sections of the ECG signal.

In the first section of our simulations, we evaluate the robustness of the proposed robust 
watermarking mechanism in terms of robustness. To objectively measure the robustness, 
we define Bit-Error-Rate (BER) as follows:

In Table 1, we compare the BERs of the proposed robust watermarking mechanism for 
all the 20 subjects under different scenarios. Across all the subjects, proposed mecha-
nism can extract all the embedded watermark bits without any errors. Typically, ECG 
signals are pre-processed by applying low-pass filter with a cut-off frequency of 40 
Hz, and high-pass filter with a cut-off frequency of 0.3 Hz. From Table  1, we can see 
that proposed mechanism can extract watermark bits with BERs less than 0.04%. Since 
patients’ information is embedded multiple time, we can successfully extract the embed-
ded patients’ information via majority rule.

4.2  Sensitivity analysis

It is important to examine how sensitive the method is to parameters [21] and [22]. In the 
propose approach when we changed the frequency range, we observed that the medically 
significant information in an ECG signal could be affected. Therefore, we fix the frequency 
range.

The main parameter that affects the quality of the information embedded ECG signal is α . 
This is because the value of α is directly proportional to the error buffer size for a give frag-
ment pair. Therefore, to find out of the effect of α in the quality of the watermarked ECG 
signal, in the simulations, we used the Peak-Signal-to-Noise-Ratio (PSNR) which is defined 
as:

BER =
(

No. of incorrectly extracted watermarks

No. of watermarks embedded

)

× 100%.

Fig. 6 An example ECG signal is plotted against amplitude and samples. The solid lines and dashed lines 
represent ECG signals before and after robust watermarks are added
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where x2p is the peak signal value and MSE denotes the means square error between the 
original signal and the signal with watermark/noise. We evaluated PSNR of the proposed 
mechanism for different values of α in Table 2. In Table 2, PSNR1 and PSNR2 denote the 
PSNR values before and after fragile watermarks are added.

Table  2 shows how the parameter α influences the quality of the ECG signal meas-
ure in terms of PSNR values when signal and double layer watermarks are added to the 

(26)PNR = 10× log10

(

x2p

MSE

)

,

Table 1 BERs when band-pass filter with cut-off frequencies [0.3 Hz, 40 Hz], [0.3 Hz, 38 Hz], [0.3 Hz, 
36 Hz], and [0.3 Hz, 34 Hz] are applied

Signal No. BER (%)

No filtering [0.3–40] Hz [0.3–38] Hz [0.3–36] Hz [0.3–34] Hz

1 0 0.02 0.03 0.06 0.45

2 0 0.01 0.02 0.18 1.02

3 0 0.01 0.04 0.16 1.25

4 0 0 0.01 0 2.48

5 0 0.01 0.03 0.34 2.61

6 0 0.02 0.03 0.15 2.01

7 0 0.01 0.05 0.48 3.81

8 0 0 0.03 0.64 2.17

9 0 0.01 0.04 0.57 2.61

10 0 0.02 0.03 0.7 3.15

11 0 0.02 0.03 0.48 3.48

12 0 0.01 0.04 0.31 3.19

13 0 0.03 0.04 0.48 3.13

14 0 0 0.03 0.42 2.94

15 0 0.01 0.04 0.53 2.17

16 0 0.01 0.03 0.21 3.78

17 0 0.01 0.08 0.47 2.8

18 0 0.02 0.03 0.29 3.14

19 0 0 0.04 0.48 2.7

20 0 0.02 0.03 0.18 2.44

Table 2 Average PSNR1 and PSNR2 values of the proposed method against varying α values

α PSNR1 (dB) PSNR2 (dB)

0.20 53.30 53.20

0.40 52.22 52.13

0.60 50.20 50.14

0.80 50.27 50.22

1.00 49.41 49.37

1.20 48.62 48.59

1.40 47.87 47.85

1.60 47.17 47.16

1.80 46.51 46.50

2.00 45.91 45.90
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ECG signal. Using Table IV, one can choose the α value based on the specific applica-
tion needs. From Table 2, one can see that PSNR values decrease with increasing values 
of α , as expected. Moreover, closeness of the PSNR1 and PSNR2 values shows that the 
addition of fragile watermarks does not have any significant impact on the quality of the 
watermarked ECG signals. It should be highlighted that even though PSNR increases 
with α , regardless of the value of α , no robust watermarks are embedded into the medi-
cally significant portion of the ECG signal.

4.3  Robustness analysis

To assess the proposed robust watermarking technique under severe filtering, we 
applied band-pass filter with cut-off frequencies of [0.3 Hz, 38 Hz], [0.3 Hz, 36 Hz], and 
[0.3 Hz, 34 Hz]. As expected, BER increases with the severity of the attack. However, the 
proposed mechanism can achieve BERs of less than 4% under all the considered filtering 
attacks.

We also compare the robustness of the proposed mechanism against two recently pub-
lished approaches presented in [13] and [15]. Table 3 provides BERs of all three methods 
under band-pass filtering with cut-off frequencies 0.3 Hz, 40 Hz], [0.3 Hz, 38 Hz], [0.3 
Hz, 36 Hz], and [0.3 Hz, 34 Hz]. From Table 3, we can clearly see that all three methods 
can extract the watermark bits where there is no filtering applied. However, the methods 
in [13] and [15] completely fail under all the considered filtering attacks as in most cases 
their BERs are closer to the chance level of 50%. Across all the considered attacks the 
proposed method’s BER values are less than 3%.

To make sure we performed a fair comparison, we also compared the PSNR of the pro-
posed mechanism with methods in [13, 15, 18] and [19]. We also made the embedding 
capacities of other methods similar to the proposed method. Results of the compari-
sons are presented in Table 4. From Table 4, we can observe that the proposed method 
obtains a higher PSNR value compared to the methods in [13, 15, 18] and [19].

In addition to the filtering, we also evaluate the robustness of the proposed method 
against noise addition. We calculate the BERs of the proposed method when white 
Gaussian noise is added to the watermarked signal. Table 5 shows the BERs when the 
SNR values are 20 dB, 15 dB, 10 dB, 5 dB, 0 dB, and -5 dB. We can see from Table 5 that 
the proposed robust mechanism is extremely robust to the noise addition. For ECG sig-
nals belong to all the 20 subjects, the proposed method achieves 0% BERs when SNR 

Table 3 Average BERs of the proposed method with the methods in [13, 15, 18] and [19], when 
band-pass filter with different cut-off frequencies are applied

Band-pass 
frequencies (Hz)

BER (%)

Method in [13] Method in [15] Method in [18] Method in [19] Proposed 
method

No filtering 0.00 0.00 0.00 0.00 0.00

0.3-40 44.27 36.74 32.63 35.72 0.012

0.3-38 48.61 34.43 35.14 37.64 0.035

0.3-36 45.34 37.49 41.64 41.94 0.357

0.3-34 49.71 45.62 43.17 42.18 2.57
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values are equal to 5dB or above. As anticipated, the BERs increase with the amount of 
noise addition. However, the proposed mechanism achieves BERs less than 0.2% across 
all amounts of noise additions.

4.4  Evaluation of the proposed fragile watermarking mechanism

As mentioned previously, the purpose of the proposed fragile watermarking is to 
assist the detection of any unauthorized modification of the ECG signal. As a result, 
we embedded watermark bits throughout the entire ECG signal. Hence, it is impor-
tant to ensure that the medical usefulness of the ECG signal is preserved after the 
addition of the Fragile watermarks.

Table 4 Average PSNR values of the methods in [13, 15, 18, 19] and the proposed method when all 
the methods have similar embedding capacity

Methods PSNR (dB)

[13] 48.7412

[15] 24.3187

[18] 47.9427

[19] 46.1746

Proposed 50.22

Table 5 Average BERs of the proposed method, when different amounts of noise are applied to the 
watermarked ECG signal

Signal No. BER (%)

SNR=20 dB SNR=15 dB SNR=10 dB SNR=5 dB SNR=0dB SNR=-5 dB

1 0 0 0 0 0 0

2 0 0 0 0 0.03 0.03

3 0 0 0 0 0 0

4 0 0 0 0 0.1 0.11

5 0 0 0 0 0.022 0.41

6 0 0 0 0 0 0

7 0 0 0 0 0 0.01

8 0 0 0 0 0.01 0.03

9 0 0 0 0 0.01 0.02

10 0 0 0 0 0.01 0.01

11 0 0 0 0 0 0.01

12 0 0 0 0 0 0

13 0 0 0 0 0.09 0.18

14 0 0 0 0 0 0

15 0 0 0 0 0 0.02

16 0 0 0 0 0.03 0.14

17 0 0 0 0 0.15 0.18

18 0 0 0 0 0.07 0.16

19 0 0 0 0 0 0

20 0 0 0 0 0.02 0.024
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Figure  7 shows a randomly selected ECG signals before and after fragile water-
marking. From Fig. 7, we can clearly see that the ECG signals before and after fragile 
watermarks are added look near identical. Therefore, we can conclude that the fragile 
watermarking does not affect the previously embed robust watermarks and do not 
degrade the medical significance of the ECG signal.

To quantitatively asses the quality of the ECG signals before and after fragile water-
mark embedding across different ECG signal, we evaluate the PSNR values which are 
presented in Table 6. From Table 6, it can be seen that PSNR values before (PSNR1) and 

Fig. 7 A randomly selected real-world ECG signals is plotted against amplitude and samples. The solid lines 
and dashed lines represent ECG signals before and after fragile watermarks are added

Table 6 PSNR values of the proposed method after only robust watermark bits are added (denoted 
by PSNR1) and after both robust and fragile watermark bits are added (denoted by PSNR2)

Signal No. PSNR1 (dB) PSNR2 (dB)

1 51.426 51.413

2 49.843 49.784

3 50.147 50.122

4 48.814 48.807

5 51.343 51.329

6 48.671 48.663

7 50.144 50.127

8 49.768 49.745

9 50.414 50.398

10 48.976 48.718

11 51.261 51.242

12 50.312 50.304

13 49.67 49.653

14 50.786 50.764

15 51.122 51.114

16 50.537 50.521

17 49.687 49.658

18 50.25 50.241

19 51.043 51.024

20 50.241 50.228
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after (PSNR2) adding fragile watermarks are extremely closer to each other. This implies 
that addition of fragile watermark bits has a negligible impact on the quality of the ECG 
signals.

The primary requirements of fragile watermarks are error-free detection when there 
is no modification and vulnerability to any form of modification. To experimentally 
verify this, we calculated the BERs with and without filtering attacks. Table 7 shows 
the BERs when there is no filtering, and band-pass filtering with cut-off frequencies 
[0.3 Hz, 40 Hz], [0.3 Hz, 45 Hz], [0.3 Hz, 50 Hz], [0.3 Hz, 55 Hz], and [0.3 Hz, 60 Hz]. 
From Table 7, it is evident that we can extract all the embedded fragile watermark bits 
in the absence of filtering (i.e., without any processing) and fragile watermarks are 
completely disturbed when there is a filtering attacks. We can come to this conclusion 
because when fragile watermark bits are exposed to the filtering attacks the BERs are 
very closer to the chance level of 50%. Therefore, using the proposed fragile water-
marking technique we can identify the modified regions of an ECG signal.

4.5  Summary of comparison with other methods

In this section, we summarize the performance of the proposed method with related 
resent methods in [13, 15–18] and [19] with the proposed approach. The review pre-
sented in this paper shows that the proposed method has all essential features and the 

Table 7 Fragile watermark BERs of the proposed method, when band-pass filter with cut-off 
frequencies [0.3 Hz, 40 Hz], [0.3 Hz, 45 Hz], [0.3 Hz, 50 Hz], [0.3 Hz, 55 Hz], and [0.3 Hz, 60 Hz] are 
applied

Signal No. BER (%)

No filtering [0.3–40] Hz [0.3–45] Hz [0.3–50] Hz [0.3–55] Hz [0.3–60] Hz

1 0 49.83 50.17 50.05 50.16 50.19

2 0 49.99 49.9 49.71 50.12 50.11

3 0 50.21 50.12 49.97 50.11 49.82

4 0 49.75 49.88 50.01 49.89 50.07

5 0 50.11 49.79 49.86 49.91 49.95

6 0 50.24 50.12 50.16 50.86 49.87

7 0 49.94 49.87 49.91 49.9 49.93

8 0 49.97 50.11 49.9 50.27 50.07

9 0 50.08 49.78 50.18 50.16 50.09

10 0 49.96 49.96 49.97 50.08 49.79

11 0 50.13 50.07 50.2 49.86 50.16

12 0 49.77 49.85 49.95 50.15 49.94

13 0 49.86 50.16 50.09 49.7 50.03

14 0 50.13 49.94 50.17 50.17 49.86

15 0 50.04 50.07 49.95 49.85 50.04

16 0 49.82 49.75 50.14 50.04 49.91

17 0 49.96 49.85 49.91 49.97 49.82

18 0 50.17 50.2 50.07 49.83 50.18

19 0 50.09 49.87 49.88 50.14 49.92

20 0 50.18 50.17 49.86 50.16 49.9
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other methods cannot detect small changes to an ECG signal and they are not robust 
to filtering attacks.

In addition, as previously shown in Tables 3 and 4, the proposed methods outper-
form other methods in terms of robustness while maintaining better signal quality.

To the best of our knowledge, there is no ECG watermarking or other mechanism 
that can simultaneously detect any changes to any part of the ECG signal and add 
patient information in a robust manner without affecting the medical usefulness of 
the ECG signal.

5  Conclusion
In this paper, a novel double-layer data-hiding mechanism is presented. The proposed 
mechanism not only hides patient information into an ECG signal but also helps ECG 
signal modification detection.

By considering the unique characteristics of QRS complex region of an ECG signal, an 
algorithm is proposed to identify the medically less significant regions of an ECG signal. 
The embedding region identification mechanism is specifically designed to ensure re-
identification of the region after watermarks are added. Further, the region identification 
mechanism can withstand unintentional filtering and noise addition. A new algorithm 
is proposed for robust watermarking in DCT domain. The proposed robust watermark-
ing algorithm embeds watermarks by changing the relationship between certain DCT 
coefficients. The DCT coefficients are selected using a secret key to ensure the security. 
We have theoretically shown and experimentally verified that the robust watermarks 
can resist unintentional filtering and noise addition. This is mainly achieved through the 
introduction of an error buffer during the embedding process and careful selection of 
the DCT coefficients. Experimental results show the superior performance of the pro-
posed robust watermarking method in terms of robustness and quality compared to the 
recent ECG watermarking methods presented in [13] and [15].

In the proposed data-hiding mechanism, fragile watermark bits are added after 
robust watermarks are embedded. At the receiver end, firstly, fragile watermark bits are 
extracted to determine whether the ECG signal underwent any modification or not. To 
accomplish this, modification-sensitive fragile watermark bits are added throughout the 
entire ECG signal. We have shown in the paper that the addition of fragile watermarks 
has negligible effect on the quality of the ECG signal.

Currently, all the ECG signals are treated by the same algorithm. The experimental 
results show that the proposed approach works well across all the ECG signals consid-
ered in terms of both quality (reflected by PSNR) and robustness (assessed in terms of 
BER). While this is a strength of the proposed algorithm, the embedding rate may need 
to be improved when there is a need for large amount of data to be embedded. To fur-
ther enhance the embedding rate, accuracy and quality of the ECG signals, more specific 
algorithms can be developed after classifying the ECG signals using mechanism such as 
the one presented in [23]. This will be our future work.
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