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1  Introduction
The rapid development of radio and related technologies in aviation communications 
has greatly improved air transportation safety, but many challenges remain. According 
to the International Civil Aviation Organization (ICAO), civil aircraft go through five 
scheduling stages during air traffic control procedures: tower control, approach con-
trol, area control, approach control, and tower control. During the tower control and 
approach control stages, the safe use of non-directional beacons, very high frequency 
(VHF) omnidirectional beacons, rangefinders, and instrument landing systems is crucial 
for civil aviation flight safety, directly affecting passenger safety. The frequency security 
of VHF omnidirectional beacons is particularly threatened by radio interference from 
the adjacent frequency modulation (FM) broadcast band [1, 2]. Radio interference refers 
to unwanted energy from emissions, radiation, induction, or a combination that affects 
radio communication system reception, reducing performance or making the signal 
unreceivable. Most interference is caused by illegal broadcasting, irregular installation 
of radio transmission antennas, and radio transmitting stations not meeting standards, 
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leading to interference with the civil aviation communication band [3, 4]. Interfering sig-
nals pose a challenge to radio regulation [5–7].

In the event of radio interference during civil aviation flights, the traditional method 
involves the civil aviation department submitting a complaint to the radio manage-
ment department. This is followed by the opinions of the monitoring station, frequency 
and station section, and law enforcement inspection section. Finally, the relevant radio 
monitoring station organizes technical forces to resolve the issue. This process typically 
includes large-scale road tests, air exclusion [8], and other methods. However, the lack of 
information on flight status and the electromagnetic environment often results in high 
costs and prolonged troubleshooting, which may cause optimal monitoring opportuni-
ties to be missed. Scholars have proposed solutions such as antenna isolation, optimiz-
ing filters, attaching anti-jamming devices [9], and implementing policy measures [10] to 
address these issues.

We propose a novel method for monitoring abnormal signals and identifying interfer-
ence sources in aviation radio communication using real-time digital sweep spectrum. 
First, we extract signals from the monitored frequency band, then determine abnormal 
signals in the aviation frequency band, and finally identify interference source signals. 
Experiments conducted at several monitoring locations in a specific airfield confirmed 
the feasibility of the proposed method. The main contributions of this study are as 
follows:

•	 Adaptive signal extraction: We utilize cubic polynomial fitting to determine the dis-
criminant between signal and noise in real time, which is then used to determine an 
adaptive threshold line for separating the signals from the noise.

•	 Abnormal signal identification: Within the civil aviation communication band, we 
identify abnormal signal bands by evaluating the signal residence time after adaptive 
signal extraction.

•	 Interference source identification: We use the Pearson correlation coefficient to evalu-
ate the correlation between the abnormal signal and other signals to determine the 
interference source of the abnormal signal.

2 � Spectrum management and abnormal detection
With the rise of smart terminals and the launch of various ultra-broadband services, 
radio spectrum resource management faces serious challenges like scarce spectrum 
resources, low utilization rates, and the abuse of illegal stations. Recent research aims 
to accurately describe the utilization of spectrum resources using the spectrum map. 
This technique projects the received signal strength onto the geographic coordinates of 
the area of interest, providing a clear picture of the signal strength distribution in space. 
Currently, spectrum map construction schemes are categorized into two main classes: 
spatial correlation-based and joint frequency-space correlation-based. The former uses 
the spatial correlation of spectral signals, while the latter considers both joint frequency 
and spatial correlation to assess spectral signal strength for constructing the spectrum 
map [11–13]. Monitoring utilization can effectively address the problem of spectrum 
resource allocation and utilization [14–16]. However, this does not completely solve the 
problem of interference from illegal stations to normal station signals in radio spectrum 
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resource management. This issue is particularly prominent in civil aviation communica-
tions, where the security of radio communications between towers and pilots is crucial.

In the tower control and approach control phases of civil aviation, the Air Traffic Con-
troller (ATC) uses the civil aviation communication band (108MHz∼137MHz) to com-
municate with pilots. During our radio monitoring near several airports, we found more 
illegal broadcasts in the adjacent FM radio band (87MHz∼108MHz). These illegal broad-
casting devices do not meet the relevant transceiver entry specifications, and the sig-
nals they emit may cause issues like intermodulation and spurious signals. These issues 
can propagate into the civil aviation communication band, interfering with the normal 
operation of air traffic control [3, 4]. Current solutions mainly rely on manual listen-
ing by professional technicians to track abnormal signals. However, this approach faces 
challenges such as difficulty in manual monitoring, delayed response, and high opera-
tional costs. To address the problem of monitoring abnormal signals and illegal stations 
in the civil aviation communication band, we propose a signal correlation-based method 
for monitoring abnormal signals and identifying interference sources. The method con-
sists of three key steps: signal extraction for the FM radio band and the civil aviation 
communication band (refer to Sect. 3), monitoring abnormal signals in the civil aviation 
communication band (refer to Sect. 4), and identifying the sources of interference sig-
nals (refer to Sect. 5). Through this approach, we aim to improve monitoring efficiency 
and reduce dependence on manual listening, enabling timely and accurate detection and 
response to abnormal signals and illegal stations in the civil aviation communications 
frequency band.

3 � Signal extraction
In the digital panoramic scanning spectrum of the dedicated civil aviation radio band 
and its neighboring FM broadcasting band, the signal band has a stable higher wave-
form, while the noise has a random lower waveform [17–20]. To enable real-time moni-
toring and early warning of abnormal spectrum activity in the aviation communication 
band, blind source signal extraction is essential. We propose an algorithm based on cubic 
polynomial fitting to obtain an adaptive threshold line that separates the signal and noise 
waveforms of the current spectrum frame and performs signal-to-noise separation for 
subsequent spectrum frames. This approach aids in identifying interference sources.

Specifically, signal extraction involves four steps: 1) Perform data preprocessing on the 
digitally scanned spectral data to obtain the Mean Spectrum (MS) frames. 2) Obtain two 
feature vectors of the mean spectra. 3) Compute a cubic polynomial fitting on the fea-
ture vectors to derive the discriminant value. 4) Use the discriminant value to obtain the 
signal-to-noise separation threshold line and extract the signal of the monitoring band.

3.1 � Data preprocessing

We continuously acquire radio digital panoramic signal data by uninterrupted pano-
ramic scanning (PSCAN) of the FM broadcast band (87MHz∼108MHz) and the aviation 
communication band (108MHz∼137MHz) with a radio digital receiver. A frame of radio 
digital panoramic scanning signal data is, at time t, a sequence of level values for all fre-
quency points, the frequency points are denoted as f t = {f t

1
, f t
2
, ..., f tm} , where m repre-

sents the number of frequency points. At a certain moment, the sequence composed of 
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the level values of each frequency point can be expressed as sig = {lf t
1
, lf t

2
, ..., lf ti

, ..., lf tm} , 
where lf ti  denotes the level value of the signal at the i-th frequency point. All the spectral 
signal frames in the time domain are acquired without interruption, and the consecutive 
n frames of spectral data are represented as Mn = {sig1, sig2, ..., sigi, ..., sign} . sigi repre-
sents a moment of panoramic scanning data. Our collected data comes from the R&S 
EM100 radio digital receiver.

Due to the influence of the complex electromagnetic environment on the monitor-
ing band, i.e., the ‘burr phenomenon’ of the spectrum, it is necessary to pre-process the 
spectrum data. Whenever n consecutive frames of spectrum data are acquired, as Fig. 1, 
time-domain smoothing is performed to obtain a frame of Time-domain Mean Spec-
trum (TMS), i.e., the mean of the n level values of each frequency point is taken as the 
value of the corresponding frequency point in TMS. Then, a one-dimensional smooth 
convolution is performed on the TMS, where the convolution kernel is [ 1

4
,
2

4
,
1

4
] , to 

obtain a frame of Mean Spectrum (MS) [21]. The spectrum data acquisition window size 
n is related to the performance of the signal acquisition equipment. For the R &S EM100 
digital receiver, we set n = 10 . When the window size is small, the mean spectrum strug-
gles to filter out spectral perturbations caused by environmental abnormalities. Con-
versely, when the window size is large, it becomes challenging to accurately characterize 
short-time local signal features.

3.2 � Obtaining feature vectors

The radio digital swept spectrum consists of a signal waveform and a noise waveform, each 
with a left rising edge and a right falling edge. The waveform height reflects the intensity of 
the spectrum data level values. By analyzing the characteristics of the radio digital sweep 
spectrum data, we know that the signal waveform presents a stable, higher waveform, while 
the noise shows a lower waveform with irregular changes. There is a discriminating value 
between their waveform heights, with heights lower than this value being noise waveforms. 
Finding this discriminant value effectively separates the signal from the noise in the spec-
tral data frame. To better characterize the spectral data frames, we first obtain the heights 
of the left and right edges of all waveforms based on the level values of the digitally swept 

Fig. 1  Smooth process. The figure shows the TMS and MS computed from n consecutive randomly selected 
frames on the 87MHz∼137MHz frequency band.[A, B]  is the TMS obtained after time-domain smoothing, 
and [C, D] is the MS obtained by convolutional smoothing of the TMS
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spectra. These are then quantized into two feature vectors. These two sets of feature vectors 
are used to find the discriminating values between signal and noise waveforms.

In MS, peaks and troughs are defined as follows: the frequency point in the middle of a 
local maximum or multiple maximums is a peak, and the frequency point in the middle of 
a local minimum or multiple minimums is a trough. The level value of the adjacent peak is 
greater than the level value of the trough.

The left rising edge height ( hL ) and right falling edge height ( hR ) are defined as follows: 
the difference between a peak and its adjacent left trough forms the left rising edge height 
array ( HL ). The difference between a peak and its adjacent right trough forms the right fall-
ing edge height array ( HR ). HL and HR are one-dimensional arrays with all positive values. 
These two vectors are the digital sweep feature vectors of the current MS frame.

3.3 � Calculate the discriminating value

Since the left rising edge and right falling edge in the spectrum waveform may be affected 
by nearby waveforms, we need to calculate the discriminant values for the left and right 
using HL and HR , respectively. To adaptively obtain the difference between the signal 
and noise waveforms, we perform a cubic polynomial fitting [22] on the two arrays after 
sorting them in ascending order ( h′

L and h′
R ). This gives us a discriminant value for judg-

ing the difference between the signal and noise waveforms. Specifically, as Fig. 2, for the 
sorted left rising edge array, there is a noticeable change in intensity between the wave-
form with smaller energy and the waveform with larger energy. We fit the h′

L to obtain 
FL = a× x3 + b× x2 + c × x + d . If � > 0 , where � = b2 − 3× a× c , the stationary 
point ILmin of FL is calculated, where

If � ≤ 0 , ILmin is the point in FL with slope 0, find the height in h′
L that corresponds to 

Lmin as the left discriminant, where

As Fig.  2, � > 0 , ILmin=81, the left discriminant value hLnoise = h
′
L(I

L
min) = 6 , and 

the same procedure may be easily adapted to obtain the right discriminant value 

(1)ILmin = ⌊
√
�− b

3× a
⌋

(2)ILmin = ⌊
−b

3× a
⌋

Fig. 2  Ascending sort and Fitting. The horizontal coordinate is the vector index. The vertical coordinate is the 
vector value, which corresponds to the difference (Height) of the level value directly between the crest and 
the trough
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hRnoise = h
′
R(I

R
min) = 6 , and the final discriminant value hnoise = 6 is obtained by taking 

the average value of the hLnoise and hRnoise by comprehensive consideration.

3.4 � Obtaining the signal–noise separation threshold line

The calculated hnoise represents the intensity of the mutation level for all waveforms in 
the monitoring band. We obtain a frame of signal-to-noise separation threshold line by 
scaling the MS equally and use it to extract signals for the subsequent n = 10 consecu-
tive frames of spectral data.

Our approach is that, for any waveform, the frequency points between its left trough 
and peak, and the frequency points between its right trough and peak, are scaled sepa-
rately. Specifically, for any waveform in an MS, all frequency points are scaled equally 
based on the percentage of the level value of that frequency point in the correspond-
ing left rising edge or right falling edge (including the peaks and excluding the troughs), 
based on the line connecting the two troughs in this waveform.

For the frequency points between the peak and the adjacent left trough of any wave-
form, the scale equation is

For the frequency points between the peak and the adjacent right trough of any wave-
form, the scale equation is

where, S(Lki , hnoise) and S(Rki , hnoise) are the scaling term, O(ki) is the offset term, Lk1 
is the level value of the frequency point fk1 at the left trough, Lk2 is the level value of 
the frequency point fk2 at the right trough, fki is a frequency point of that waveform, 
ki ∈ [k1 + 1, ..., k2 − 1] , Lki and Rki are the level value of the frequency point fki cor-
responding to the left rising edge or the right falling edge. The scaling term is used to 
obtain the relative level value of the threshold line by scaling hnoise equiproportionally 
for the intensity of the level value of the frequency point in the waveform in which it is 
located. The offset term corrects the scaled level value by using the line connecting the 
left and right troughs of the corresponding waveform as the baseline.

The signal–noise separation threshold line is obtained by scaling the MS using the dis-
criminating value hnoise , which is calculated by evaluating the intensity of the mutation 
level of n consecutive frames of spectrum data. The scaling equations 3 and 4 substan-
tially suppress the level values of the signal band, while the noise band level values are 
not suppressed. This allows the threshold line to perform signal extraction for the sub-
sequent n frames of the spectrum. As Fig.  3, using an example of an electromagnetic 

(3)

MS(fki , Lki) = S(Lki , hnoise)+ O(ki)

=
(

Lki − Lk1
hL

)

× hnoise

+
[(

Lk2 − Lk1
k2 − k1

)

× (ki − k1)+ Lk1

]

(4)

MS(fki ,Rki) = S(Rki , hnoise)+ O(ki)

=
(

Rki − Lk1
hR

)

× hnoise

+
[(

Lk2 − Lk1
k2 − k1

)

× (ki − k1)+ Lk1

]
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environment with many abnormal signals in the aviation communication band, the 
subsequent frames of the collected spectrum are compared with the threshold line. The 
band where the level value of the corresponding frequency point exceeds the threshold 
line is identified as a signal band.

4 � Abnormal signal monitoring
During the tower control and approach control phases of the air traffic control process, 
the Air Traffic Controller (ATC) communicates with the pilot via radio using half-duplex 
communication. High-quality audio is essential to ensure the control process is carried 
out safely. However, abnormal FM broadcasts or air traffic signals can generate radio 
interference, leading to deterioration of signal reception, information errors or loss, or 
even blocking communication.

To distinguish abnormal signals from normal ones in the aviation communication 
band, we analyzed the operating characteristics of civil aviation communication services. 
In the professional field, standard terms are concise, easy to understand, and effective 
in avoiding ambiguity. They are the most direct and effective tool for communication 
between professionals. We continuously observed the communication signals between 
ATC and the pilot, combining this with the special call sign terminology assigned by the 
International Civil Aviation Organization (ICAO). We concluded that the dwell time of 
a single voice communication signal between ATC and the pilot via radio is usually less 
than 5 s. Therefore, we continuously monitor the spectrum data and signal extraction in 
the VHF band from 87MHz to 137MHz. When a signal is acquired, a Signal Dwell Time 
Listener (SL) is set at the location of the corresponding signal band, and the monitor-
ing cycle of this SL will work until the signal disappears. The SL uses a multi-threaded 

Fig. 3  Threshold line. A threshold line is obtained from the previous n frames of spectral data, and 
signal-to-noise separation is performed on the current n frames of spectral data. This image gives a 
visualization of the current frame in relation to the threshold line
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concurrency technique. When the signal dwell time is less than 5 s, it is determined to 
be a normal communication signal; otherwise, it is an abnormal signal.

Since the signal dwell time listener depends on the result of the presence or absence of 
the signal obtained from the signal extraction step, errors in signal dwell time discrimi-
nation can occur due to the misidentification of a few spectral frames. While the num-
ber of misidentified or missed signals during periods of dense signal occurrence is small, 
it affects the overall residence time discrimination of the signals.

We employ morphological closure operations [23] on binary images to address errors 
caused by complex electromagnetic environments [24] during signal extraction. For 
binary images, the morphological closure operation is a method based on binary infor-
mation in an image with pixel values of 0 or 1. This operation adjusts and changes the 
connection state of elements in a matrix through a combination of expansion and ero-
sion operations. By alternately applying erosion and expansion, morphological closure 
operations can smooth objects in a binary image while preserving their overall shape. 
This process helps remove noise and connect neighboring regions.

As Fig.  4, 10 windows (100 frames of the spectrum) are used as Signal Dwell Time 
Listening Windows (SLW). A two-dimensional matrix storing binary data represents 
the result of signal–noise separation, where 0 indicates noise and 1 indicates a signal. 
A 3× 3 convolutional kernel is used to perform the morphological closing operation 
[25] on SLW. This operation addresses signal recognition errors caused by the complex 
electromagnetic spectrum environment from a macroscopic perspective, making the 
judgment of signal residence time more accurate. The dwell time of each signal is then 
judged separately, and any signal band with a dwell time of more than 5 s is marked as an 
abnormal signal.

5 � Interference source identification
Abnormal signals can be classified as those directly generated by a transmitter or 
those indirectly generated and falling into the aviation communication band, affect-
ing normal communication. Based on abnormal signal monitoring, we further iden-
tify the frequency band of the interference source signal for indirectly generated 

Fig. 4  Morphological closing. The red fill is the wrong signal extraction, the right matrix is the result after and 
the morphological closing operation repair
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abnormal signals. Abnormal signals for which the source of interference cannot be 
found are considered to be directly generated.

The abnormal signal monitoring phase requires identifying all abnormal sig-
nal bands to provide information for subsequent interference source identification. 
Abnormal signals are unwanted energy generated by other signals that are emitted, 
radiated, induced, or intermodulated, degrading reception performance or preventing 
the reception of the target signal. Our goal is to identify the sources of interference 
for these abnormal signals.

As Fig. 5, the abnormal signal represents the portion of the interference source sig-
nal that leaks into other frequency bands. Typically, the level values of the interfer-
ence source signal and the abnormal signal have a proportional relationship, and there 
is some degree of synchronization between the interference source and the corre-
sponding frequency point of the interfered signal [26]. In other words, in a panoramic 
scanning spectral signal frame, the abnormal signal is not related to the intensity of 

Fig. 5  Synergistic relationship. (1-5) is an interference source signal spectrum at the time of [T1-T5], ( 1
′ −5

′
 ) 

is an abnormal signal spectrum at the time of [T1-T5], and the level values of the abnormal signal and the 
interference source signal for the frequency points shows a trend of synchronous change. The correlation 
coefficients for the corresponding frequency points are [−0.17, 0.17, 0.57, 0.61, 0.78, 0.42, 0.91, 0.25] , with an 
average correlation coefficient of 0.44. The two signals show a high degree of correlation
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the interference source signal’s level value but only to the degree of synchronization 
of the change in signal level values.

When an abnormal signal is detected, we search for its interference source in the 
monitoring band by assessing the correlation between the abnormal signal and other 
signals (excluding the abnormal signal itself ). The signal with the highest correlation is 
identified as the interference source. To measure the correlation between two frequency 
points, we use the Pearson correlation coefficient [27]:

For a monitoring window of consecutive n frames, X = [X1, ...,Xi, ...,Xn] , 
Y = [Y1, ...,Yi, ...,Yn] , X denotes the sequence of level values at one of the frequency 
points in the abnormal signal band. Y denotes the sequence of level values at the cor-
responding frequency point of any other signals. X̄ is the mean value of X, and Ȳ  is the 
mean value of Y. For these two signal bands, the Pearson correlation coefficients are cal-
culated separately for all the signal frequency points, and their average values are taken 
as the final correlation coefficients. As Fig. 5, the abnormal signals and the correspond-
ing interference source signals we collected from the real environment, after calculating 
the correlation coefficients of the eight frequency points, respectively, the mean value is 
taken as the final correlation coefficient of 0.44, which means that the intensity change of 
their level values shows a strong positive correlation.

For both abnormal and other signals, when calculating the correlation degree between 
an abnormal signal and another signal, we use equally spaced mean downsampling to 
address the problem of different bandwidths. Since the abnormal signal is caused by 
partial energy leakage from the interfering source, its bandwidth is usually narrower 
than that of the interfering source signal. The Pearson correlation coefficient focuses 
on the trend of individual frequency points over time and is not affected by the change 
in amplitude. Therefore, equally spaced mean downsampling is performed on the wide 
bandwidth signal so that its bandwidth matches that of the narrow bandwidth signal. 
This retains the information about the change in leakage energy. Then, the correlation 
degree is calculated for all corresponding frequency points. Finally, the mean value of 
all correlation degrees is combined with the correlation degree of these two signals. The 
two signals with the highest correlation coefficients among the abnormal and other sig-
nals are identified as the interference sources.

6 � Experiment
We performed several sets of experiments in different environments at various distances 
around a certain airport. We analyzed the effectiveness of signal extraction, abnormal 
signal monitoring, and interference source identification, verifying that the method is 
feasible.

As Fig.  6, we used the R&S EM100 digital receiver and HE600 antenna for data 
acquisition. For device connection, TCP and UDP connections were established 
between the PC and EM100. First, the PC sends Standard Commands for Program-
mable Instruments (SCPI) [28] to the EM100 via TCP, and then the EM100 returns 

(5)r =
∑n

i=1

(

Xi − X̄
)(

Yi − Ȳ
)

√

∑n
i=1

(

Xi − X̄
)2
√

∑n
i=1

(

Yi − Ȳ
)2
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monitoring data to the PC via UDP. We acquired 87MHz∼137MHz of digital pano-
ramic scan data at a sampling step of 6.25 kHz. The data on which this article is 
based are available in [29].

6.1 � Signal extraction experiment

Table  1 shows the Signal recognition rate (SRR) and Signal misrecognition rate 
(SMR).

where U is the number of signal bands identified as signals by the technician, R is the 
number of signal bands correctly identified by our algorithm, and M is the number that 
is misidentified. SRR∈ [0%, 100%] , SMR∈ [0%,+∞) . SRR and SMR are distinguished by 
the prefixes ’FM-’ and ’AM-’ in the FM broadcast and aviation communication bands, 
respectively.

As Fig. 7, we collected spectrum data at 1 km (P1), 2 km (P2), 10 km (P3), and 20 km 
(P4) from a certain airport. P1 and P3 are west of the airport, while P2 and P4 are east 
of the airport. Both P1 and P3 are open spaces with a favorable environment, where no 
abnormal signals were discovered, and the recognition effect is good. The P4 experimen-
tal location, in the approach phase, is on the roof of a tall building. Here, the data acqui-
sition effect is good and there are more abnormal signals, but the signal recognition rate 
is over 97%. Since the frequency occupancy of the aviation communication band varies 
between daytime and nighttime, we obtained relatively stable experimental data by con-
ducting several experiments at different times of the day. Overall, our proposed blind 
source signal extraction method, based on cubic polynomial fitting, effectively identifies 
the interference sources of abnormal signals.

(6)SRR =
R

U
× 100%, SMR =

M

U
× 100%

Fig. 6  Method of connecting radio receiving equipment

Table 1  Experimental data from different locations

Distance ( km ) FM-SRR (%) FM-SMR (%) AM-SRR (%) AM-SMR (%) ASRR ASMR ISRR ISCR

1 100 0 100 0 – – – –

2 80 0 84 2 90% 0% 16.6% 66%

10 100 5 90 0 – – – –

20 98.5 4 97 10 70% 0% 22.7% 80%
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6.2 � Interference source identification experiment

The accuracy of interference source identification will be affected by the accuracy of sig-
nal extraction and abnormal signal monitoring. But signal extraction experiments have 
confirmed the feasibility of following operations, so we analyze the rate of abnormal 
signal recognition and the accuracy of interference source identification by combining 
waterfall plots of digital panoramic scanning frequency spectrum and voice listening 
results.

As in Table 1, the abnormal signal recognition rate (ASRR), Abnormal signal misrecog-
nition rate (ASMR), Interference source signal recognition rate (ISRR), and Interference 
source signal correct rate (ISCR) are obtained from different experimental locations.

where AU is the number of abnormal signals identified by the technician through voice 
listening and the waterfall graph of the digital sweep spectrum, AR is the number of 
abnormal signals correctly identified by the algorithm, AM is the number of normal 
signals incorrectly identified as abnormal signals by the algorithm, IR is the number of 
abnormal signals found by the interfering source, and IC is the number of interfering 
source signals correctly identified.

ASRR and ASMR can reflect the recognition effect of signal dwell time listening 
scheme on directly or indirectly generated abnormal signals. ISRR and ISCR reflect the 
recognition effect of the interference source identification method on the interference 
source of indirectly generated abnormal signals.

At P1 and P3. We did not detect an abnormal signal. At P2, we found a total of 18 
abnormal signals. Upon listening to the voice content to verify the experimental results, 
only 2 of the signals were determined to be illegal broadcast generated intermodulation 

(7)ASRR =
AR

AU
× 100%,ASMR =

AM

AU
× 100%

(8)ISRR =
IR

AU
× 100%, ISCR =

IC

IR
× 100%

Fig. 7  Location of data acquisition
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signals, while the other abnormal signal band carried passive interference signals with-
out carrying any information. At P4, we discovered 22 abnormal signals, and practically 
every abnormal signal could be obtained with at least one type of voice information 
through FM or AM demodulation.

At P2. The interference source identification method identified 3 sources of abnormal 
signals with 2 of them being correctly identified and one being incorrectly identified. 
At P4, the interference source of 5 abnormal signals is stably identified, among them, 
4 interference sources are correct. As Fig.  8, we exemplify the illegal broadcast infor-
mation obtained at the P4 in a certain period. The interference source identification 
algorithm continuously and stably monitored 117.45MHz as the intermodulation signal 
resulting from 98.675MHz and 101.25MHz. Upon verification through demodulation, 
we found that the talk show content on 98.675MHz and the marketing content of die-
tary supplements on 101.25MHz could be heard on 117.45MHz, where broadcasting on 
101.25MHz is illegal.

The experimental results indicate that our scheme has better feasibility. For the 
87MHz∼137MHz frequency band, through the three steps of signal-to-noise separa-
tion, abnormal signal identification and interference source identification, it can effec-
tively identify the abnormal radio interference in the approach control and tower control 
phases of civil aviation communication. It is beneficial for relevant law enforcement 
officers to control illegal FM broadcasting. In order to effectively ensure the safety of 
civil aviation passenger transportation, it is necessary to continuously monitor illegal 
stations. Our proposed method can be utilized to deploy multiple monitoring stations in 
the tower control and access control areas near airports for continuous monitoring and 
to cooperate with the relevant law enforcement agencies to manage the situation accord-
ing to the law.

7 � Conclusions
In this paper, we propose an abnormal signal monitoring and interference source identi-
fication method applied to the civil aviation communication security system. In order to 
realize the auxiliary monitoring of electromagnetic environment for civil aviation com-
munication frequency band, we first obtain the signal frequency range of broadcasting 
frequency band and civil aviation communication frequency band through the adaptive 
signal-to-noise separation method, and then use the real-time abnormal signal monitor-
ing method based on the signal residence time to obtain the abnormal signals in the civil 
aviation communication frequency band, and finally use the interference source identifi-
cation method based on the Pearson’s correlation coefficient to identify the interference 

Fig. 8  Digital sweep frequency spectrum waterfall
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source of the abnormal signals. We conducted several experiments near an airport to 
demonstrate that our method provides effective auxiliary monitoring. It helps techni-
cians monitor interference sources in civil aviation communication in real-time, con-
veniently, quickly, and at a low cost. Additionally, during our practical application, we 
discovered many stations conducting illegal broadcasting, which seriously threatens civil 
aviation safety and should attract the attention of relevant departments.
Acknowledgements
Not applicable.

Author Contributions
Mingsheng Zhou completed the main innovative ideas and experiments of the article, Mingming Kong provided the 
experimental equipment and technical guidance for the work, Yuan Ye provided project fund support and data analysis, 
Binbin Deng assisted in the experiments and article writing, and Yulin Tang provided data support and data analysis. All 
authors read and approved the final manuscript.

Funding
This work was supported in part by the Key R&D Project implemented jointly by Sichuan and Chongqing in 2020 under 
Grant cstc2020jscx-cylhX0004; and the Natural Science Foundation of Ningxia Hui Autonomous Region in 2021 under 
grant No.2021AAC03439.

Availability of data and materials
No datasets were generated or analyzed during the current study.

Declarations

Competing interests
The authors declare no conflict of interest.

Received: 25 February 2024   Accepted: 16 September 2024

References
	1.	 R. Johannessen, S. Gale, M. Asbury, Potential interference sources to gps and solutions appropriate for applications 

to civil aviation. In: Proceedings of the 45th annual meeting of the institute of navigation (1989), 195–201 (1989)
	2.	 I. Fernández-Hernández, T. Walter, K. Alexander, B. Clark, E. Châtre, C. Hegarty, M. Appel, M. Meurer, Increasing 

international civil aviation resilience: A proposal for nomenclature, categorization and treatment of new interfer-
ence threats. In: Proceedings of the 2019 international technical meeting of the institute of navigation, pp. 389–407 
(2019)

	3.	 M. De Angelis, R. Fantacci, S. Menci, C. Rinaldi, Analysis of air traffic control systems interference impact on galileo 
aeronautics receivers. In: IEEE international radar conference, 2005., pp. 585–595 (2005). IEEE

	4.	 X. Zhang, Z. Luo, G. Kang, Analysis and research on the interference of civil aviation radio navigation equipment. In: 
Journal of Physics: Conference Series, 2209, 012011 (2022). IOP Publishing

	5.	 B. Kamali, An overview of vhf civil radio network and the resolution of spectrum depletion. In: 2010 Integrated com-
munications, navigation, and surveillance conference proceedings, pp. 4–1 (2010). IEEE

	6.	 R. Zheng, X. Li, Y. Chen, An overview of cognitive radio technology and its applications in civil aviation. Sensors 
23(13), 6125 (2023)

	7.	 K. Piamrat, A. Ksentini, J.-M. Bonnin, C. Viho, Radio resource management in emerging heterogeneous wireless 
networks. Comput. Commun. 34(9), 1066–1076 (2011)

	8.	 C. Zhou, S. He, J. Ye, P. Jia, Design and implementation of ground terminal for aerial radio monitoring system based 
on uav. In: Journal of Physics: Conference Series, 1626, 012084 (2020). IOP Publishing

	9.	 G. Zhou, T. He, J.A. Stankovic, T. Abdelzaher, Rid: Radio interference detection in wireless sensor networks. In: Pro-
ceedings IEEE 24th annual joint conference of the IEEE computer and communications societies., 2, 891–901 (2005). 
IEEE

	10.	 K.-S. Lee, A study on the aviation safety policy and enhancement of aviation safety for low cost carriers in Korea. 
Korean J. Air & Space Law and Policy 24(2), 69–104 (2009)

	11.	 A. Haniz, G.K. Tran, K. Sakaguchi, J.-i. Takada, T. Yamaguchi, T. Mitsui, S. Arata, Construction and interpolation of a 
multi-frequency radio map. In: 2019 International conference on robotics, electrical and signal processing tech-
niques (ICREST), pp. 632–637 (2019). IEEE

	12.	 S.H. Jung, B.-C. Moon, D. Han, Performance evaluation of radio map construction methods for wi-fi positioning 
systems. IEEE Trans. Intell. Transp. Syst. 18(4), 880–889 (2016)

	13.	 F. Zhou, C. Wang, G. Wu, Y. Wu, Q. Wu, N. Al-Dhahir, Accurate spectrum map construction for spectrum management 
through intelligent frequency-spatial reasoning. IEEE Trans. Commun. 71, 3932 (2023)

	14.	 X.-L. Huang, Y. Gao, X.-W. Tang, S.-B. Wang, Spectrum mapping in large-scale cognitive radio networks with historical 
spectrum decision results learning. IEEE Access 6, 21350–21358 (2018)



Page 15 of 15Zhou et al. EURASIP Journal on Advances in Signal Processing         (2024) 2024:88 	

	15.	 T. Fujii, Smart spectrum management for v2x. In: 2018 IEEE international symposium on dynamic spectrum access 
networks (DySPAN), pp. 1–8 (2018). IEEE

	16.	 Y.-Q. Xu, B. Zhang, G. Ding, B. Zhao, S. Li, D. Guo, Radio environment map construction based on spatial statistics and 
Bayesian hierarchical model. IEEE Trans. Cogn. Commun. Netw. 7(3), 767–779 (2021)

	17.	 V. Landon, A study of the characteristics of noise. Proceed. Inst. Radio Eng. 24(11), 1514–1521 (1936)
	18.	 G.C. Bjorklund, M. Levenson, W. Lenth, C. Ortiz, Frequency modulation (fm) spectroscopy: theory of lineshapes and 

signal-to-noise analysis. Appl. Phys. B 32, 145–152 (1983)
	19.	 H.T. Friis, Noise figures of radio receivers. Proc. IRE 32(7), 419–422 (1944)
	20.	 J. Ely, Electromagnetic interference to flight navigation and communication systems: new strategies in the age of 

wireless. In: AIAA guidance, navigation, and control conference and exhibit, p. 6361 (2005)
	21.	 P. Kowalski, R. Smyk, Review and comparison of smoothing algorithms for one-dimensional data noise reduction. In: 

2018 International interdisciplinary PhD workshop (IIPhDW), pp. 277–281 (2018). IEEE
	22.	 M. Plass, M. Stone, Curve-fitting with piecewise parametric cubics. In: Proceedings of the 10th annual conference on 

computer graphics and interactive techniques, pp. 229–239 (1983)
	23.	 R.M. Haralick, S.R. Sternberg, X. Zhuang, Image analysis using mathematical morphology. IEEE Trans. Pattern Anal. 

Mach. Intell. 4, 532–550 (1987)
	24.	 G. Tian, J. Zhou, X. Li, D. Li, Comprehensive experimental research on complex electromagnetic environment of 

aircraft. In: Journal of Physics: Conference Series, 1601, 022043 (2020). IOP Publishing
	25.	 S.T. Acton, Fast algorithms for area morphology. Digit. Signal Process. 11(3), 187–203 (2001)
	26.	 R. Wu, Q. Shi, S. Wang, J. Ma, Adaptive interference suppression for civil aviation vhf air-to-ground communication 

based on constant modulus array. In: 2007 15th International conference on digital signal processing, pp. 67–70 
(2007). IEEE

	27.	 I. Cohen, Y. Huang, J. Chen, J. Benesty, J. Benesty, J. Chen, Y. Huang, I. Cohen, Pearson correlation coefficient. In: Noise 
Reduction in Speech Processing, (Springer, Heidelberg, 2009), 1–4

	28.	 J. Pieper, Standard Commands for Programmable Instruments (SCPI Consortium ACEA, Wierden, The Neteherlands, 
1998)

	29.	 M. Zhou, Identification-of-interference-sources-dataset. Zenodo (CERN European Organization for Nuclear Research) 
(2023). https://​doi.​org/​10.​5281/​zenodo.​80226​53

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.5281/zenodo.8022653

	Identifying sources of interference in civil aviation radio communication
	Abstract 
	1 Introduction
	2 Spectrum management and abnormal detection
	3 Signal extraction
	3.1 Data preprocessing
	3.2 Obtaining feature vectors
	3.3 Calculate the discriminating value
	3.4 Obtaining the signal–noise separation threshold line

	4 Abnormal signal monitoring
	5 Interference source identification
	6 Experiment
	6.1 Signal extraction experiment
	6.2 Interference source identification experiment

	7 Conclusions
	Acknowledgements
	References


