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This paper links the polarization-sensitive-array signal detection problem to the parallel factor (PARAFAC) model, which is an
analysis tool rooted in psychometrics and chemometrics. Exploiting this link, it derives a deterministic PARAFAC signal detection
algorithm. The proposed PARAFAC signal detection algorithm fully utilizes the polarization, spatial and temporal diversities, and
supports small sample sizes. The PARAFAC algorithm does not require direction-of-arrival (DOA) information and polarization
information, so it has blind and robust characteristics. The simulation results reveal that the performance of blind PARAFAC signal
detection algorithm for polarization sensitive array is close to nonblind MMSE method, and this algorithm works well in array
error condition.
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1. INTRODUCTION

Polarization sensitive arrays have some inherent advantages
over traditional antenna arrays, since they have the capability
of separating signals based on their polarization characteris-
tics, as well as spatial diversity. Intuitively, polarization sen-
sitive antenna arrays will provide significant improvements
for signals which have different polarization characteristics.
Polarization sensitive arrays are used widely in the commu-
nication, radio and navigation [1, 2]. Maximum likelihood
signal estimation method for polarization sensitive arrays is
proposed in [3]. Filtering performance of polarization sensi-
tive array in completely polarized case is investigated in [4].
The methods mentioned above are nonblind methods, since
they require the knowledge of DOA and polarization infor-
mation. Blind parallel factor (PARAFAC) signal detection al-
gorithm for polarization sensitive array is investigated in this
paper.

PARAFAC analysis has been first introduced as a data
analysis tool in psychometrics, most of the research in the
area is conducted in the context of chemometrics [5], spec-
trophotometric, chromatographic, and flow injection anal-
yses. Harshman [6] developed the PARAFAC model. At the
same time, Caroll and Chang [7] introduced the canoni-
cal decomposition model, which is essentially identical to
PARAFAC. In signal processing field, PARAFAC can be
thought of as a generalization of ESPRIT and joint approxi-
mate diagonalization ideas [8, 9]. PARAFAC is thus naturally

related to linear algebra for multiway arrays [10]. PARAFAC
is used widely in blind receiver detection for direct-sequence
code-division multiple-access (CDMA) system [11], array
signal processing [12, 13], blind estimation of multi-input
multi-output (MIMO) system [14], blind speech separation
[15], downlink receiver for space-time block-boded CDMA
system [16], and multiuser detection for single-input multi-
output (SIMO) CDMA System [17].

Our work links the polarization-sensitive-array signal de-
tection problem to the parallel factor model and derives a
deterministic blind PARAFAC signal detection whose per-
formance is close to nonblind minimum mean-squared er-
ror (MMSE). The proposed PARAFAC supports small sam-
ple sizes, and even works well in array error condition. Most
notably, it does not require knowledge of the DOA and po-
larization information. Instead, PARAFAC relies on a fun-
damental result of Kruskal [10] regarding the uniqueness of
low-rank three-way array decomposition.

This paper is structured as follows: Section 2 develops
data model, Section 3 discusses identifiability issues and
deals with algorithmic issues, Section 4 presents simulation
results, and Section 5 summarizes our conclusions.

2. THE RECEIVED SIGNALMODEL FOR
POLARIZATION SENSITIVE ARRAY

Crossed dipoles are shown in Figure 1. Each dipole in the ar-
ray is a short dipole, so the output voltage from each dipole
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Figure 1: The structure of polarization sensitive array.

is proportional to the electric field component along that
dipole. There are orthogonal short dipoles, the x- and y-axis
dipoles, parallel to the x- and y-axes, respectively. The mth
dipole pair, m = 1, 2, . . . ,M, has its center on the y-axis at
y = (m − 1)d. The distance d between two adjacent dipole
pairs is assumed to be a half-wavelength to avoid angle ambi-
guity problems. We consider signals in the far-field, in which
case the signal sources are far enough away that the arriving
waves are essentially planes over the length of the array. As-
sume that the noise is independent of the source, and noise
is additive i.i.d. Gaussian.

2.1. The received signal model for polarization
sensitive antenna

We begin by considering the polarization of an incoming sig-
nal. Supposing that an antenna is at the origin of a spherical
coordinate system, and a signal b(t) is arriving from direc-
tion θ, ϕ, where ϕ is the elevation angle and θ is the azimuth
angle. Let this signal be a transverse electromagnetic (TEM)
wave, and consider the polarization ellipse produced by the
electric field in a fixed transverse plane. Polarization param-
eters are γ, η. We characterize the antenna in terms of its re-
sponse to linearly polarized signals in the x and y directions.
Let vx be the complex voltage induced at the antenna out-
put terminals by an incoming electromagnetic signal with a
unit electric field polarized entirely in the x direction. Sim-
ilarly, let vy be the output voltages induced by signals with
unit electric fields polarized in the y directions. According to
[4], the total output voltage from polarization antenna is

yp(t) =
[
cos θ cosϕ − sinϕ
cos θ sinϕ cosϕ

][
sin γe jη

cos γ

]
b(t) = sb(t),

(1)

where

s =
[
cos θ cosϕ − sinϕ
cos θ sinϕ cosϕ

][
sin γe jη

cos γ

]
(2)

is the polarization vector, and it relates to polarization and
DOA information.

2.2. The received signal model for polarization
sensitive array

Assume that a signal b(t) arrives at the uniform linear array
with M pairs of crossed dipoles. The received signal of the
polarization sensitive array is shown as follows:

y(t) = [sT , qsT , . . . , qM−1sT]Tb(t) = (a⊗ s)b(t), (3)

where ⊗ is Kronecker product, s is the polarization vector,
a = [1, q, . . . , qM−1]T is the direction vector, q = e− j2πd sin θ/λ.

When K sources impinge the polarization sensitive array,
the received signal at the output of the polarization sensitive
array is

x = [a1 ⊗ s1, a2 ⊗ s2, . . . , aK ⊗ sK
]
BT , (4)

where ai and si are the direction vector and polarization vec-
tor of the ith source, respectively, and B = [bT1 , b

T
2 , . . . , b

T
K ] is

the source matrix with N ×K , where bi is the transmit signal
of the ith source.

Equation (4) can be denoted as

x = [A ◦ S]BT , (5)

where A ◦ S is Khatri-Rao product, A = [a1, a2, . . . , aK ] is the
direction matrix, and S = [s1, s2, . . . , sK ] is the polarization
matrix.

Equation (5) can be denoted as

x =

⎡
⎢⎢⎢⎢⎣
X··1
X··2
...

X··M

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
SD1(A)
SD2(A)

...
SDM(A)

⎤
⎥⎥⎥⎥⎦BT , (6)

where Dm(·) is understood as an operator that extracts the
mth row of its matrix argument and constructs a diagonal
matrix out of it, Dm(A) = diag([am,1, am,2, . . . , am,K ]).

Use slices to denote

X··m = SDm(A)BT , m = 1, 2, . . . ,M, (7)

where X··m is themth slice in spatial direction.
In the presence of noise, the received signal model be-

comes

X̃··m=X··m+V··m=SDm(A)BT+V··m, m = 1, 2, . . . ,M,
(8)

where V··m, the 2 × N matrix, is the received noise corre-
sponding to themth slice.

The signal in (7) is also denoted through rearrangements
as

xm,n,p =
K∑
f=1

am, f sn, f bp, f , m = 1, . . . ,M;

n = 1, . . . ,N ; p = 1, 2,

(9)
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where am, f stands for the (m, f ) element of A matrix, and
similarly for the others. Note that (9) is a sum of triple prod-
ucts; it is well known as the trilinear model, trilinear de-
composition, canonical decomposition, or PARAFAC analy-
sis. The trilinear model X reflects three different kinds of di-
versities available: spatial, temporal, and polarization diver-
sities. Another view, X··m = SDm(A)BT ,m = 1, 2, . . . ,M, can
be interpreted as slicing the 3D data in a series of slices (2D
data) along the spatial direction. The symmetry of the trilin-
ear model in (9) allows two more matrix system rearrange-
ments, which can be interpreted as slicing the three-way data
along different directions. In particular,

Y··p = BDp(S)AT , p = 1, 2, (10)

where the N ×M matrix Y··p = [x·,·,p]. Y··p is the pth slice
in polarization direction. Similarly,

Z··n = ADn(B)ST , n = 1, 2, . . . ,N , (11)

where theM × 2 matrix Z··n = [xn,·,·]. Z··n is the nth slice in
the temporal direction.

3. BLIND PARAFAC SIGNAL DETECTION FOR
POLARIZATION SENSITIVE ARRAY

3.1. Trilinear alternating least squares

Trilinear alternating least square (TALS) algorithm is the
common data detection method for trilinear model [6]. The
basic idea of TALS is as follows: (a) each time, update a ma-
trix using least squares conditioned on previously obtained
estimates of the remaining matrix; (b) proceed to update an-
other matrix; (c) repeat until convergence. TALS algorithm is
discussed in detail as follows.

According to (6), least squares fitting is

min
A,S,B

∥∥∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎢⎢⎣

X̃··1
X̃··2
...

X̃··M

⎤
⎥⎥⎥⎥⎥⎦−

⎡
⎢⎢⎢⎢⎣
SD1(A)
SD2(A)

...
SDM(A)

⎤
⎥⎥⎥⎥⎦BT

∥∥∥∥∥∥∥∥∥∥∥
F

, (12)

where ‖ · ‖F stands for the Frobenius norm. X̃··m, m =
1, 2, . . . ,M, are the noisy slices.

Least squares update for B is

B̂T =

⎡
⎢⎢⎢⎢⎢⎣

ŜD1(Â)
ŜD2(Â)

...
ŜDM(Â)

⎤
⎥⎥⎥⎥⎥⎦

+ ⎡
⎢⎢⎢⎢⎢⎣

X̃··1
X̃··2
...

X̃··M

⎤
⎥⎥⎥⎥⎥⎦ , (13)

where [·]+ stands for pseudoinverse. Â and Ŝ denote previ-
ously obtained estimates of A and S.

Similarly, from the second way of slices, Y··p =
BDp(S)AT , p = 1, 2, which is rewritten as

[
Y··1
Y··2

]
=
[
BD1(S)
BD2(S)

]
AT , (14)

LS fitting is

min
A,S,B

∥∥∥∥∥
[
Ỹ··1
Ỹ··2

]
−
[
BD1(S)
BD2(S)

]
AT

∥∥∥∥∥
F

, (15)

and the LS update for A is

ÂT =
[
B̂D1(Ŝ)
B̂D2(Ŝ)

]+ [
Ỹ··1
Ỹ··2

]
. (16)

Finally, from the third way of slices, Z··n = ADn(B)ST , n =
1, 2, . . . ,N . And then LS update for S is

ŜT =

⎡
⎢⎢⎢⎢⎢⎣

ÂD1(B̂)
ÂD2(B̂)

...
ÂDN (B̂)

⎤
⎥⎥⎥⎥⎥⎦

+ ⎡
⎢⎢⎢⎢⎢⎣

Z̃··1
Z̃··2
...

Z̃··N

⎤
⎥⎥⎥⎥⎥⎦ . (17)

The loss function to be minimized is the sum of squared
residuals (SSR) in the TALS algorithm:

SSR =
M∑

m=1

N∑
n=1

2∑
p=1

e2m,n,p, (18)

where em,n,p = x̃m,n,p −
∑K

f=1 âm, f ŝn, f b̂p, f is the (m,n, p) ele-

ment of fitting error. âm, f stands for the (m, f ) element of Â,
and similarly for the others.

According to (13), (16), and (17), matrices B, A, and S
are updated with conditioned least squares, respectively. The
matrix update will stop until convergence.

TALS is optimal when noise is additive i.i.d. Gaussian
[18]. TALS algorithm has several advantages: it is easy to
implement, guarantee to converge, and simple to extend to
higher order data. TALS algorithm is known to suffer from
degeneracy and slow convergence. Although a unique solu-
tion exists, it is not always guaranteed to be found as the
TALS algorithm can be stuck in local minima [19]. TALS
can be initialized by eigen-decomposition to speed up con-
vergence [12]. According to (10), the two slices along the po-
larization direction are represented as

Y··1 = BAE, Y··2 = BDAE, (19)

where AE = D1(S)AT and D = D2(S)D1(S)−1.
Construct auto- and cross-correlation matrices:

R1 = YH
··1Y··1 = AH

E B
HBAE,

R2 = YH
··1Y··2 = AH

E B
HBDAE.

(20)

Define α = AH
E B

HB, then

R1 = αAE, R2 = αDAE. (21)

According to (21),

α+R1 = D−1α+R2, (22)
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where [·]+ is the pseudoinverse. Let uHf be the f th row of α+

and let λ f be the f th element along the diagonal of D−1. The
general eigen-decomposition for (R1,R2) is given as

uHf
(
R1 − λ f R2

) = 0, f = 1, 2, . . . ,K. (23)

The λ f ’s and uHf ’s are the generalized eigenvalues and left
generalized eigenvectors of (R1,R2). Once α+ is recovered,
then AE = α+R1, B = Y··1[AE]+, and D = B+Y··2[AE]+.

3.2. Identifiablity

The k-rank concept is very important in the trilinear algebra.

Definition 1 (see [10]). Consider a matrix A ∈ CI×J . If
rank(A) = r, then A contains a collection of r linearly inde-
pendent columns. Moreover, if every l ≤ J columns of A are
linearly independent, but this does not hold for every l + 1
columns, then A has k-rank kA = l. Note that kA ≤ rank(A),
for all A.

Theorem 1 (see [20]). X··m = SDm(A)BT , m = 1, 2, . . . ,M,
where A ∈ CM×K , S ∈ C2×K , and B ∈ CN×K , considering that
A is a matrix with Vandermonde characteristic. If

kS +min
(
M + kB, 2K

) ≥ 2K + 2, (24)

then A, B, and S are unique up to permutation and scaling of
columns, that is to say, any other triple A, B, S that constructs
X··m (m = 1, 2, . . . ,M) is related to A, B, and S via

A = AΠΔ1, B = BΠΔ2, S = SΠΔ3, (25)

where Π is a permutation matrix, and Δ1, Δ2, and Δ3 are di-
agonal scaling matrices satisfying

Δ1Δ2Δ3 = I. (26)

Scale ambiguity and permutation ambiguity are inherent
to the separation problem. This is not a major concern. Per-
mutation ambiguity can be resolved by resorting to a priori
or embedded information. The scale ambiguity can be re-
solved using automatic gain control and differential encod-
ing/decoding [21] or embedded information.

Although the PARAFAC uniqueness result is purely de-
terministic, it also admits statistical characteristics. A ma-
trix whose columns are drawn independently from an abso-
lutely continuous distribution has full rank with probability
one, even when the elements across a given column are de-
pendent random variables [11]. In our present context, for
source-wise independent source signals, kB = min(N ,K); for
source-wise independent polarization, kS = min(2,K), and
therefore, (24) becomes

min(2,K) + min
(
M +min(N ,K), 2K

) ≥ 2K + 2. (27)

In practice, K ≥ 2, min(2,K) = 2, hence the practical condi-
tion is

M +min(N ,K) ≥ 2K. (28)

If N ≤ K , the identifiable condition isM +N ≥ 2K .
If N ≥ K , the identifiable condition is M ≥ K , and then

min(M,N) sources can be recovered.
If matrix A in Theorem 1 is not a Vandermonde matrix,

according to [11], the identifiable condition is

min(2,K) + min(N ,K) + min(M,K) ≥ 2K + 2. (29)

In practice, K ≥ 2, then the identifiable condition is

N ≥ K , M ≥ K , (30)

so min(M,N) sources can be recovered [8, 22, 23].

4. SIMULATION RESULTS

If X is the received signal without noise and
�
X = X +V is the

received noisy signal, we define the sample SNR as

SNR = 10 log10
‖X‖2F
‖V‖2F

dB, (31)

where ‖X‖2F is the sum of squares of all elements of the 3D
data X.

As shown in Theorem 1, the scaling ambiguity and the
permutation ambiguity are inherent to this blind separation
problem. We remove the scaling ambiguity among the esti-
mated source matrix via embedded information. Permuta-
tion ambiguity is resolved using a greedy least square match-
ing algorithm [11].

A uniform linear array with 16 pairs of crossed dipoles
is used in the simulation. Assume that each source only has
one path to polarization sensitive array. We assume binary
phase-shift keying (BPSK) modulated signal and additive
gauss white noise. For all the simulation, the number of the
sources is 3. Note that N is the number of snapshots.

We present Monte Carlo simulations that are to assess
the bit error rate (BER) performance of the proposed blind
PARAFAC signal detection algorithm. The number of Monte
Carlo trials is 1000. The PARAFAC algorithm does not re-
quire DOA information and polarization information. We
compare our PARAFAC algorithm with the nonblind MMSE
receiver. MMSE receiver offers a performance bound against
which blind algorithms are often measured [24, 25]. For the
received signal in (5), the nonblind MMSE solution is

B̂T
MMSE =

(
ΛΛH +

1
SNR

)−1
ΛHx̃, where Λ = A ◦ S.

(32)

Compared with our blind PARAFAC receiver, the nonblind
MMSE receiver assumes the perfect knowledge of DOA,
SNR, and polarization information.

The performances of these algorithms under different N
are shown in Figures 2–7.

Figures 2 and 3 present large sample results for N = 800
and N = 400, respectively. From Figures 2 and 3, we find
that blind PARAFAC signal detection algorithm is very close
to nonblind MMSE method.
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Figure 2: The algorithm performances comparison with N = 800.
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Figure 3: The algorithm performances comparison with N = 400.

Figures 4 and 5 depict results for N = 200 and 100, re-
spectively. From Figures 2 to 5, we find that the gap between
blind PARAFAC and (nonblind) MMSE increases as N de-
creases.

Figures 6 and 7 show small sample results forN = 50 and
N = 20, respectively. It is clear that PARAFAC performs well
even for very small sample sizes.

The actual array parameters may differ from the nominal
array in several ways: gain, phase, and sensor location errors.
Gain and phase errors occur when the response of each
antenna to a known signal has a different amplitude and/or
phase response than expected. Blind PARAFAC signal detec-
tion algorithm performance in the array error condition is
also investigated. In this simulation, array error vector is the
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Figure 4: The algorithm performances comparison with N = 200.
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Figure 5: The algorithm performances comparison with N = 100.

array gain and phase error vector. The array error vector g =
[0.8523+0.3031, 0.6071−0.4953i, 0.7083+0.7059i, 0.7497−
0.7167i, 0.6931 + 0.8916i, 0.8343 + 0.6883i, 0.730 +
0.6894i, 0.6678 − 0.5133i, 0.4806 − 0.9112i, 0.6669 +
0.5634i, 0.7834 − 0.6828i, 0.7497 − 0.7237i, 0.6563 +
0.82316i, 0.8123+0.6823i, 0.7245+0.6239i, 0.6234−0.5133i].
Assume that array response vector for DOA = θ is a(θ), then
the array response vector with array error is diag(g)a(θ).
The direction matrix with array error is not Vandermonde
matrix, and then the identifiable condition is shown in (30).
The sample number N is 100 in this simulation. The perfor-
mance of blind PARAFAC signal detection algorithm in array
error condition is shown in Figure 8. Figure 8 shows that
blind PARAFAC signal detection algorithm has the better
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Figure 6: The algorithm performances comparison with N = 50.
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Figure 7: The algorithm performances comparison with N = 20.

performance in the array error condition. Blind PARAFAC
signal detection algorithm has robust characteristics to array
error.

5. CONCLUSIONS

This paper has developed a link between PARAFAC analy-
sis and blind signal detection for polarization sensitive array.
Relying on the uniqueness of low-rank three-way array de-
composition and trilinear alternating least squares, a deter-
ministic PARAFAC signal detection algorithm has been pro-
posed. The algorithm does not require DOA information and
polarization information, and it has blind and robust charac-
teristics. The simulation results reveal that the performance

PARAFAC receiver with array error
PARAFAC receiver with ideal array

−8−10 −6 −4 −2 0 2 4 6

SNR (dB)

10−5

10−4

10−3

10−2

10−1

100
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E
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Figure 8: The algorithm performance with array error.

of blind PARAFAC signal detection algorithm for polariza-
tion sensitive array is close to nonblind MMSE method, and
this algorithm works well in array error condition and sup-
ports small sample sizes.
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