
Hindawi Publishing Corporation
EURASIP Journal on Advances in Signal Processing
Volume 2007, Article ID 17342, 16 pages
doi:10.1155/2007/17342

Research Article
Subspace-Based Localization and Inverse Scattering of
Multiply Scattering Point Targets

Edwin A. Marengo1 and Fred K. Gruber2

1Department of Electrical and Computer Engineering, Center for Subsurface Sensing and Imaging Systems, and Communications and
Digital Signal Processing Center for Research and Graduate Studies, Northeastern University, Boston, MA 02115, USA

2Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA

Received 15 September 2005; Revised 31 March 2006; Accepted 12 May 2006

Recommended by Kostas Berberidis

The nonlinear inverse scattering problem of estimating the locations and scattering strengths or reflectivities of a number of small,
point-like inhomogeneities (targets) to a known background medium from single-snapshot active wave sensor array data is inves-
tigated in connection with time-reversal multiple signal classification and an alternative signal subspace method which is based
on search in high-dimensional parameter space and which is found to outperform the time-reversal approach in number of lo-
calizable targets and in estimation variance. A noniterative formula for the calculation of the target reflectivities is derived which
completes the solution of the nonlinear inverse scattering problem for the general case when there is significant multiple scattering
between the targets. The paper includes computer simulations illustrating the theory and methods discussed in the paper.

Copyright © 2007 E. A. Marengo and F. K. Gruber. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

1. INTRODUCTION

This research is concerned with signal subspace frameworks
for inverse scattering with active wave sensor arrays of small,
point-like inhomogeneities or perturbations to a background
medium whose constitutive properties relevant to the par-
ticular remote sensing modality (e.g., (electromagnetic) per-
mittivity, permeability, conductivity, (acoustic) sound speed,
diffusion coefficient in (e.g., optic) radiative transfer-based
sensing, etc.) are known. The problem under consideration
comprises both localization of the inhomogeneities (targets)
as well as determination of the perturbation strengths or tar-
get reflectivities from single-snapshot entries of a noisy scat-
tering or multistatic response (MSR) matrix gathered by a
generally noncoincident array of Nt point transmitters and
Nr point receivers. Relevant applications are radar imaging
[1, 2], subsurface sensing of buried targets [3, 4], nonde-
structive material testing [5, 6], microwave breast imaging
[7, 8], and other biomedical applications [9].

We emphasize the particular scalar Helmholtz operator
context, but the general developments apply in forms which
differ only on the specifics of the Green function and the scat-
tering potential operator [10, Chapter 9] to a variety of par-
tial differential equations governing the source-field systems

of interest. This includes the diffusion equation [11, Chapter
9] which is relevant to certain random media and has been
used in time-reversal studies [12].

Thus we formulate in space-frequency (r,ω) domain sig-
nal subspace approaches for inverse scattering in the frame-
work of the inhomogeneous Helmholtz equation

(∇2 + k2(r,ω)
)
ψ(r,ω) = ρ(r,ω), (1)

where ψ is the scalar field produced by a scalar source ρ, ∇2

is the Laplacian operator, and k2(r,ω) = k20(r,ω) − V(r,ω)
where k0(r,ω) is the known wavenumber of the background
medium (without the targets) and V(r,ω) is the sought-after
scattering potential which for a scatterer composed of a col-
lection ofM point targets is of the form

V(r) =
M∑

m=1
τmδ

(
r−Xm

)
, (2)

where here and henceforth the frequency variable ω is sup-
pressed with the understanding that the results hold for a
given frequency, and where δ(·) is Dirac’s delta function,
Xm, m = 1, 2, . . . ,M, are the unknown target positions,
and τm ∈ C, m = 1, 2, . . . ,M, are the unknown, generally
complex-valued reflectivities of the targets.
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The present work expands the program of a previous
contribution [13] coauthored by the present authors in
which a two-step approach to this inverse scattering prob-
lem was proposed consisting of first estimating the target po-
sitions via time-reversal multiple signal classification (MU-
SIC) [14–18] (see also [19] for the conventional statisti-
cal MUSIC) and later solving for the target reflectivities by
means of an iterative algorithm involving the Foldy-Lax mul-
tiple scattering model [20, 21]. Four aspects not treated in
[13] are addressed in the present paper where (1) amore gen-
eral formulation is established that is applicable to noncoin-
cident arrays, (2) an alternative high-dimensional signal sub-
space approach is derived which corresponds for weakly scat-
tering targets under spatially white Gaussian noise relevant to
a Rayleigh fading environment tomaximum likelihood (ML)
estimation (see [22] and Section 4 of this paper) and which
is shown to enable the localization of more targets (hence,
the imaging of more object features) than the time-reversal
approach, (3) solution uniqueness and performance ques-
tions are elucidated, including reference calculations of the
Fisher information matrix (and of the companion Cramér-
Rao bound (CRB)) relevant to the estimation of target posi-
tions and reflectivities which are valid under general multiple
scattering, and (4) a noniterative formula for the determina-
tion of the target reflectivities is derived which holds even for
the nonlinear, multiple scattering case. Early accounts of the
high-dimensional signal subspace method can be found in
conference proceedings authored by the present authors [23–
26] and in a recent paper [22] which presents an equivalent
approach, the present treatment differing from these contri-
butions in that, in addition to the other aspects enumerated
above, (1) it addresses the question of number of localizable
targets, demonstrating how the high-dimensional signal sub-
space method can significantly enhance the number of lo-
calizable targets, particularly if the targets are weakly inter-
acting, and (2) it comparatively studies under both multiple
scattering and nonmultiple scattering conditions the perfor-
mance of the method relative to time-reversal MUSIC and
the pertinent CRB.

Unlike most previous work in this area, this paper ad-
dresses estimation not only of target locations but also of tar-
get reflectivities. That the singular values of the linear map-
ping K contain information about the reflectivities is obvi-
ous and has been the subject of well-known investigations
[16, 27, 28]. Extraction of useful general features (not of the
actual scattering potential) is addressed in [28]. In contrast,
we are interested in this paper in extraction of the actual re-
flectivities. For Born-approximable targets this problem can
be solved trivially once the target positions have been found
[13, 18]. On the contrary, for the general multiple scattering
regime the associated inversion is less straightforward due to
the resulting nonlinearity of the reflectivities-to-MSR matrix
mapping which traditionally would be handled via nonlin-
ear optimization. Despite this nonlinearity, the latter prob-
lem is solved in this paper analytically, noniteratively (unlike
in [13] which adopts the more conventional numerical itera-
tions route). Here it is worthwhile pointing out that the non-
iterative solution of nonlinear inverse problems is a topic of

much importance [29] which remains open in inverse scat-
tering of general scatterers if one seeks to reconstruct both
target support and constitutive properties or scattering po-
tential. Our result in this direction provides a novel frame-
work for the noniterative treatment of this problem which
despite being emphasized here for the canonical case of point
targets can also be applied to certain large scatterers whose
response can be modeled using a computational grid.

The paper is organized as follows. Section 2 provides the
forward scattering results upon which the remainder of the
paper is built. In Section 3 a general form of time-reversal
MUSIC formultiply scattering targets is developed that holds
for noncoincident arrays. Section 4 is devoted to the high-
dimensional signal subspace method. The Born approxima-
tion and exact multiple scattering cases are discussed sepa-
rately. The noniterative analytical algorithm that solves for
the target reflectivities after the target positions have been es-
timated is established in Section 5. The methods derived in
the paper are illustrated numerically in Section 6. Conclu-
sions are given in Section 7. Fundamental questions of lin-
ear independence of the Green function vectors for a given
array upon which the signal subspace methods of the paper
rely, which previous to this paper had been discussed in de-
tail only in [14], are revisited with a reinterpretation in Ap-
pendices A–B. Appendix C presents the Fisher information
matrix/CRB calculations relevant to the estimation of target
positions and reflectivities under general multiple scattering
conditions.

2. FORWARD SCATTERING FORMULATION

We consider a remote sensing system formed by a transmit
array (the source ρ in (1)) having Nt point transmitters at
the space points Rt( j), j = 1, 2, . . . ,Nt and a receive ar-
ray formed by Nr point receivers located at positions Rr(l),
l = 1, 2, . . . ,Nr , which interrogates in a known background
medium characterized by wavenumber k0(r) an unknown
scattering object characterized by the scattering potential in
(2). The respective MSR matrix K : X ≡ CNt → Y ≡ CNr

governing the linear mapping from the transmit array excita-
tion signal ∈ X to the scattered (total minus incident) field
measured at the receive array ∈ Y is given by [10, Chapter
9]

K =
M∑

m=1
τmg0,r

(
Xm
)
gTt
(
Xm
) = G0,rOG

T
t (3)

or, equivalently, by

K =
M∑

m=1
τmgr

(
Xm
)
gT0,t
(
Xm
) = GrOG

T
0,t, (4)

where T denotes the transpose and where we have intro-
duced the Nt × 1 “transmit background Green function vec-
tor”

g0,t(X)=
[
G0
(
X,Rt(1)

)
G0
(
X,Rt(2)

) · · · G0
(
X,Rt

(
Nt
))]T

,

(5)
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where G0(r, r′) is the (background) Green function of the
Helmholtz operator (∇2 + k20(r)) subject to the boundary
conditions relevant to the problem at hand, say Sommer-
feld’s radiation condition, along with its receive counter-
part, the Nr × 1 “receive background Green function vec-
tor,”

g0,r(X)=
[
G0
(
Rr(1),X

)
G0
(
Rr(2),X

) · · · G0
(
Rr
(
Nr
)
,X
)]T

,

(6)

and where we have also introduced the Nt×1 “transmit total
Green function vector,”

gt(X)=
[
G
(
X,Rt(1)

)
G
(
X,Rt(2)

) · · · G
(
X,Rt

(
Nt
))]T

,

(7)

where G(r, r′) is the (total) Green function of the operator
(∇2 +k2(r)), along with the Nr ×1 “receive total Green func-
tion vector,”

gr(X)=
[
G
(
Rr(1),X

)
G
(
Rr(2),X

) · · · G(Rr
(
Nr
)
,X
)]T

.

(8)

In (3)-(4) theM ×M diagonal matrix

O = diag
(
τ1, τ2, . . . , τM

)
(9)

and the Nt ×M matrices G0,t and Gt are formed by aligning
the Nt × 1 vectors g0,t and gt corresponding to the target po-
sitions, respectively, while the Nr ×M matrices G0,r and Gr

are formed by aligning the respective Nr × 1 vectors g0,r and
gr , thus, for example,

G0,t =
[
g0,t
(
X1
)

g0,t
(
X2
) · · · g0,t

(
XM
)]

. (10)

The Born approximation corresponds to using G ≈ G0 in
the preceding analysis, which yields

K ≈
M∑

m=1
τmg0,r

(
Xm
)
gT0,t
(
Xm
) = G0,rOG

T
0,t . (11)

To incorporate multiple scattering we adopt the framework
of the Foldy-Lax model within which incident and total
(incident plus scattered) fields at the target positions Xm,
ψi(Xm), and ψT(Xm), respectively, are related by [20, 21] (see
also [11, pages 246–248])

ψT
(
Xm
) = ψi

(
Xm
)
+
∑

m′ �=m
τm′G0

(
Xm,Xm′

)
ψT
(
Xm′

)
(12)

so that assuming that theM ×M matrix H defined by

Hm,m′ = δm,m′ − τm′G0
(
Xm,Xm′

)(
1− δm,m′

)
(13)

(where δ·,· is the Kronecker delta function) is nonsingular
(which holds under mild conditions [30, page 201]) then

ΨT = H−1Ψi, (14)

where Ψi = [ψi(X1) ψi(X2) · · · ψi(XM)]T with a simi-
lar expression for ΨT using ψT in place of ψi. It follows
from (5)–(8), (12) with the substitutions ψi → G0(Xm,Rt( j))
(for transmit) or G0(Rr(l),Xm) (for receive) and ψT →
G(Xm,Rt( j)) or G(Rr(l),Xm) that the total and background
Green function vectors are related by

gt
(
Xm
) = g0,t

(
Xm
)
+
∑

m′ �=m
τm′G0

(
Xm,Xm′

)
gt
(
Xm′

)
, (15)

gr
(
Xm
) = g0,r

(
Xm
)
+
∑

m′ �=m
τm′gr

(
Xm′

)
G0
(
Xm′ ,Xm

)
(16)

or, equivalently, from (13)-(14)

GT
t = H−1GT

0,t,

GT
r = H−1GT

0,r .
(17)

Using (3)-(4), (17) the MSR matrix K can be expressed as
(see also [31])

K = G0,rOH
−1GT

0,t =
M∑

m=1

M∑

m′=1
Am,m′g0,r

(
Xm
)
gT0,t
(
Xm′

)
,

(18)

where the generalized multiple scattering amplitudes
Am,m′ = τmH

−1
m,m′ . Alternatively, applying successive sub-

stitutions in (15)-(16) to express the total Green function
vectors as a series of the background Green function vectors
and substituting this result into (3)-(4) one arrives at the
formally convenient result

Am,m′ = τmδm,m′ + τmτm′G
(
Xm,Xm′

)
. (19)

Given our assumption that the matrixH in (13) is invert-
ible, it follows from these results, Sylvester’s theorem (see [30,
page 64], [32, page 126]) and the rank preservation theorem
(see [30, page 61]), the latter being a corollary of Sylvester’s
theorem (see [32, page 128]), that the rank rK of K obeys
rK ≤ min(dt,dr) where the number of dimensions

dt ≡ rank
(
G0,t

)

= dim
{
span

[
g0,t
(
Xm
)
, m = 1, 2, . . . ,M

] ⊆X
}

= rank
(
Gt
)

(20)

while

dr ≡ rank
(
G0,r

) = rank
(
Gr
)
. (21)

It follows from results derived in [14] and discussed further
in Appendix A of the present paper that with the exception
of pathological rare cases (which we ignore next)

dr = min
(
M,Nr

)
(22)
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and, similarly,

dt = min
(
M,Nt

)
(23)

so that the rank

rK ≤ min
(
M,Nt,Nr

)
. (24)

Furthermore, under the same assumptions, if M ≤ min(Nt,
Nr) then actually

rK =M (25)

(this following from the same theorem in [30, page 64], and
the associated lack of null space for G0,r).

3. TIME-REVERSALMUSIC CONSIDERING
MULTIPLE SCATTERING

Conventional signal subspace methods such as MUSIC rely
on several signal realizations and, as such, cannot be applied
to the present single-snapshot problem. Approaches for pro-
cessing of single-snapshot passive array signals can be found
in [33–35] all of which create pseudo-autocorrelation ma-
trices via an approach analogous to that of spatial smooth-
ing for decorrelation of coherent signals in MUSIC [36, 37].
Robustness aspects of single-snapshot direction finding have
also been investigated [38]. But besides being applicable only
to the passive case, the above methods hold only for the far
field and for special (e.g., uniformly spaced, linear) array
configurations, and require long data vectors for effective-
ness. Extension of these methods to active array data follows
readily using the concept of the coarray [39–41], but appli-
cability remains limited to the far field and special configu-
rations.

A method that has received much attention recently and
that can be implemented with single-snapshot active array
data of near or far field targets is the time-reversal MU-
SIC method [13–18, 42, 43], which blends ideas of standard
MUSIC with the decomposition of the time-reversal oper-
ator technique [5, 9, 21, 42, 44, 45], also known simply as
“time-reversal.” The method is presented next, detailing nec-
essary and sufficient conditions for applicability, for the gen-
eral case of multiply scattering targets and noncoincident ar-
rays, which generalizes more restricted results derived before
in [13, 17, 18].

In particular, let σ2p and vp, where p = 1, 2, . . . ,Nt, re-
spectively, represent the eigenvalues and eigenvectors of the
transmit-mode time-reversal operator K†K :X ≡ CNt →X,
where † denotes the adjoint. Also, let σ2p and up, where p =
1, 2, . . . ,Nr , respectively, represent the eigenvalues and eigen-
vectors of the receive-mode time-reversal operator KK† :
Y ≡ CNr → Y. Then X is a pole of the receive-mode time-
reversal MUSIC pseudospectrum

Pr(X) =
⎡

⎣
∑

σp=0

∣
∣u†pg0,r(X)

∣
∣2
⎤

⎦

−1

(26)

if and only if X coincides with any of the target positions Xm,
m = 1, 2, . . . ,M if and only ifM < Nr andM ≤ Nt .

The proof of this result is as follows. The range of K is
Sr ≡ {up, σp > 0} ⊆ span[g0,r(Xm), m = 1, 2, . . . ,M] ⊆ Y
(refer to (3) and (18)) and, according to (24), has dimension-
ality rK ≤ min(M,Nt,Nr). Clearly X is a pole of this pseu-
dospectrum if X coincides with any of the target positions if
and only if Sr = span[g0,r(Xm), m = 1, 2, . . . ,M] ⊂ Y (strict
subset), since if and only if this holds, any such Green func-
tion vector g0,r(X) is orthogonal to the nontrivial orthogonal
complement {up, σp = 0} of the range Sr of K in Y. Ac-
cording to our discussion in (25) the conditions M < Nr

and M ≤ Nt are sufficient for this to hold. Also, neces-
sarily for this to hold rK = min(M,Nr) ≤ min(M,Nr ,Nt)
(which borrows from the discussion linked to (22)–(24)) and
rK = min(M,Nr) < Nr so that M < Nr and M ≤ Nt.
This establishes the “if” part of the result. Now, one natu-
rally wonders whether it is possible for a blind spot X �= Xm,
where Xm denotes any of the target positions, to exist such
that span[g0,r(Xm), m = 1, 2, . . . ,M, g0,r(X), X �= Xm] =
span[g0,r(Xm), m = 1, 2, . . . ,M], which would yield ficti-
tious poles in the pseudospectrum in (26), making the in-
version nonunique. This would hold if and only if there ex-
isted a configuration of M + 1 targets, the target positions
Xm and the fictitious target position X �= Xm included, such
that they were linearly dependent. Under the conditions re-
quired by the theorem, in particular, M < Nr , this can hap-
pen only for the unlikely configurations discussed in [14] and
in Appendix A of this paper so that apart from such rare sce-
narios which we are ignoring in this paper this does not hold
which completes the “only if” part of the result.

The corresponding transmit-mode version of the
method is that point X is a pole of the transmit-mode
time-reversal MUSIC pseudospectrum

Pt(X) =
⎡

⎣
∑

σp=0

∣∣v†pg
∗
0,t(X)

∣∣2
⎤

⎦

−1

, (27)

(where ∗ denotes complex conjugation) if and only if X cor-
responds to one of the target locations Xm, m = 1, 2, . . . ,M
if and only if M < Nt and M ≤ Nr . The above require-
ments tell us that at least one of the approaches (receive or
transmit) will work if and only if M ≤ min(Nt,Nr) and
M < max(Nt,Nr). Furthermore, for the special case when
M < Nr and M < Nt , one can use the generalized time-
reversal MUSIC pseudospectrum

Pr,t(X) =
⎡

⎣
∑

σp=0

∣
∣u†pg0,r(X)

∣
∣2 +

∣
∣v†pg

∗
0,t(X)

∣
∣2
⎤

⎦

−1

(28)

which theoretically peaks at the correct target locations. Im-
portantly, in the time-reversal MUSIC pseudospectra (26)–
(28) only the background Green function vectors enter into
play despite the generality of the development which consid-
ers multiple scattering.

4. HIGH-DIMENSIONAL SIGNAL SUBSPACEMETHOD

The time-reversal MUSIC method discussed in the previ-
ous section is applicable as long as M ≤ min(Nt,Nr) and
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M < max(Nt,Nr). It is shown in this section that if one im-
plements a different approach based on MUSIC-like steering
not of a single target (as in (26)–(28)) but of all theM targets
simultaneously (a multidimensional search) then it is actu-
ally possible to locate up to NrNt − n(n − 1)/2 − 1 targets,
where n is the number of coincident elements, as long as the
targets are approximately describable by the Born approxi-
mation. For additive spatially white Gaussian noise, which in
the form used next which is dictated by (34), (42) accounts
for Rayleigh fading associated to a background environment
with many small scatterers (see [46, pages 767–768], and
[47]), this method corresponds to the ML estimator for the
target locations [22]. The counterpart of the method for
multiply scattering targets is also developed, and it is found
that under these more general conditions the number of lo-
calizable targets becomes (NrNt)1/2�− 1 (where x� denotes
the smallest integer≥ x) which is greater than or equal to the
number corresponding to the time-reversal approach.

4.1. Born approximation case

Under the Born approximation the relevant MSR matrix K
is given by (11) which we rewrite as

K̄ = Π(Q)τ, (29)

where the bar symbol over a matrix denotes the vectorized
or stacked form of that matrix, theNrNt×M matrixΠ(Q) =
[Π̄1 Π̄2 · · · Π̄M] where

Q ≡ [X1,X2, . . . ,XM
]

(30)

and the NrNt × 1 vector

Π̄m = vec
[
g0,r
(
Xm
)
gT0,t
(
Xm
)]
, (31)

(where vec(·) denotes vectorized or stacked form of amatrix)
and where we have introduced theM×1 scattering amplitude
vector τ = [τ1, τ2, . . . , τM]T ∈ T ≡ CM .

The signal vector K̄ belongs to the space T ≡ CNrNt . It fol-
lows from Appendix B which incorporates reciprocity con-
siderations that as long as M < NrNt − n(n − 1)/2 where n
is the number of coincident transmitting and receiving el-
ements, and with the exception of very specialized and un-
likely target configurations which we ignore next, the prop-
agators Π̄m for different target positions are linearly inde-
pendent and rank(Π(Q)) = M. Thus assuming this condi-
tion next we introduce the M-dimensional signal subspace
S = span(Π̄1, Π̄2, . . . , Π̄M) of T spanned by the set ofM prop-
agators, and W , the orthogonal complement of S in T . Fur-
thermore, if one hypothesizes a set of possible target loca-
tions (a steering vector), say, Q′ ≡ [X′1,X

′
2, . . . ,X

′
M], where

X′1 is a hypothesized location for target 1, and so on, then one
can compute the hypothesized propagators Π̄′1, Π̄

′
2, . . . , Π̄

′
M

associated with Q′ and hence the corresponding signal sub-
space S′ = span(Π̄′1, Π̄

′
2, . . . , Π̄

′
M). Next one can find, for ex-

ample, by Gram-Schmidt orthonormalization, or by obtain-
ing the eigenvectors of the matrix

Π(Q′)Π†(Q′) =
M∑

m=1
Π̄′mΠ̄

′†
m (32)

having zero singular value, a set of orthonormal basis vec-

tors c(Q
′)

1 , c(Q
′)

2 , . . . , c(Q
′)

NrNt−M spanning the orthogonal comple-
ment W ′ of S′ in T . In the absence of noise, the projections

(c(Q
′)

i )†K̄ = 0 for all i = 1, 2, . . . ,NrNt −M if and only if the
steering vector Q′ coincides with the actual target locations,
that is, Q′ = Q (or any permutation of the same positions
therein). Then in the absence of noise the poles in the pseu-
dospectrum

P(Q′) = 1
∑NrNt−M

i=1
∣
∣∣
(
c(Q

′)
i

)†
K̄
∣
∣∣
2 (33)

yield the M target locations exactly. We wish to mention
that the necessary condition M < NrNt − n(n − 1)/2 upon
which this result is based is also sufficient, as can be estab-
lished following a discussion analogous to that implemented
in Section 3 for time-reversal MUSIC, while borrowing from
Appendices A–B, but we will not dwell on this here. Instead,
let us add noise w to the signal model (29) so that

̂̄K = Π(Q)τ +w. (34)

In the presence of noise, we substitute K̄ → ̂̄K in (33), and
the estimated Q′ that maximizes P(Q′) is that value which
also maximizes the signal-to-noise ratio (SNR) of the prin-

cipal component of ̂̄K as given by the projection of ̂̄K onto
the associated signal subspace S′. In the absence of noise this
method works perfectly but in the presence of noise the res-
olution diminishes as the pole of P(Q′) is smoothed out.

Next we show that for the particular case when the noise
term w in (34) corresponds to zero mean, spatially white
Gaussian noise of variance σ2, the method described in con-
nection with (33) coincides with the ML estimator for the
target positions derived recently in [22]. Our starting point
is (34). One readily finds along the usual lines [48] that the
ML estimates of the generalized target coordinate Q and of
the scattering amplitude vector τ are obtained via the mini-
mization

min
Q,τ

∥∥ ̂̄K −Π(Q)τ
∥∥, (35)

where ‖ · ‖ denotes the Euclidean norm. As is well known
[48, 49], for any given Q, the scattering amplitude vector τ̂Q
that minimizes the norm in (35) is of the form

τ̂Q = Π+(Q) ̂̄K , (36)

where Π+(Q) = [Π†(Q)Π(Q)]−1Π†(Q) is the pseudoinverse
of Π(Q). By substituting this result into (35) while recalling
that [49]

Π(Q)τ̂Q = PR ̂̄K , (37)

where PR is an operator that projects the data space T onto
the range of Π(Q), which is given in terms of the singular
system (λp,Vp,Up) of Π(Q) (where λp,Vp ∈ T and Up ∈ T
are the corresponding singular values, object singular vectors
and data singular vectors, resp.) by

PR =
∑

λp>0

Up(Q)U†
p (Q), (38)
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one finds that the ML estimate Q̂ of the target locations is
given by (see also [22, equation (33)])

Q̂ = arg min
Q

∥
∥(I − PR

) ̂̄K
∥
∥ = arg min

Q

∥
∥PNR

̂̄K
∥
∥, (39)

where I is the NrNt × NrNt identity matrix and PNR is the
projection operator onto the orthogonal complement of the
range of Π(Q), which is also the null space of the operator
Π(Q)Π†(Q) [49] and is defined by

PNR =
∑

λp=0
Up(Q)U†

p (Q). (40)

Then from (39)-(40) the ML estimator

Q̂ = argmin
Q

∑

λp=0

∣
∣U†

p (Q)
̂̄K
∣
∣2, (41)

which is exactly the estimation method described in (33)

with the substitution K̄ → ̂̄K since the singular vectors
Up, λp = 0 ofΠ(Q) span the same subspace as the vectors cQi ,
i = 1, 2, . . . ,NrNt −M in (33), which completes the proof.
Finally, the ML estimate of the target scattering amplitude
vector τ is given by substituting Q → Q̂ in (36) (see also [22,
equation (34)]). We consider next the full multiple scattering
case.

4.2. Multiple scattering case

The starting point of the multiple scattering generalization is
(18) and its companion equation (19) which we rewrite as

̂̄K = Γ(Q)A(Q, τ) +w, (42)

where Γ(Q) is the NrNt ×M2 matrix whose columns are the
NrNt × 1 vectors obtained by stacking of the matrices

Γm,m′ = g0,r
(
Xm
)
gT0,t
(
Xm′

)
, m,m′ = 1, 2, . . . ,M, (43)

and where A(Q, τ) is theM2 × 1 vector having entries Am,m′ ,
m = 1, 2, . . . ,M,m′ = 1, 2, . . . ,M.

By comparing expressions (11), (34) and (18)-(19), (42)
corresponding to the Born approximated and non-Born-
approximated, multiple scattering cases, respectively, we re-
alize that unlike in the Born-approximated case which in-
volves a sum of only M propagators Πm, the corresponding
expression (42) in the multiple scattering case comprises a
total of M2 propagators Γm,m′ . From this and the results in
Appendix B, it follows that the applicability condition in the
multiple scattering case becomes M2 < NrNt , in particular,
the high-dimensional method of this section functions for
the localization of up to (NtNr)1/2� − 1 targets. Under this
condition the obvious generalization of the method of the
preceding subsections, with A(Q, τ) taking the role of τ and
Γ(Q) taking the role of Π(Q), becomes the estimation of the
generalized target coordinate Q via the maximizing of the
pseudospectrum

P(Q) = 1
∑

λp=0
∣∣U†

p
̂̄K
∣∣2

, (44)

where Up, λp = 0 are the zero singular value eigenvectors of
the matrix Γ(Q)Γ†(Q). Furthermore, this is also the ML esti-
mate from the point of view of estimation of the parameters
Q andA(Q, τ) (where themodel dependence ofA onQ and τ
is ignored), in which case the associated ML estimate Â(Q, τ)
of the generalized scattering amplitude vector A(Q, τ) is ob-
tained by substituting the value of Q found in (44) into

Â(Q, τ) = Γ+(Q) ̂̄K. (45)

This approach has been derived independently and in a dif-
ferent form in [22, pages 236-237].

5. NONITERATIVE SCATTERING
AMPLITUDE INVERSION

The problem of estimating the reflectivities τm,m = 1, 2, . . . ,
M after the target locations Xm, m = 1, 2, . . . ,M, have been
found consists of the inversion of the nonlinear mapping of
the reflectivities τm to the MSR matrix K as specified, for ex-
ample, in (18) and (19). This nonlinear inversion has been
tackled in a recent paper [13] by means of an iterative al-
gorithm. Given the nonlinear nature of the problem, it is
not obvious that under certain conditions it might be ac-
tually possible to carry out the inversion via an explicit for-
mula, that is, a noniterative algorithm, in place of iterative
approaches. It is shown next that despite the nonlinearity of
the associated forward mapping, such a reconstruction for-
mula does exist ifM ≤ min(Nt,Nr) and can be implemented
rather trivially once the target positions have been estimated
via time-reversal MUSIC or other approaches.

IfM ≤ min(Nt ,Nr), the background Green function vec-
tors form a linearly independent set so that

M∑

m=1
αmg0,r

(
Xm
) = 0 iff αm = 0, m = 1, 2, . . . ,M (46)

with a similar condition holding for the respective transmit
vectors. To arrive at the desired formula, let us consider an
“active target isolation,” consisting of generating the unique
vector K+g0,r(X1), where K+ : Y →X denotes the pseudoin-
verse (defining the normal solution of minimum L2 norm
[49]) of the linear mapping K : X → Y, which when used
as excitation at the transmit array yields an output at the re-
ceive array equal to the background Green function vector
g0,r(X1) corresponding to target 1. Thus the entire received
signal associated to this vector arises from target 1 only, a de-
sirable property, as we will see, in isolating the effect of that
target alone. It now follows from expression (3) for the MSR
matrix K that

M∑

m=1
τmg0,r

(
Xm
)
gTt
(
Xm
)
K+g0,r

(
X1
) = g0,r

(
X1
)

(47)

which in view of (46) further translates into

τ1g
T
t

(
X1
)
K+g0,r

(
X1
) = 1,

gTt
(
Xm
)
K+g0,r

(
X1
) = 0, m = 2, 3, . . . ,M.

(48)
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Figure 1: Geometry for the simulation in 2D space of subspace-
based localization and inverse scattering of two targets.

By applying the Foldy-Lax model expression (16) to the total
Green function vector gt(X1), and substituting the obtained
result in the top equation in (48) while recalling the con-
straint imposed by the bottom equation in (48), one arrives
at the more convenient statement

τ1g
T
0,t

(
X1
)
K+g0,r

(
X1
) = 1 (49)

involving only the known MSR matrix K and the known
background Green function vectors g0,r(X1) and g0,t(X1)
evaluated at the known (e.g., via time-reversal MUSIC or
the high-dimensional signal subspace method) target posi-
tion X1, from which the unknown coefficient τ1 can be read-
ily (and uniquely) computed. Equation (49) is the sought-
after reconstruction formula. By using the formula (49) for
all targets (m = 1, 2, . . . ,M) one thereby completes the de-
sired inversion which under no noise is guaranteed to yield
no error. The analysis above has been validated with several
numerical examples during the course of this investigation,
some of which are given in the following section.

6. COMPUTER SIMULATIONS

This section presents the results of computer simulations of
the time-reversal MUSIC and high-dimensional signal sub-
space methods presented in Sections 3 and 4, respectively,
as well as of the formula for the direct reconstruction of
the target reflectivities presented in Section 5, which together
solve the full inverse scattering problem for point targets. In
Sections 6.1 and 6.2 we simulate interrogation of two tar-
gets (M = 2) in two-dimensional (2D) free space using a
noncoincident array system formed by 11 half-wavelength-
separated transmitters and 17 half-wavelength-separated re-
ceivers (refer to Figure 1 for the geometry of the experiments
where triangles, squares, and circles indicate the transmitters,
receivers, and targets, resp.). Unless otherwise stated, this

system configuration is throughout maintained next. In all
the simulations we take the wavelength λ = 1 so that k0 = 2π.
For the simulation experiments the scattering amplitude is
set to τ1 = 0.03 and τ2 = 0.04 for the Born-approximated
case and to τ1 = 3 and τ2 = 4 for the multiple scattering case.
It is assumed that the measured MSR matrix K is contami-
nated by a single snapshot of additive white Gaussian noise
whose variance σ2 is related to the SNR by

σ2 = ‖K‖F
NrNt SNR

, (50)

where ‖K‖F is the Frobenius norm of the 17×11MSRmatrix
K .

The pertinent background Green function is

G0(R,R′) = H0
(
k0|R− R′|), (51)

whereH0(·) is the Hankel function of order zero pertinent to
outgoing waves in the far zone.

In Sections 6.1 and 6.2 we pay equal attention to the two
different regimes of weak scatterers where the Born approx-
imation model is valid, and of strong scatterers interacting
according to the Foldy-Lax model. To quantify the level of
multiple scattering we consider the index

η =
∥
∥Kb − K

∥
∥
F

‖K‖F , (52)

where Kb is a reference MSR matrix applicable to the same
configuration under the Born approximation. As an addi-
tional indicator, we also consider the M ×M scattering po-
tential matrix {Am,m′ } (see (18)-(19)) which is essentially di-
agonal for Born-approximable targets. This matrix has off-
diagonal couplings under more general multiple scattering.
For example, for the multiple scattering case using τ1 = 3
and τ2 = 4 we have η = 0.7891 and

{
Am,m′

} =
[
2.1794− 1.3079i 0.5326− 2.2246i

0.5326− 2.2246i 2.9059− 1.7438i

]

, (53)

while for the Born-approximated case η = 0.0074 and

{
Am,m′

} =
[
0.0300− 0.0000i 0.0002− 0.0002i

0.0002− 0.0002i 0.0400− 0.0000i

]

. (54)

We also wish to mention that while for the time-reversal
MUSIC simulations the number of targets may be estimated
from the number of nonnegligible singular values of theMSR
matrix K , for the high-dimensional signal subspace method
this is not possible. On the other hand, preprocessing via in-
formation theoretic criteria (e.g., Akaike information [50],
minimum description length [51]) can be used to estimate
the number of sources (refer to [52–54] for other treatments
of this “source enumeration problem”). For uniformity, it is
assumed in the following that the number M of targets is
known, with the understanding that in practice one may uti-
lize complementarymethods to first tackle the prior enumer-
ation problem.
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Figure 2: Generalized time-reversal MUSIC pseudospectrum for
the multiple scattering case for SNR = 20 dB.

6.1. Pseudospectra

Figure 2 illustrates the pseudospectrum Pr,t (X = (X ,Y)) as
defined by (28) for the multiple scattering case under a 20 dB
SNR. For this noise level the pseudospectrum peaks at the
correct target positions; however, noticeable spurious peaks
appear with a level comparable to those of the correct tar-
get positions. In fact, for higher levels of noise these spurious
peaks dominate, seriously affecting the target position esti-
mates. Figure 3 shows, for the correct value of the targets’ Y
coordinate, the corresponding high-dimensional signal sub-
space method pseudospectrum (44) for 20 dB SNR. An ad-
vantage of the high-dimensional signal subspace method es-
tablished in Section 4 is in the number of localizable tar-
gets. For example, Figure 4 shows, for the Born approxi-
mated case, the pseudospectrum for the geometry shown in
Figure 1 corresponding to MSR data gathered using only the
4 central array elements (two receivers and two transmit-
ters). Under these conditions time-reversal MUSIC is lim-
ited to detecting one target only. On the contrary, the high-
dimensional algorithm is capable of detecting two targets
(theoretically, up to 3 targets) as illustrated in the figure.

6.2. Comparative study

In this subsection we compare (again, for the same system
shown in Figure 1) the performance under different noise
levels of the target location approaches associated to the
pseudospectra derived in this paper in (26), (28), (33), and
(44) as well as the CRB derived in Appendix C. To simplify
the analysis and reduce the computational overhead, in the
following the Y coordinate of the targets will be fixed to
the correct value, assuming that this (range) parameter has
been estimated a priori, and the respective search will be car-
ried out only for the unknown X coordinate. For each of the
methods that we are testing we calculate an estimate of the re-
spective variance from 50 statistical replications of each noise
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Figure 3: High-dimensional signal subspace method pseudospec-
trum for the multiple scattering case for SNR = 20 dB.
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Figure 4: High-dimensional pseudospectrum for two antennas de-
tecting two Born-approximated targets located at X1 = (X1 =
−1, Y1 = −6) and X2 = (X2 = 1, Y2 = −6) for SNR = 50 dB.

level according to

σ̂2 = E
[(
Xm − X̂m

)2]
, (55)

where E[·] denotes the expected value, Xm is the actual value
of the mth target’s X coordinate, and X̂m is the estimated
value. In the following illustrations, the lowest value of SNR
considered was chosen around the critical value for which the
signal subspace methods appear to break down, for example,
when the pseudospectrum no longer works due to spurious
peaks.

Figure 5 shows the variances of the position estimates
of target 2 versus SNR for the general multiple scattering
case for which τ1 = 3 and τ2 = 4. The high-dimensional
signal subspace method estimates are the best, relative to
those of the other methods, but the time-reversal MUSIC ap-
proach also performs well despite the presence of significant
multiple scattering, as predicted by the theory in Section 3.
Similar results (not shown) were obtained for target 1. The
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Figure 5: Estimated variance for the estimate of the position of tar-
get 2 versus SNR corresponding to the location under significant
multiple scattering conditions of two targets located at X1 = (X1 =
−1, Y1 = −6) andX2 = (X2 = 1, Y2 = −6). The different plots cor-
respond to the receive-mode time-reversal MUSIC method (K Rx),
the transmit-plus-receive time-reversalMUSICmethod (K Rx+Tx),
the high-dimensional method (HD), and the CRB. The search was
done on the X coordinate only, the Y coordinate being fixed during
the simulations at the correct value.

corresponding plot for the Born approximation case where
τ1 = 0.03 and τ2 = 0.04 is shown in Figure 6. In this illustra-
tion, again the high-dimensional approach outperforms the
other approaches.

6.3. Scattering amplitude reconstruction

In this subsection we compare the variances of the noniter-
ative algorithm proposed in Section 5, the estimate obtained
from ignoring themultiple scattering between the targets and
using (36), and the CRB.

The variances are estimated according to the expression

E
[(�(τ̂m − τm

))2]
, (56)

where �[·] denotes the real part, τ̂m is the estimate of the
scattering potential of targetm, and τm is the actual value.

The estimated variance for the estimation of the reflectiv-
ities and the X coordinate of the targets after 50 instances of
noise is plotted in Figure 7. Although not shown in the plots,
the performance of the noniterative method is comparable
to that of the iterative algorithm proposed in [13] despite its
requirement of a single calculation. The results suggest corre-
lation between position and reflectivity estimation errors and
also show that the estimation error when the Born approxi-
mation is wrongly assumed can be significant, even under no
noise.
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Figure 6: Estimated variance for the estimates of the position of
target 2 versus SNR corresponding to the location under Born-
approximable conditions of two targets located at X1 = (X1 =
−1, Y1 = −6) and X2 = (X2 = 1, Y2 = −6) (refer to the caption of
Figure 5 for details applicable also to this figure).

7. CONCLUDING REMARKS

This work investigated signal subspace methods for inverse
scattering of point targets embedded in a known background
medium from knowledge of the MSR matrix as measured by
a general array of wave transmitters and receivers. The tar-
get location methods presented in the paper were compar-
atively characterized partly analytically and partly numeri-
cally. It was shown that the high-dimensional signal subspace
method outperforms the time-reversal approach in num-
ber of localizable targets if the Born approximation holds.
The version of the method for multiply scattering targets
can also enhance in certain cases the number of localizable
targets. The high-dimensional signal subspace approach was
also found to outperform the time-reversal approach in lo-
calization error (variance). The problem of estimating the re-
flectivities was solved by means of a direct, noniterative for-
mula which holds even if there is nonnegligible multiple scat-
tering in which case the problem is nonlinear.

A drawback of the high-dimensional signal subspace
method is its high computational intensity. Thus for M tar-
gets the high-dimensional signal subspace method requires a
search in 2M (3M) dimensions in the 2D (3D) cases. On the
other hand, this difficulty can be dealt with partly via prior
approaches rendering initial values for the searches such as
time-reversal MUSIC. The time-reversal MUSIC estimation
for the 2D (3D) case requires an exhaustive search in 2D
(3D) dimensions. For instance, as long as time-reversal MU-
SIC or another method is applicable, one can use its estimate
as an initial value for, for example, a fixed point iteration
routine (e.g., Newton, quasi-Newton), or other nonlinear
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Figure 7: Variance (logarithmic scale) of the estimate of the scat-
tering amplitude and the position of target 2 under significant mul-
tiple scattering for both the noniterative estimation algorithm and
the Born-approximated estimate (36). The targets are located at the
positions X1 = (X1 = −1, Y1 = −6) and X2 = (X2 = 1, Y2 = −6).
Also shown is the CRB of the estimation of the real part of the scat-
tering potential. The plot shows the average after 50 instances of
random noise.

optimization approach yielding the estimate of the high-
dimensional signal subspace method. If there are more
targets than sensors, the MUSIC technique breaks down,
while, for example, under the Born approximation the high-
dimensional method remains useful as long as M < NtNr −
n(n − 1)/2 where n is the number of coincident elements
across arrays. In this case genetic algorithms can be used
which significantly reduce computational burden [26].

A limitation of the signal subspace methods discussed in
this paper is their need for a priori knowledge of the back-
ground medium properties, in particular, the background
Green function. Another limitation is the strong sensitivity
to noise and other perturbations. Both of these limitations
are expected to diminish by implementing time domain ver-
sions of the imagingmethods considered in the present paper
which are expected to be statistically more stable in moder-
ately cluttered environments due to self-averaging over in-
dividual realizations of the medium as has been shown for
time reversal in [31, 55] (also relevant is the experiment in
[56]). Furthermore, for densely cluttered environments one
is forced to abandon the coherent signal regime which was
the focus of our presentation and formulate, for example,
a radiative transfer-based type of imaging where the Green
function of the present treatment must be substituted by the

Green function relevant to the partial differential equations
governing this type of imaging, for example, the diffusion
equation pertinent to certain kinds of such cluttered me-
dia (see [12] for the key ideas). In this connection we also
wish to point out that the vector electromagnetic version of
the methods is conceptually similar to that given in this pa-
per for scalar fields if one substitutes the scalar Green func-
tions and scattering potential operator of this work by the
respective electromagnetic dyadic Green functions and (gen-
erally dyadic) scattering potential operator (the key formal
tools can be found in [57, 58], see also [20, pages 516–518],
for the pertaining vector form of the Foldy-Lax model).

We are currently working on the generalization for cer-
tain classes of extended (nonpoint-like) targets, particularly
piecewise constant scattering potentials, of many of the
methods established in this work and plan to report the as-
sociated results in the future. Background for the treatment
of the envisioned generalization is contained, for example,
in the work of Tsihrintzis and Devaney [59] on ML localiza-
tion of a known strongly scattering object, of Zhao [60] and
Hou et al. [61] on time-reversal localization of an extended
target, of Poon et al. [62] on electromagnetic information
channels (where we will consider, e.g., multipole or other
extended object modes instead of the singular (point-like)
scatterer modes of the present work) and, more recently, of
Pierri et al. [63] on shape reconstruction beyond the physical
optics model which has, in fact, connection to some of our
linear-to-nonlinear signal model extensions such as the time-
reversal generalization tomultiply scattering targets. Another
natural and important line of continuation of the present ef-
fort is further performance analysis which will benefit from
work on perturbation analysis of signal subspace methods
[64, 65].

APPENDICES

A. ELABORATION CONCERNING (22)–(24)

This appendix discusses for a given array of Nr receivers
whose positions Rr(l), l = 1, 2, . . . ,Nr , are fixed, the ques-
tion of the possible existence of certain configurations of
target positions Xm, m = 1, 2, . . . ,M, for which the re-
sulting receive background Green function vectors g0,r(Xm),
m = 1, 2, . . . ,M, are linearly dependent. Of particular in-
terest are the conditions under which dr ≡ dim{g0,r(X1),
g0,r(X2), . . . , g0,r(XM)} < min(M,Nr). The analysis and re-
sults apply to the transmit background Green function vec-
tors after obvious substitutions.

It is not hard to show that the necessary and sufficient
condition for dr < M ifM ≤ Nr is

det
[
hC
(
X1
)

hC
(
X2
) · · · hC

(
XM
)] = 0, (A.1)

where C = (α1,α2, . . . ,αM) is any of the Nr !/[(Nr −M)!M!]
combinations of M elements of {Rr(1),Rr(2), . . . ,Rr(Nr)}
and the associated hC(Xm) = [g0,r(α1,Xm) g0,r(α2,Xm) · · ·
g0,r(αM ,Xm)]T . Also, the necessary and sufficient condition
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for dr = rank(G0,r) = rank(GT
0,r) < Nr ifM > Nr is

det
[
g0,r
(
β1
)

g0,r
(
β2
) · · · g0,r

(
βNr

)] = 0, (A.2)

where (β1,β2, . . . ,βNr ) is any of theM!/[(M −Nr)!Nr !] com-
binations of Nr elements of {X1,X2, . . . ,XM}. If and only if
both conditions in (A.1)-(A.2) are disobeyed for the given ar-
ray for any set of target positions (X1,X2, . . . ,XM), then (22)
holds. The conditions in question hold only in pathological
rare configurations [14] so that, as in other studies [13–
15, 17, 18, 22, 31, 66], we assume in this paper that they do
not hold so that (22) holds.

For example, for M = 2 ≤ Nr the condition in (A.1)
becomes with reference to (6)

G0
(
Rr(i),X1

)

G0
(
Rr(l),X1

) = G0
(
Rr(i),X2

)

G0
(
Rr(l),X2

) (A.3)

which must hold for any combination of bistatic subarrays
labelled (i, l) ∈ {1, 2, . . . ,Nr} × {1, 2, . . . ,Nr}, × denoting
Cartesian product. In 3D free space, for which G0(Rr(l),Xm)
is of the form −eik0dlm /4πdlm where k0 is the free space
wavenumber and

dlm ≡
∣∣Rr(l)−Xm

∣∣, (A.4)

this implies that for any pair (i, l) representing a particular
bistatic subarray of the full array both targets must lie in a
hyperbola of the form [14]

di1 − dl1 = di2 − dl2 = const (A.5)

whose foci are the positions Rr(i) and Rr(l), and in the geo-
metric place defined by

logdi1 − logdl1 = logdi2 − logdl2 = const, (A.6)

which is formally similar to the so-called ovals of Cassini of
bistatic radar [67, pages 70–72], but where in the latter ad-
dition takes the place of subtraction above so that the curves
associated to (A.6) correspond to contours of constant SNR
difference. Returning to the hyperbola in (A.5), we find it to
have the form of the so-called isorange-difference contours of
bistatic radar which are perpendicular, at intersection points,
to the pertinent isorange contours which are ellipses [67,
pages 60–62]. This means that target 1 must be simultane-
ously in the same isorange-difference and isoSNR-difference
contours defined, for each bistatic subarray within the full ar-
ray, by (A.5) and (A.6), respectively, as target 2, which is very
unlikely. A complementary counterpart of this discussion is
the manifestation of (A.2) forN = 2 < M, where one obtains
in general

G0
(
Rr(1),X1

)

G0
(
Rr(2),X1

) = G0
(
Rr(1),Xm

)

G0
(
Rr(2),Xm

) = const, (A.7)

where m represents any of the M targets. In free space this
becomes

d11 − d21 = d1m − d2m = const, (A.8)

logd11 − logd21 = logd1m − logd2m = const. (A.9)

Thus given the two receivers, then all the M targets must
lie in the intersection of the same isorange-difference and
iso-SNR-difference curves defined for those two receivers by
(A.8) and (A.9), respectively, which is a very specialized situ-
ation.

B. RANK OF Γ ANDΠ

The general situation is assumed wherein the transmit ar-
ray has Nt elements, the receive array has Nr elements, and
n of these elements are coincident. The linear independence
of the columns of theNrNt×M2 matrix Γ (see (42) and (43))
for the case where M ≤ Nm = min(Nr ,Nt) can be shown by
rewriting it in terms of Kronecker products:

Γ = G0,t ⊗ G0,r

=
[
g0,t
(
X1
)⊗g0,r

(
X1
)
g0,t
(
X1
)⊗g0,r

(
X2
) · · · g0,t

(
XM
)⊗g0,r

(
XM
)]
,

(B.1)

where G0,t and G0,r are defined by our discussion in (10)
and ⊗ indicates the Kronecker or direct product. In this case
the rank of G0,t and G0,r is M as we explained in Section 2
and in Appendix A and, in particular, the different back-
ground Green function vectors are linearly independent. On
the other hand, it is easy to show that the rank of the Kro-
necker product of two matrices is equal to the product of the
rank of each matrix [68, page 246], so that the rank of Γ is
M2 and all columns are linearly independent. This also im-
plies that for the Born approximated case (Section 4.1) the
NrNt ×M matrix Π has rankM since its columns are a sub-
set of the set of columns of Γ. Note also that if M2 > NrNt

the rank of Γ isNrNt and the set of columns becomes linearly
dependent.

A particularly useful result occurs for the Born approxi-
mation case whenNm < M < NrNt−n(n−1)/2. TheNrNt×M
propagator matrix Π is given by

Π = G0,t � G0,r

=
[
g0,t
(
X1
)⊗g0,r

(
X1
)
g0,t
(
X2
)⊗g0,r

(
X2
) · · · g0,t

(
XM
)⊗g0,r

(
XM
)]
,

(B.2)

where � represents the Khatri-Rao matrix product [15].
In matrix G0,t any set of Nt columns is linearly indepen-

dent while in matrix G0,r any set of Nr columns is linearly
independent (see Appendix A). Each of these sets spans the
column space of the corresponding matrices, that is,

g0,r
(
Xi
) ∈ span

[
g0,r
(
X1
)
, . . . , g0,r

(
XNr

)]
,

i = Nr + 1, . . . ,M,

g0,t
(
Xi
) ∈ span

[
g0,t
(
X1
)
, . . . , g0,t

(
XNt

)]
,

i = Nt + 1, . . . ,M.

(B.3)
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From (B.3) we have for l = Nm + 1, . . . ,M

g0,t
(
Xl
)⊗ g0,r

(
Xl
) =

⎛

⎝
Nt∑

j=1
aj,lg0,t

(
X j
)
⎞

⎠⊗
⎛

⎝
Nr∑

k=1
bk,lg0,r

(
Xk
)
⎞

⎠

=
Nt∑

j=1

Nr∑

k=1
aj,lbk,lg0,t

(
X j
)⊗ g0,r

(
Xk
)
,

(B.4)

where {aj,l} and {bk,l} are not-all-zero scalars.
In order for the set of M columns to be dependent we

must be able to find a set of scalars {Ai} not all zeros such
that

M∑

i=1
Aig0,t

(
Xi
)⊗ g0,r

(
Xi
) = 0, (B.5)

where here 0 denotes the NtNr × 1 zero vector.
Using (B.4),

Nm∑

l=1

⎡

⎣Al +
M∑

i=Nm+1

Aial,ibl,i

⎤

⎦g0,t
(
Xl
)⊗ g0,r

(
Xl
)

+
Nt∑

j=1

Nr∑

k=1
g0,t
(
X j
)⊗ g0,r

(
Xk
)(
1− δj,k

) M∑

i=Nm+1

Aiaj,ibk,i

= 0.
(B.6)

Since the two terms are independent, one arrives at the con-
ditions

Al +
M∑

i=Nm+1

Aial,ibl,i = 0,

M∑

i=Nm+1

Aiaj,ibk,i = 0

(B.7)

for all l = 1, 2, . . . ,Nm, j �= k, j = 1, 2, . . . ,Nt, and k =
1, 2, . . . ,Nr .

Note that if reciprocity holds, this meaning that the order
of the arguments of the background Green function is in-
consequential, as is the case in the present scalar Helmholtz
operator-based formulation, and we have n coincident ele-
ments, then n(n − 1)/2 rows of the vectors in (B.5) are re-
peated. This causes the system of equations represented by
conditions (B.7) to correspond to NrNt − n(n− 1)/2 nonre-
dundant linear equations with M unknowns Ai. As long as
M < NrNt − n(n − 1)/2 this is an overdetermined sys-
tem of equations which will be obeyed only for very spe-
cialized situations. In our computer simulation geometries
this particular situation never occurred. Finally, note that if
M > NrNt −n(n− 1)/2, we have more unknowns than equa-
tions and there exists a nontrivial solution to the system.

C. FISHER INFORMATIONMATRIX/CRB

Consider a general array of Nr receiver and Nt transmitter
elements interrogating in 2D space M targets at positions

Xm = (Xm,Ym), m = 1, 2, . . . ,M having complex-valued re-

flectivities τm = τ(r)m + ıτ(i)m , where here ı ≡ √−1 while i de-
notes the imaginary part. The noisy observations are mod-
eled as

̂̄K = K̄(θ) +w, (C.1)

where

θ =
[
X1, . . . ,XM ,Y1, . . . ,YM , τ

(r)
1 , . . . , τ(r)M , τ(i)1 , . . . , τ(i)M , σ2

]T

(C.2)

is the vector of parameters to be estimated, w is complex
white Gaussian noise with variance σ2, and K̄(θ) is the vec-
torized version of the matrix K (see (3)) with components

K̄i(θ)=
M∑

m=1
τmG0

(
Rr(u),Xm

)
G
(
Xm,Rt(v)

)
, i=1, . . . ,NrNt ,

(C.3)

where u and v are indices that depend on i (as detailed in (3),
(6)-(7)).

The Fisher information matrix relevant to this problem
is given by (see [69, page 525])

[
I(θ)

]
i j =

NrNt

σ4
δi, jδi,4M+1 +

2
σ2
�
⎡

⎣
NrNt∑

n=1

∂K̄∗n (θ)
∂θi

∂K̄n(θ)
∂θj

⎤

⎦.

(C.4)

From (C.3) we find that

∂K̄i(θ)
∂σ2

= 0,

∂K̄i(θ)
∂Xj

= τj
∂G0

(
Rr(u),Xm

)

∂Xj
G
(
X j ,Rt(v)

)

+
M∑

m=1
τmG0

(
Rr(u),Xm

)∂G
(
Xm,Rt(v)

)

∂Xj
,

∂K̄i
(
θ
)

∂τ(t)j
= ξ(t)G0

(
Rr(u),Xm

)
G
(
X j ,Rt(v)

)

+
M∑

m=1
τmG0

(
Rr(u),Xm

)∂G
(
Xm,Rt(v)

)

∂τ(t)j
,

(C.5)

where t denotes r (standing for real) or i (standing for imag-
inary) and ξ(r) = 1 and ξ(i) = ı.

The total Green function is defined by (17) and the
derivatives of this Green function are determined by differ-
entiating the Foldy-Lax equation

G
(
Xm,Rt(v)

) = G0
(
Xm,Rt(v)

)

+
∑

m′ �=m
τm′G0

(
Xm,Xm′

)
G
(
Xm′ ,Rt(v)

)
.

(C.6)
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This leads to

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂G
(
X1,Rt(v)

)

∂Xj

∂G
(
X2,Rt(v)

)

∂Xj
...

∂G
(
X j−1,Rt(v)

)

∂Xj

∂G
(
X j ,Rt(v)

)

∂Xj

∂G
(
X j+1,Rt(v)

)

∂Xj
...

∂G
(
XM ,Rt(v)

)

∂Xj

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= H−1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

τj
∂G0

(
X1,X j

)

∂Xj
G
(
X j ,Rt(v)

)

τj
∂G0

(
X2,X j

)

∂Xj
G
(
X j ,Rt(v)

)

...

τj
∂G0

(
X j−1,X j

)

∂Xj
G
(
X j ,Rt(v)

)

∂G0
(
X j ,Rt(v)

)

∂Xj
+
∑

m′ �= j

τm′
∂G0

(
X j ,Xm′

)

∂Xj
G
(
Xm′ ,Rt(v)

)

τj
∂G0

(
X j+1,X j

)

∂Xj
G
(
X j ,Rt(v)

)

...

τj
∂G0

(
XM ,X j

)

∂Xj
G
(
X j ,Rt(v)

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂G
(
X1,Rt(v)

)

∂τ(t)j
∂G
(
X2,Rt(v)

)

∂τ(t)j
...

∂G
(
X j−1,Rt(v)

)

∂τ(t)j
∂G
(
X j ,Rt(v)

)

∂τ(t)j
∂G
(
X j+1,Rt(v)

)

∂τ(t)j
...

∂G
(
XM ,Rt(v)

)

∂τ(t)j

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= ξ(t)H−1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

G0
(
X1,X j

)
G
(
X j ,Rt(v)

)

G0
(
X2,X j

)
G
(
X j ,Rt(v)

)

...

G0
(
X j−1,X j

)
G
(
X j ,Rt(v)

)

0

G0
(
X j+1,X j

)
G
(
X j ,Rt(v)

)

...

G0
(
XM ,X j

)
G
(
X j ,Rt(v)

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(C.7)

Finally, the CRB is obtained by replacing the expressions
above in (C.4), inverting the resulting Fisher matrix, and tak-
ing the diagonal elements [69, page 40].

ACKNOWLEDGMENTS

The authors wish to thank Professor Hanoch Lev-Ari for en-
lightening conversations. This work was supported by the
United States Air Force Office of Scientific Research (AFOSR)
under Grant no. FA9550-06-01-0013, and is affiliated with
the Center for Subsurface Sensing and Imaging Systems
(CenSSIS), under the Engineering Research Centers Program

of the National Science Foundation (award number EEC-
9986821).

REFERENCES

[1] J. W. Odendaal, E. Barnard, and C. W. I. Pistorius, “Two-
dimensional superresolution radar imaging using the MUSIC
algorithm,” IEEE Transactions on Antennas and Propagation,
vol. 42, no. 10, pp. 1386–1391, 1994.

[2] B. D. Rigling and R. L. Moses, “Three-dimensional surface re-
construction from multistatic SAR images,” IEEE Transactions
on Image Processing, vol. 14, no. 8, pp. 1159–1171, 2005.



14 EURASIP Journal on Advances in Signal Processing

[3] A. Sahin and E. L. Miller, “Object detection using high reso-
lution near-field array processing,” IEEE Transactions on Geo-
science and Remote Sensing, vol. 39, no. 1, pp. 136–141, 2001.

[4] S. Ebihara, M. Sato, and H. Niitsuma, “Super-resolution of
coherent targets by a directional borehole radar,” IEEE Trans-
actions on Geoscience and Remote Sensing, vol. 38, no. 4, pp.
1725–1732, 2000.

[5] C. Prada, E. Kerbrat, D. Cassereau, and M. Fink, “Time re-
versal techniques in ultrasonic nondestructive testing of scat-
tering media,” Inverse Problems, vol. 18, no. 6, pp. 1761–1773,
2002.

[6] H. J. Shin, S.-J. Song, and Y. H. Jang, “Development of an
intelligent ultrasonic phased array system for NDT of steel
structures,” in Proceedings of 28th Annual Review of Progress
in Quantitative Nondestructive Evaluation (QNDE ’01), D. O.
Thompson and D. E. Chimenti, Eds., vol. 20, pp. 1874–1881,
Brunswick, Me, USA, July-August 2001.

[7] X. Li, S. K. Davis, S. C. Hagness, D. W. van der Weide, and B.
D. Van Veen, “Microwave imaging via space-time beamform-
ing: experimental investigation of tumor detection in multi-
layer breast phantoms,” IEEE Transactions on Microwave The-
ory and Techniques, vol. 52, no. 8, part 2, pp. 1856–1865, 2004.

[8] B. Scholz, “Towards virtual electrical breast biopsy: space-
frequency MUSIC for trans-admittance data,” IEEE Transac-
tions on Medical Imaging, vol. 21, no. 6, pp. 588–595, 2002.

[9] J.-L. Thomas and M. A. Fink, “Ultrasonic beam focusing
through tissue inhomogeneities with a time reversal mirror:
application to transskull therapy,” IEEE Transactions on Ultra-
sonics, Ferroelectrics, and Frequency Control, vol. 43, no. 6, pp.
1122–1129, 1996.

[10] J. R. Taylor, Scattering Theory: The Quantum Theory of Non-
relativistic Collisions, John Wiley & Sons, New York, NY, USA,
1972.

[11] A. Ishimaru,Wave Propagation and Scattering in Random Me-
dia, IEEE Press and Oxford University Press, New York, NY,
USA, 1997.

[12] G. Bal and O. Pinaud, “Time-reversal-based detection in ran-
dom media,” Inverse Problems, vol. 21, no. 5, pp. 1593–1619,
2005.

[13] A. J. Devaney, E. A. Marengo, and F. K. Gruber, “Time-
reversal-based imaging and inverse scattering of multiply scat-
tering point targets,” Journal of the Acoustical Society of Amer-
ica, vol. 118, no. 5, pp. 3129–3138, 2005.

[14] A. J. Devaney, “Super-resolution processing of multi-
static data using time reversal and MUSIC,” 2000,
(unpublished manuscript available in the web site
http://www.ece.neu.edu/faculty/devaney).

[15] H. Lev-Ari and A. J. Devaney, “The time-reversal technique
reinterpreted: subspace-based signal processing for multi-
static target location,” in Proceedings of the 1st IEEE Sensor Ar-
ray and Multichannel Signal Processing Workshop (SAM ’00),
pp. 509–513, Cambridge, Mass, USA, March 2000.

[16] M. Cheney, “The linear sampling method and the MUSIC al-
gorithm,” Inverse Problems, vol. 17, no. 4, pp. 591–595, 2001.

[17] S. K. Lehman and A. J. Devaney, “Transmission mode time-
reversal super-resolution imaging,” Journal of the Acoustical
Society of America, vol. 113, no. 5, pp. 2742–2753, 2003.

[18] F. K. Gruber, E. A. Marengo, and A. J. Devaney, “Time-reversal
imaging with multiple signal classification considering mul-
tiple scattering between the targets,” Journal of the Acoustical
Society of America, vol. 115, no. 6, pp. 3042–3047, 2004.

[19] R. O. Schmidt, “Multiple emitter location and signal param-
eter estimation,” IEEE Transactions on Antennas and Propaga-
tion, vol. 34, no. 3, pp. 276–280, 1986.

[20] L. Tsang, J. A. Kong, K.-H. Ding, and C. O. Ao, Scattering of
Electromagnetic Waves: Numerical Simulations, John Wiley &
Sons, New York, NY, USA, 2001.

[21] R. K. Snieder and J. A. Scales, “Time-reversed imaging as a di-
agnostic of wave and particle chaos,” Physical Review E, vol. 58,
no. 5, pp. 5668–5675, 1998.

[22] G. Shi and A. Nehorai, “Maximum likelihood estimation
of point scatterers for computational time-reversal imaging,”
Communications in Information and Systems, vol. 5, no. 2, pp.
227–256, 2005.

[23] E. A. Marengo, “Coherent multiple signal classification for tar-
get location using antenna arrays,” in Proceedings of National
Radio Science Meeting, p. 169, Boulder, Colo, USA, January
2005.

[24] E. A. Marengo and F. K. Gruber, “Single snapshot sig-
nal subspace method for target location,” in Proceedings of
IEEE Antennas and Propagation International Symposium and
USNC/URSI National Radio Science Meeting, vol. 2A, pp. 660–
663, Washington, DC, USA, July 2005.

[25] E. A. Marengo, “Single-snapshot signal subspace methods for
active target location: part I: multiple scattering case,” in Pro-
ceedings of 2nd IASTED International Conference on Antennas,
Radar, and Wave Propagation (ARP ’05), pp. 161–166, Banff,
Alberta, Canada, July 2005.

[26] E. A. Marengo and F. K. Gruber, “Single-snapshot signal
subspace methods for active target location: part II: Born-
approximable case,” in Proceedings of 2nd IASTED Interna-
tional Conference on Antennas, Radar, and Wave Propagation
(ARP ’05), pp. 173–179, Banff, Alberta, Canada, July 2005.

[27] C. Prada, S. Manneville, D. Spoliansky, and M. Fink, “Decom-
position of the time reversal operator: detection and selective
focusing on two scatterers,” Journal of the Acoustical Society of
America, vol. 99, no. 4, pp. 2067–2076, 1996.

[28] D. Colton and R. Kress, “Eigenvalues of the far field operator
for the Helmholtz equation in an absorbing medium,” SIAM
Journal on Applied Mathematics, vol. 55, no. 6, pp. 1724–1735,
1995.

[29] J. L. Mueller, S. Siltanen, and D. Isaacson, “A direct reconstruc-
tion algorithm for electrical impedance tomography,” IEEE
Transactions on Medical Imaging, vol. 21, no. 6, pp. 555–559,
2002.

[30] J. M. Ortega, Matrix Theory: A Second Course, Plenum Press,
New York, NY, USA, 1987.

[31] L. Borcea, G. Papanicolaou, C. Tsogka, and J. Berryman,
“Imaging and time reversal in random media,” Inverse Prob-
lems, vol. 18, no. 5, pp. 1247–1279, 2002.

[32] H. T. Davis and K. T. Thomson, Linear Algebra and Linear Op-
erators in Engineering with Applications in Mathematica, Aca-
demic Press, San Diego, Calif, USA, 2000.

[33] Q. S. Ren and A. J. Willis, “Extending MUSIC to single snap-
shot and on line direction finding applications,” in Proceedings
of the Radar Edinburgh International Conference (Radar ’97),
pp. 783–787, Edinburgh, UK, October 1997.

[34] M. Zhang, W. Yang, and L. Li, “New method of constructing
the projection matrix for array processing in single snapshot
case,” IEE Proceedings F: Radar and Signal Processing, vol. 138,
no. 5, pp. 407–410, 1991.

[35] M. Zhang, W. Yang, and L. Li, “A novel approach of resolu-
tion enhancement with application in array processing of sin-
gle snapshot,” IEEE Transactions on Antennas and Propagation,
vol. 39, no. 8, pp. 1125–1129, 1991.

[36] T.-J. Shan, M. Wax, and T. Kailath, “On spatial smoothing
for direction-of-arrival estimation of coherent signals,” IEEE

http://www.ece.neu.edu/faculty/devaney


E. A. Marengo and F. K. Gruber 15

Transactions on Acoustics, Speech, and Signal Processing, vol. 33,
no. 4, pp. 806–811, 1985.

[37] J. E. Evans, J. R. Johnson, and D. F. Sun, “Application of ad-
vanced signal processing techniques to angle of arrival es-
timation in ATC navigation and surveillance system,” Tech.
Rep. 582, M.I.T. Lincoln Laboratory, Lexington, Mass, USA,
June 1982.

[38] R. T. O’Brien Jr. and K. Kiriakidis, “Single-snapshot robust di-
rection finding,” in Proceedings of IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing (ICASSP ’04),
vol. 2, pp. 93–96, Montreal, Quebec, Canada, May 2004.

[39] R. T. Hoctor and S. A. Kassam, “The unifying role of the coar-
ray in aperture synthesis for coherent and incoherent imag-
ing,” Proceedings of the IEEE, vol. 78, no. 4, pp. 735–752, 1990.

[40] R. T. Hoctor and S. A. Kassam, “High resolution coherent
source location using transmit/receive arrays,” IEEE Transac-
tions of Image Processing, vol. 1, no. 1, pp. 88–100, 1992.

[41] R. T. Hoctor and S. A. Kassam, “Array redundancy for ac-
tive line arrays,” IEEE Transactions on Image Processing, vol. 5,
no. 7, pp. 1179–1183, 1996.

[42] C. Prada and J.-L. Thomas, “Experimental subwavelength lo-
calization of scatterers by decomposition of the time rever-
sal operator interpreted as a covariance matrix,” Journal of
the Acoustical Society of America, vol. 114, no. 1, pp. 235–243,
2003.

[43] T. Miwa and I. Arai, “Super-resolution imaging for point re-
flectors near transmitting and receiving array,” IEEE Transac-
tions on Antennas and Propagation, vol. 52, no. 1, pp. 220–229,
2004.

[44] M. Fink, D. Cassereau, A. Derode, et al., “Time-reversed
acoustics,” Reports on Progress in Physics, vol. 63, no. 12, pp.
1933–1995, 2000.

[45] C. Prada and M. Fink, “Eigenmodes of the time reversal oper-
ator: a solution to selective focusing in multiple-target media,”
Wave Motion, vol. 20, no. 2, pp. 151–163, 1994.

[46] J. G. Proakis, Digital Communications, McGraw-Hill, New
York, NY, USA, 3rd edition, 1995.

[47] I. E. Telatar, “Capacity of multi-antenna Gaussian channels,”
European Transactions on Telecommunications, vol. 10, no. 6,
pp. 585–595, 1999.

[48] Y. Bresler and A. Macovski, “Exact maximum likelihood pa-
rameter estimation of superimposed exponential signals in
noise,” IEEE Transactions on Acoustics, Speech, and Signal Pro-
cessing, vol. 34, no. 5, pp. 1081–1089, 1986.

[49] M. Bertero, “Linear inverse and ill-posed problems,” in Ad-
vances in Electronics and Electron Physics, P. W. Hawkes, Ed.,
vol. 75, pp. 1–120, Academic Press, New York, NY, USA, 1989.

[50] H. Akaike, “A new look at the statistical model identification,”
IEEE Transactions on Automatic Control, vol. 19, no. 6, pp.
716–723, 1974.

[51] J. Rissanen, “Modeling by shortest data description,”Automat-
ica, vol. 14, no. 5, pp. 465–471, 1978.

[52] M. Wax and T. Kailath, “Detection of signals by information
theoretic criteria,” IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol. 33, no. 2, pp. 387–392, 1985.

[53] M. Wax and I. Ziskind, “Detection of the number of coherent
signals by the MDL principle,” IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. 37, no. 8, pp. 1190–1196,
1989.

[54] S. Valaee and P. Kabal, “An information theoretic approach to
source enumeration in array signal processing,” IEEE Transac-
tions on Signal Processing, vol. 52, no. 5, pp. 1171–1178, 2004.

[55] J. G. Berryman, L. Borcea, G. C. Papanicolaou, and C. Tsogka,
“Statistically stable ultrasonic imaging in random media,”

Journal of the Acoustical Society of America, vol. 112, no. 4, pp.
1509–1522, 2002.

[56] D. Liu, S. Vasudevan, J. Krolik, G. Bal, and L. Carin, “Elec-
tromagnetic time-reversal imaging in changing media: exper-
iment and analysis,” submitted, 2005.

[57] D. H. Chambers and J. G. Berryman, “Analysis of the time-
reversal operator for a small spherical scatterer in an electro-
magnetic field,” IEEE Transactions on Antennas and Propaga-
tion, vol. 52, no. 7, pp. 1729–1738, 2004.

[58] G. Bal and L. Ryzhik, “Time reversal and refocusing in random
media,” SIAM Journal on Applied Mathematics, vol. 63, no. 5,
pp. 1475–1498, 2003.

[59] G. A. Tsihrintzis and A. J. Devaney, “Maximum likelihood es-
timation of object location in diffraction tomography, part II:
strongly scattering objects,” IEEE Transactions on Signal Pro-
cessing, vol. 39, no. 6, pp. 1466–1470, 1991.

[60] H. Zhao, “Analysis of the response matrix for an extended tar-
get,” SIAM Journal on Applied Mathematics, vol. 64, no. 3, pp.
725–745, 2004.

[61] S. Hou, K. Solna, and H. Zhao, “Imaging of location and ge-
ometry for extended targets using the response matrix,” Jour-
nal of Computational Physics, vol. 199, no. 1, pp. 317–338,
2004.

[62] A. S. Y. Poon, R. W. Brodersen, and D. N. C. Tse, “Degrees
of freedom in multiple-antenna channels: a signal space ap-
proach,” IEEE Transactions on Information Theory, vol. 51,
no. 2, pp. 523–536, 2005.

[63] R. Pierri, A. Liseno, R. Solimene, and F. Soldovieri, “Beyond
physical optics SVD shape reconstruction of metallic cylin-
ders,” IEEE Transactions on Antennas and Propagation, vol. 54,
no. 2, part 2, pp. 655–665, 2006.

[64] A. L. Swindlehurst and T. Kailath, “A performance analysis
of subspace-based methods in the presence of model error.
II. Multidimensional algorithms,” IEEE Transactions on Signal
Processing, vol. 41, no. 9, pp. 2882–2890, 1993.

[65] K. M. Wong, R. S. Walker, and G. Niezgoda, “Effects of ran-
dom sensor motion on bearing estimation by the MUSIC al-
gorithm,” IEE Proceedings F: Communications, Radar and Sig-
nal Processing, vol. 135, no. 3, pp. 233–250, 1988.

[66] H. Lev-Ari, “Efficient solution of linear matrix equations with
application to multistatic antenna array processing,” Commu-
nications in Information and Systems, vol. 5, no. 1, pp. 123–130,
2005.

[67] N. J. Willis, Bistatic Radar, Artech House, Boston, Mass, USA,
1991.

[68] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cam-
bridge University Press, Cambridge, UK, 1991.

[69] S.M. Kay, Fundamentals of Statistical Signal Processing: Estima-
tion Theory, Prentice-Hall, Englewood Cliffs, NJ, USA, 1993.

Edwin A. Marengo is a tenure-track As-
sistant Professor of Electrical and Com-
puter Engineering at Northeastern Univer-
sity, Boston, Mass. He received the Bach-
elor’s degree in electromechanical engi-
neering (Valedictorian and Summa Cum
Laude) from the Technological University of
Panama, Panama City, in 1990, and theM.S.
and Ph.D. degrees in electrical engineer-
ing from Northeastern University, in 1994
and 1997, respectively. His research interests include physics-based
imaging and signal processing, inverse problems, electromagnetic
theory, antenna theory, and mathematical physics. He has been a



16 EURASIP Journal on Advances in Signal Processing

Fulbright Scholar sponsored by the USA Department of State, and
is a Member of the International Union of Radio Science (URSI),
the IEEE, the American Physical Society, and the Optical Society of
America, as well as the Honor Societies of Phi Kappa Phi and Eta
Kappa Nu.

Fred K. Gruber received the Bachelor’s de-
gree in electrical and electronics engineer-
ing (Magna Cum Laude) from the Techno-
logical University of Panama, Panama City,
in 2003, and the M.S. degree in industrial
engineering from the University of Central
Florida, in 2004 where he specialized in sim-
ulation, modeling, and analysis of systems.
While at the University of Central Florida he
was a Research Assistant at the UCF’s Cen-
ter for NASA Simulation Research. Currently he is enrolled in the
Ph.D. program of the Electrical and Computer Engineering De-
partment at Northeastern University, Boston, Mass. Mr. Gruber is a
Research Assistant affiliated with the Center for Subsurface Sensing
and Imaging Systems and the Communications and Digital Signal
Processing Center for Research and Graduate Studies at Northeast-
ern University, and is a Member of the IEEE and the Honor Society
of Phi Kappa Phi.


	Introduction
	Forward Scattering Formulation
	Time-Reversal MUSIC Considering Multiple Scattering
	High-Dimensional Signal Subspace Method
	Born approximation case
	Multiple scattering case

	Noniterative Scattering Amplitude Inversion
	Computer Simulations
	Pseudospectra
	Comparative study
	Scattering amplitude reconstruction

	Concluding Remarks
	APPENDICES
	Elaboration Concerning (22)--(24)
	Rank of  and 
	Fisher Information Matrix/CRB
	Acknowledgments
	REFERENCES

