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This paper proposes a new cumulant-based algorithm to jointly estimate four-dimensional (4D) source parameters of multiple
near-field narrowband sources. Firstly, this approach proposes a new cross-array, and constructs five high-dimensional Toeplitz
matrices using the fourth-order cumulants of some properly chosen sensor outputs; secondly, it forms a parallel factor (PARAFAC)
model in the cumulant domain using these matrices, and analyzes the unique low-rank decomposition of this model; thirdly, it
jointly estimates the frequency, two-dimensional (2D) directions-of-arrival (DOAs), and range of each near-field source from the
matrices via the low-rank three-way array (TWA) decomposition. In comparison with some available methods, the proposed algo-
rithm, which efficiently makes use of the array aperture, can localize N −3 sources using N sensors. In addition, it requires neither
pairing parameters nor multidimensional search. Simulation results are presented to validate the performance of the proposed
method.
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1. INTRODUCTION

Estimation of directions-of-arrival (DOAs) has received a
significant amount of attention over the last several decades.
It is a key problem in array signal processing areas such
as radar, sonar, radio astronomy, and mobile communica-
tion systems. Many classical algorithms have been devel-
oped to solve this problem, such as the maximum likelihood
(ML) method [1], the MUSIC method [2], and the ESPRIT
method [3]. Most of these methods make the assumption
that the sources are located relatively far from the array so
that the waves emitted by these sources can be considered as
plane waves.With such an assumption, each signal wavefront
can be characterized by the DOAs of the source [4]. However,
when a source is located close to the array (i.e., near field)
[5], the wavefront must be characterized by both the DOAs
and the range parameters of the source. A good approxima-
tion of the nonlinear propagation delay function consists of
its second-order Taylor expansion (Fresnel approximation).
Using such an approximation, the propagation delay varies
quadratically with sensor location, and the range informa-
tion must be incorporated into the signal model. Therefore,
the estimation of the near-field source parameters is more

complicated than that of far-field one, and the classical DOAs
estimation methods for far-field sources are no longer appli-
cable.

To solve near-field source localization problem, many al-
gorithms were addressed, such as the MLmethod [5], the 2D
MUSIC methods [6–9], the linear prediction methods [10,
11], and the ESPRIT-like methods [12–15]. However, these
methods for near-field source localization [5–15] mainly fo-
cused on two-dimensional (2D) case, that is, estimating the
azimuth and range only. Recently, several algorithms [16–
18] were addressed to deal with three-dimensional (3D)
source localization, which is a joint azimuth, elevation, and
range estimation problem. For example, Kabaoglu et al. [16]
proposed an expectation-maximization (EM)-based algo-
rithm, in which only a subset of the parameters is esti-
mated iteratively while the other parameters remain fixed.
Despite its effectiveness, this algorithm has extremely de-
manding computational complexity due to the search com-
putation and iteration process. Hung et al. [17] extended
the 2D MUSIC method to 3D one, but this method re-
quires a 3D search of the extended cost function. To avoid
these search computations, a second-order statistics (SOS)-
based algorithm was addressed recently in [18], but this
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method, which suffers a heavy loss of the array aperture,
can localize not more than (1/4)(N − 5) sources using N
sensors. In addition, it requires a quadratic phase trans-
form algorithm to pair the separately estimated parame-
ters. Note that all these algorithms addressed in [16–18]
cannot estimate signal frequencies simultaneously. However,
when these frequencies need to be estimated, the 3D near-
field source localization problem actually becomes a four-
dimensional (4D) one. Hence it is necessary to develop
a joint 4D parameter estimation algorithm for near-field
sources.

The above-mentioned analyses show that the main diffi-
culties of near-field source localization problem consist of: (i)
avoiding multidimensional search which results in extremely
demanding computational complexity; (ii) reducing the loss
of the array aperture; (iii) pairing source parameters (i.e., fre-
quency, azimuth, elevation, and range) so as to localize the
near-field sources accurately.

As a useful analysis tool of data arrays, the parallel factor
(PARAFAC) model [19–22] is a generalization of low-rank
matrix decomposition to three-way arrays (TWAs) or multi-
way arrays (MWAs). Unlike singular value decomposition,
PARAFAC does not impose orthogonality constraints, and
relies on certain conditions [23–29] regarding the unique-
ness of low-rank TWA (or MWA) decomposition. Because
of its direct link to low-rank decomposition, PARAFAC has
wide applications in numerous and diverse disciplines [22,
26, 30, 31].

In this paper, we develop a new cumulant-based algo-
rithm for 4D near-field source localization (see [32] for the
detailed definition of cumulant). The key point of this pa-
per is to construct five high-dimensional Toeplitz matrices
using the cumulants of some properly chosen sensor out-
puts and form an identifiable PARAFACmodel in the fourth-
order cumulant domain. The proposed algorithm requires
neither pairing parameters nor multidimensional search. In
addition, it can efficiently use the array aperture.

The rest of this paper is organized as follows. The sig-
nal and PARAFAC models are introduced in Section 2. A
4D near-field source localization algorithm is developed in
Section 3. Simulation results are presented in Section 4. Con-
clusions are drawn in Section 5.

2. PROBLEM FORMULATION AND PARAFACMODEL

2.1. Problem formulation

Consider L near-field, narrowband, and independent radiat-
ing sources impinging upon a cross array aligned with x and
y axes, as shown in Figure 1. Each subarray consists of uni-
formly spaced omnidirectional sensors with inter-element
spacing d. The x subarray consists of 2N sensors, while the
y subarray is composed of 3 ones. The cross one is chosen
as the phase reference point. After being down-converted to
baseband and sampled at a proper sampling rate that sat-
isfies the Nyquist rate, the signals received by the (i, 0)th
and (0,m)th sensors can be approximately expressed by (see
[14, 18] for details):

xi,0(k) =
L∑

l=1
sl(k)e jωlke j(iγxl+i

2φxl) + ni,0(k),

i = −N + 1, . . . ,−1, 0, 1, . . . ,N ,

x0,m(k) =
L∑

l=1
sl(k)e jωlke j(mγyl+m2φyl) + n0,m(k),

m = −1, 1,

(1)

respectively, where sl(k)e jωlk denotes the lth source signal
with the normalized radian frequency ωl, while ni,0(k) and
n0,m(k) represent the additive measurement noise. In addi-
tion, electric angles γxl, φxl, γyl, and φyl are given by

γxl = −2πd sinαl cosβl
λ

,

φxl = πd2
(
1− sin2 αl cos2 βl

)

λrl
,

γyl = −2πd sinαl sinβl
λ

,

φyl = πd2
(
1− sin2 αl sin

2 βl
)

λrl
,

(2)

for l = 1, . . . ,L, respectively, where λ is the related propa-
gation wavelength, and {αl,βl, rl} denote the azimuth, eleva-
tion, and range of the lth source.

The objective of this paper is to jointly estimate the fre-
quency ωl, the 2D DOA {αl,βl}, and the range rl of the lth
source for l = 1, . . . ,L.

Throughout the rest of the paper, the following hypothe-
ses are assumed to hold.

(H1) The source signals are statistically mutually indepen-
dent, non-Gaussian, and narrowband stationary pro-
cesses with nonzero kurtosis.

(H2) The sensor noise is zero-mean Gaussian signal and in-
dependent of the source signals.

(H3) The source parameters are different from each other,
that is, γxi+φxi /= γx j+φx j , γxi−φxi /= γx j−φx j , γyi−φyi /=
γy j − φy j , γyi + φyi /= γy j + φy j , and ωi /= ωj for i /= j. In
fact, this hypothesis can be alleviated, and the detailed
analyses are given in Section 3.

(H4) For uniquely identifying L sources, we require d ≤ λ/4
and L < 2N .

2.2. PARAFACmodel [22, 26, 30]

Definition 1. Consider a (I × J × K)-dimensional TWA X =
(R ⊗ U)WT (⊗ stands for Kronecker product) with typical
element xi, j,k and the F-component trilinear decomposition

xi, j,k =
F∑

f=1
ri, f u j, f wk, f (3)
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Figure 1: proposed cross-array for 4D near-field source localization problem.

for all i = 1, . . . , I , j = 1, . . . , J , and k = 1, . . . ,K , where ri, f
represents the (i, f )th element of (I × F)-dimensional ma-
trix R. Similarly, uj, f and wk, f stand for ( j, f )th and (k, f )th
elements of (J ×F) and (K ×F)-dimensional matricesU and
W, respectively. Equation (3) expresses xi, j,k as a sum of F
rank-1 triple products; it is known as PARAFAC analysis of
xi, j,k.

Definition 2. Let gi(R) denote a diagonal matrix composed of
the ith row of matrix R, and g−1(Λ) stands for a row vector
made up of the diagonal elements of diagonal matrix Λ.

In a compact form, X can be expressed in terms of its 2D
slice Xi ((J × K)-dimensional matrix, that is, Xi = [xi,:,:]) as

Xi = Ugi(R)WT , i = 1, . . . , I. (4)

Under certain conditions, X can be decomposed uniquely
into matrices R, U, and W. These conditions are based on
the notion of Kruskal-rank [23–26].

Definition 3. The Kruskal rank (or k-rank) [23–26] of matrix
R is kR if and only if arbitrary kR columns of R are linearly
independent and either R has kR columns or R contains a set
of kR +1 linearly dependent columns. Note that Kruskal rank
is always less than or equal to the conventional matrix rank.
If R is of full column rank, then it is also of full k-rank.

Theorem 1. Let Xi be defined as in (4). R, U, and W can be
recovered uniquely up to permutation and scaling ambiguity,
irrespective of whether the elements of X are real values [23–
25] or complex ones [26], as long as

kR + kU + kW ≥ 2F + 2, (5)

which is the well-known Kruskal’s condition. In fact, there are
different results that guarantee PARAFAC uniqueness under
different conditions [27–29]. For instance, Leurgans et al. [27]
analyzed the condition for the decomposition of three-way ar-
rays which have rank 1. While Lathauwer [29] considered the
decomposition of higher-order tensors which have the property
that the rank is smaller than the greatest dimension.

3. PROPOSED ALGORITHM

3.1. PARAFACmodel formulation

To develop a new joint estimation algorithm, we begin with
the (2N×2N)-dimensional cumulantmatrixC1, the (m,n)th
element of which has the following form:

C1(m,n) =
L∑

l=1
c4sle

j(γxl+φxl)e j(m−n)(γxl+φxl), 1 ≤ m,n ≤ 2N ,

(6)

where c4sl = cum(sk(k), s∗l (k), sl(k), s
∗
l (k)) is the fourth-

order kurtosis of the lth source. Note that C1 can be rep-
resented in a compact form as C1 = AΩΛC4sAH , where
the superscript H denotes the Hermitian transpose, C4s =
diag[c4s1 , c4s2 , . . . , c4sL], Ω = diag[e jγx1 , e jγx2 , . . . , e jγxL], Λ =
diag[e jφx1 , e jφx2 , . . . , e jφxL], A = [a1 a2 · · · aL], and al =
[1, e j(γxl+φxl), . . . , e j(2N−1)(γxl+φxl)]T , l = 1, . . . ,L.

Due to the complicated signal model of near-field
sources, it is difficult to derive such a cumulant matrix from
the array outputs directly. However, it is easily seen from (6)
that the matrixC1 has the same structure as Toeplitz matrices
theoretically. It is well known that Toeplitz matrices are ma-
trices having constant entries along their diagonals. Hence
we consider approximating C1 by virtue of a set of estimated
cumulants.

For different sensor lags, we define a column vector h1,
the ith element of which can be represented as

h1(i, 1) = cum
(
x0,0(k), x∗0,0(k), x(N+1)−i,0(k), x∗−N+i,0(k)

)

=
L∑

l=1
c4sl e

j(2N−2i)(γxl+φxl)e j(γxl+φxl), i = 1, 2, . . . , 2N ,

(7)

where the superscript ∗ denotes the complex conjugate. It is
obvious that the elements of h1 can merely “fill” the (m,n)th
position of an approximated matrix, where (m−n) is an even
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number. To construct the whole approximated matrix, we
define another column vector h2

h2(i, 1) = cum
(
x1,0(k), x∗0,0(k), x(N+1)−i,0(k), x∗−N+i,0(k)

)

=
L∑

l=1
c4sl e

j(2N−2i+1)(γxl+φxl)e j(γxl+φxl), i = 1, 2, . . . , 2N ,

(8)

which can complement the rest of the approximated matrix.
Furthermore, for different sensor and time lags, we define

other eight column vectors:

h3(i, 1) = cum
(
x0,0(k), x∗−1,0(k), x(N+1)−i,0(k), x∗−N+i,0(k)

)

=
L∑

l=1
c4sl e

j(2N−2i)(γxl+φxl)e j2γxl , i = 1, 2, . . . , 2N ,

h4(i, 1) = cum
(
x1,0(k), x∗−1,0(k), x(N+1)−i,0(k), x∗−N+i,0(k)

)

=
L∑

l=1
c4sl e

j(2N−2i+1)(γxl+φxl)e j2γxl , i = 1, 2, . . . , 2N ,

h5(i, 1) = cum
(
x0,0(k + 1), x∗0,0(k), x(N+1)−i,0(k), x∗−N+i,0(k)

)

=
L∑

l=1
c4sl e

j(2N−2i)(γxl+φxl)e j(γxl+φxl)e jωl ,

i = 1, 2, . . . , 2N ,

h6(i, 1) = cum
(
x1,0(k + 1), x∗0,0(k), x(N+1)−i,0(k), x∗−N+i,0(k)

)

=
L∑

l=1
c4sl e

j(2N−2i+1)(γxl+φxl)e j(γxl+φxl)e jωl ,

i = 1, 2, . . . , 2N ,

h7(i, 1) = cum
(
x0,0(k), x∗0,−1(k), x(N+1)−i,0(k), x∗−N+i,0(k)

)

=
L∑

l=1
c4sl e

j(2N−2i)(γxl+φxl)e j(γxl+φxl)e j(γyl−φyl),

i = 1, 2, . . . , 2N ,

h8(i, 1) = cum
(
x1,0(k), x∗0,−1(k), x(N+1)−i,0(k), x∗−N+i,0(k)

)

=
L∑

l=1
c4sl e

j(2N−2i+1)(γxl+φxl)e j(γxl+φxl)e j(γyl−φyl),

i = 1, 2, . . . , 2N ,

h9(i, 1) = cum
(
x0,0(k), x∗0,1(k), x(N+1)−i,0(k), x∗−N+i,0(k)

)

=
L∑

l=1
c4sl e

j(2N−2i)(γxl+φxl)e j(γxl+φxl)e j(−γyl−φyl),

i = 1, 2, . . . , 2N ,

h10(i, 1) = cum
(
x1,0(k), x∗0,1(k), x(N+1)−i,0(k), x∗−N+i,0(k)

)

=
L∑

l=1
c4sl e

j(2N−2i+1)(γxl+φxl)e j(γxl+φxl)e j(−γyl−φyl),

i = 1, 2, . . . , 2N.
(9)

Thus, by virtue of these eight column vectors, we can con-
struct four Toeplitz matricesC2, C3, C4, and C5:

Ci(m,n)

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

h2×i
(
N−m− n− 1

2
, 1
)

if (m−n) is an odd number,

h2×i−1
(
N−m− n

2
, 1
)

if (m−n) is an even number,

1 ≤ m, n ≤ 2N , i = 2, . . . , 5.

(10)

It is obvious that these matrices have the following compact
forms:

C2 = AΩ2C4sAH ,

C3
∼= AΩΛΦ1C4sAH ,

C4 = AΩΛΦ2C4sAH ,

C5 = AΩΛΦ3C4sAH ,

(11)

where

Φ1 = diag
[
e jω1 , e jω2 , . . . , e jωL

]
,

Φ2 = diag
[
e j(γy1−φy1), e j(γy2−φy2), . . . , e j(γyL−φyL)

]
,

Φ3 = diag
[
e j(−γy1−φy1), e j(−γy2−φy2), . . . , e j(−γyL−φyL)

]
.

(12)

Since all the source signals are assumed to have nonzero kur-
tosis, C4s is an invertible diagonal matrix. Besides, because
of the assumptions γxi + φxi /= γx j + φx j and L ≤ 2N (see
Section 2.1), A is a Vandermonde matrix with full column
rank L. Hence, C1, C2, C3, C4, and C5 are all (2N × 2N)-
dimensional matrices with rank L.

In fact, since the snapshot size is finite, the estimates Ĉ1,
Ĉ2, Ĉ3, Ĉ4, and Ĉ5 contain some estimation errors, which can
form other five matrices, that is, V1, V2, V3, V4, and V5. Sim-
ilar to (4), we define a (2N × 2N × 5)-dimensional TWA X̂ ,
the five 2D slices ((2N × 2N)-dimensional matrix) of which
can be represented as

X̂1 = Ĉ1 = AΩΛC4sAH +V1,

X̂2 = Ĉ2 = AΩ2C4sAH +V2,

X̂3 = Ĉ3 = AΩΛΦ1C4sAH +V3,

X̂4 = Ĉ4 = AΩΛΦ2C4sAH +V4,

X̂5 = Ĉ5 = AΩΛΦ3C4sAH +V5.

(13)

Note that X̂ can be represented in a compact form as

X̂ = (R⊗U)WT +V = X +V , (14)

where both X and V are (2N × 2N × 5)-dimensional TWAs,
X = (R ⊗ U)WT , and V consists of V1, V2, V3, V4, and V5.
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In addition,W = A∗, U = A, and

R =

⎡
⎢⎢⎢⎢⎢⎣

g−1
(
ΩΛC4s

)

g−1
(
Ω2C4s

)

g−1
(
ΩΛΦ1C4s

)

g−1
(
ΩΛΦ2C4s

)

g−1
(
ΩΛΦ3C4s

)

⎤
⎥⎥⎥⎥⎥⎦
. (15)

It can be seen that the hypothesis (H3) in Section 2.1
can enable X to certainly meet Theorem 1. In fact, this de-
manding hypothesis can be alleviated so that this theorem
still holds under the following general assumption. Assume
these two hypotheses to hold: (i) to any two sources, γxi+φxi /=
γx j + φx j for i /= j; (ii) not less than two sources have either
different ωi, or different γxi − φxi, or different γyi − φyi, or
different γyi + φyi. Note that the first hypothesis can guaran-
tee that kW = L and kU = L, while the second one ensures
kR ≥ 2, and thus X still satisfies Theorem 1 under this gen-
eral assumption. In fact, this result holds for one source case,
that is, L = 1, irrespective of these two hypotheses, as long
as X does not contain an identically zero 2D slice along any
dimension [22, 26]. In the actual implementation, X is ap-
proximated by X̂ .

3.2. Description of the proposed algorithm

As one of the methods for fitting PARAFAC model, trilin-
ear alternating least square (TALS) approach [26, 30, 31, 33–
36] (other methods [37–39] also can be used to deal with
this fitting problem, such as the TALAE method proposed in
[37]) is appealing primarily because it is guaranteed to con-
verge monotonically but also because of its relative simplicity
(no parameter to tune, and each step solves a standard least
square problem) and good performance [22, 35]. In addi-
tion, this method also allows easy incorporation of weighted
loss function, missing values, and constraints on some or all
of the factors [22, 36]. The basic idea behind this method for
PARAFAC model fitting is to update a subset of parameters
using least squares regression every time while keeping the
other previous parameter estimates fixed. Such an alternat-
ing projections-type procedure is iterated for all subsets of
parameters until the convergence is achieved. The computa-
tional complexity per iteration [26, 31] is equal to the cost of
computing a matrix pseudoinverse, that is, O(F3 + IJKF),
where I , J , K , and F are defined in Section 2.2. Note that
when F is small relative to I , J , and K , only a few iterations
are usually required to achieve convergence.

In this paper, we use the COMFAC algorithm [26, 33, 34]
to fit the PARAFACmodel. This algorithm is essentially a fast
implementation of TALS, and speeds up the least squares fit-
ting procedure by working with a compressed version of the
data, thereby avoiding brute-force implementation of alter-
nating least square in the raw data space. It consists of three
main parts: (i) compression; (ii) initialization and fitting of
PARAFAC in compressed space; (iii) decompression and re-
finement in the raw data space. The COMFAC MATLAB
function described in [34] has such a form [R,U,W,•, i] =
comfac(X̂ , f ,•,•,•,•), where inputs X̂ and f , respectively,
stand for the decomposing TWA and the corresponding

factor number (in this paper, it represents the source num-
ber), while outputs {R,U,W} and i represent the iden-
tification results (matrices) and the iteration number re-
quired for the low-rank decomposition. In addition, • denote
some other options (see [34] for details). Thus the proposed
method can be described as follows.

Step 1. Estimate the cumulant matrices Ĉ1, Ĉ2, Ĉ3, Ĉ4, and
Ĉ5, then construct TWA X̂ .

Step 2. Implement the COMFAC MATLAB function [R,U,
W,•, i] = comfac(X̂ , f ,•,•,•,•) to fit the PARAFAC model
X̂ , and get the estimates R̂, Û, and Ŵ.

Step 3. The estimates of e j(γxl+φxl), e j(γxl−φxl), e j(−γyl−φyl),
e j(γyl−φyl), and ωl can be obtained from R̂, Û, and Ŵ:

η1,l = e j(γ̂xl+φ̂xl)

= 1
2(2N − 1)

{ 2N−1∑

i=1

Û(i + 1, l)

Û(i, l)
+

2N−1∑

i=1

Ŵ∗(i + 1, l)

Ŵ∗(i, l)

}
,

η2,l = e j(γ̂xl−φ̂xl) = R̂(2, l)

R̂(1, l)
,

η3,l = e j(γ̂yl−φ̂yl) = R̂(4, l)

R̂(1, l)
,

η4,l = e j(−γ̂yl−φ̂yl) = R̂(5, l)

R̂(1, l)
,

(16)

ω̂l = ∠
(
R̂(3, l)

R̂(1, l)

)
, (17)

for l = 1, . . . ,L, respectively.

Step 4. From (16), we can obtain the estimates of {γxl, γyl,
φxl}:

γ̂xl = ∠
(
η1,lη2,l

)

2
,

φ̂xl = ∠
(
η1,l/η2,l

)

2
,

γ̂yl = ∠
(
η3,l/η4,l

)

2
.

(18)

Step 5. Thus, we can obtain the estimates of {αl,βl} and rl:

α̂l = asin
(

λ

2πd

√
γ̂2xl + γ̂2yl

)
,

β̂l = atan
(
γ̂yl
γ̂xl

)
,

r̂l = πd2

λφ̂xl

(
1− sin2 α̂l cos2 β̂l

)
,

(19)

for l = 1, . . . ,L, respectively.
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Since matrix estimates R̂, Û, and Ŵ are simultaneously
obtained from the low-rank decomposition of X̂ , and their
respective elements, which come from the columns with the
same sequence number, are the functions of the parameters
of the same source, the proposed algorithm avoids extra pair-
ing computation. However, the method addressed in [18]
needs to decompose each matrix respectively, and thus re-
quires a complicated quadratic phase transform method to
pair the separately estimated parameters.

Since it can construct five (2N × 2N)-dimensional ma-
trices using 2N + 2 sensors, our algorithm can localize
2N − 1 sources. However, the method developed in [18] can
construct six ([(1/2)(N + 1)]× [(1/2)(N + 1)])-dimensional
matrices using 2N + 3 sensors (since the algorithm in [18]
has a symmetric cross array configuration, we arrange such
a cross array of 2N + 3 sensors for this algorithm), and can
localize not more than (1/2)(N − 1) sources. Regarding the
main computational complexity, we only consider the mul-
tiplications involved in calculating the matrices and in per-
forming the low-rank TWA decomposition (or the matrix
eigendecomposition in [18]). The method in [18] requires
calculating four (N + 1)-dimensional vectors to construct
six ([(1/2)(N + 1)]× [(1/2)(N + 1)])-dimensional SOS ma-
trices, so it requires O{4(N + 1)m}. However, our algorithm
requires calculating ten 2N-dimensional cumulant vectors
to construct five (2N × 2N)-dimensional Toeplitz matri-
ces, so it requires O{180Nm}. Relative to the computational
complexity from the matrix decomposition (or the low-
rank TWA decomposition in our algorithm), the method
in [18] decomposes two ([(3/2)(N + 1)]× [(1/2)(N + 1)])-
dimensional matrices separately, so it requires O{(9/8)(N +
1)3} and our algorithm uses the COMFAC algorithm to fit
a (2N × 2N × 5)-dimensional TWA, and thus the computa-
tional complexity per iteration isO{L3+20N2L}. For the sim-
ulations in Section 4, only 2 iterations are required to achieve
convergence. Hence the total computational complexity of
our algorithm is O{180Nm + 2(L3 + 20N2L)}, and is larger
than that of [18] (i.e., O{4(N + 1)m + (9/8)(N + 1)3}) in the
case of m � N , where m, 2N + 2, and L stand for the snap-
shot, sensor, and source number, respectively.

4. SIMULATION RESULTS

Some simulations are conducted in this section to assess the
proposed algorithm. We consider a 12-element cross array
with element spacing d = (λ/4), as shown in Figure 1. Two
equal-power, statistically independent narrow-band sources
(bandwidth = 25 kHz), respectively with center frequency 2.0
and 2.5MHz, radiate on the cross array. The sampling rate is
20MHz and the received signals are polluted by zero-mean
additive white Gaussian noises. The two sources are located
at {α1 = 5◦, β1 = 30◦, r1 = 1.5λ} and {α2 = 50◦, β2 =
15◦, r2 = 0.3λ}, respectively. For comparison, we simultane-
ously execute the algorithm in [18] which assumes the fre-
quencies are known. Since the algorithm in [18] uses a sym-
metric cross array, we arrange such an array of 13 sensors
for this algorithm. The DOAs, frequency, and range estimates
are scaled in units of rad, rad/s, and wavelength, respectively,
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Figure 2: Estimation MSE of the frequencies versus input SNR.

and the performance of these algorithms is measured by the
mean-square error (MSE) of the estimated parameters. 200
independentMonte Carlo runs are performed to evaluate the
estimation errors. At the same time the Cramer-Rao bounds
(CRB) for estimating source parameters are obtained from
the inverse of Fisher information matrix [1], and shown in
the relevant figures.

For the following experiments, we use the short ver-
sion [R,U,W,•, i] = comfac(X̂ , 2) of COMFAC algorithm
[33, 34] to fit the (10 × 10 × 5)-dimensional TWA. In the
COMFAC algorithm, we implement the initialization using
DTLD function, and employ data compression using the
Tucker3 three-way model [40, 41]. For these simulations,
only 2 iterations are required to achieve convergence.

In the first experiment, the effect of signal-to-noise
(SNR) on the performance of the proposed algorithm is in-
vestigated. The snapshot number is set equal to 400, and the
SNR varies from 0 dB to 20 dB. Figures 2, 3, 4, and 5 show
the MSE of the frequency, azimuth, elevation, and range es-
timates of the two sources, respectively.

In the second experiment, the influence of snapshot
number on the performance of the proposed algorithm is in-
vestigated. The SNR is set equal to 10 dB, and the snapshot
number varies from 200 to 2000. Figures 6, 7, 8, and 9 show
the MSE of the frequency, azimuth, elevation, and range es-
timates of the two sources, respectively.

From these simulations, we can arrive at the following
conclusion.

(i) Our algorithm has a satisfactory frequency estimation
accuracy even at low SNR region, while that of [18]
is based on the assumption that the frequencies are
known.
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Figure 3: Estimation MSE of the azimuths versus input SNR.
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Figure 4: Estimation MSE of the elevations versus input SNR.

(ii) Our algorithm has higher estimation accuracy than
that of [18].

(iii) The MSE of the range estimate of the 2nd source
(closer to the array) is much lower than that of the 1st
source.
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Figure 5: Estimation MSE of the ranges versus input SNR.
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5. CONCLUSION

A new approach is proposed for the joint frequency-
azimuth-elevation-range estimation of multiple near-field
narrowband sources. Based on the characteristics of Toeplitz
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Figure 7: EstimationMSE of the azimuths versus snapshot number.
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matrices, this paper constructs five high-dimensional
Toeplitz matrices using some properly chosen cumulants of
array outputs so that these matrices can form an identifi-
able PARAFAC model. The source parameters can be esti-
mated from the matrices via the low-rank decomposition of
the model. In comparison with some available methods, the
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Figure 9: Estimation MSE of the ranges versus snapshot number.

proposed approach requires neither pairing parameters nor
searching spectral peaks, and can effectively use the array
aperture, and thus have higher estimation accuracy under the
equivalent sensor number.
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