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A reliable and automatic method is applied to crystallographic data for tissue typing. The technique is based on canonical cor-
relation analysis, a statistical method which makes use of the spectral-spatial information characterizing X-ray diffraction data
measured from bone samples with implanted tissues. The performance has been compared with a standard crystallographic tech-
nique in terms of accuracy and automation. The proposed approach is able to provide reliable tissue classification with a direct
tissue visualization without requiring any user interaction.
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1. INTRODUCTION

One of the main goals of tissue engineering is the recon-
struction of highly damaged bony segments. To this aim, it
is possible to exploit the patient’s own cells, which are iso-
lated, expanded in vitro, loaded onto a bioceramic scaffold,
and, finally, reimplanted into the lesion site. Generally, bone
marrow stromal cells (BMSC) are adopted, as described in
[1]. In this respect it would be important to characterize the
structure of the engineered bone and to evaluate whether the
BMSC extracellular matrix deposition on a bioceramic scaf-
fold repeats the morphogenesis of the natural bone develop-
ment. In addition, it is also interesting to look into the inter-
action between the newly deposited bone and the scaffold in
order to recuperate damaged tissues. This is due to the fact
that the spatial organization of the new bone and the bone-
biomaterial integration is regulated by the chemistry and the
geometry of the scaffold used to place BMSC in the lesion site
[1–3].

In this context the standard crystallographic approach to
detect the different tissues is based on a quantitative analy-
sis performed by the Rietveld technique [4, 5]. This method
allows to determine the relative amounts of different tissue
components but it is rather sophisticated and computation-
ally demanding. The aim of this paper is to propose a new
technique based on a statistical method called canonical cor-
relation analysis (CCA) [6]. This method is the multivari-
ate variant of the ordinary correlation analysis (OCA) and

has already been successfully applied to several applications
in biomedical signal processing [7, 8]. Here, CCA is applied
to X-ray diffraction data in order to construct a nosologic
image [9] of the bone sample in which all the detected tis-
sues are visualized. The goal is achieved by combining the
spectral-spatial information provided by the X-ray diffrac-
tion patterns and a signal subspace that models the spectrum
of a characteristic tissue type. Such images can be easily in-
terpreted by crystallographers. The paper is organized as fol-
lows. In Section 2, we present the mathematical aspects of
the CCA method. Then the application of CCA to crystal-
lographic data is reported in Section 3. In Section 4, the nu-
merical results are described and discussed and, finally, we
draw our conclusions.

2. CCA

CCA is a statistical technique developed by Hotelling in 1936
in order to assess the relationship between two sets of vari-
ables [6]. It is a multichannel generalization of OCA, which
quantifies the relationship between two random variables x
and y by means of the so-called correlation coefficient

ρ = Cov[x, y]√
V[x]V[y]

, (1)

where Cov and V stand for covariance and variance, re-
spectively. The correlation coefficient is a scalar with value
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between −1 and 1 that measures the degree of linear depen-
dence between x and y. For zero-mean variables, (1) is re-
placed by

ρ = E[xy]√
E
[
x2
]
E
[
y2
] , (2)

where E stands for expected value. Canonical correlation
analysis can be applied to multichannel signal processing as
follows: consider two zero-mean multivariate random vec-
tors x = [x1(t), . . . , xm(t)]T and y = [y1(t), . . . , yn(t)]T , with
t = 1, . . . ,N , where the superscript T denotes the transpose.
The following linear combinations of the components in x
and y are defined, which, respectively, represent two new
scalar random variables X and Y :

X = wx1x1 + · · · +wxmxm = wT
x x,

Y = wy1 y1 + · · · +wyn yn = wT
y y.

(3)

CCA computes the linear combination coefficients wx =
[wx1 , . . . ,wxm]

T and wy = [wy1 , . . . ,wyn]
T , called regression

weights, so that the correlation between the new variables X
and Y is maximum. The solutionwx = wy = 0 is not allowed
and the new variables X and Y are called canonical variates.

Several implementations of CCA are available in the liter-
ature. However, as shown in [7], the most reliable and fastest
implementation is based on the interpretation of CCA in
terms of principal angles between linear subspaces [6, 10].
For further details the reader is referred to [7] and references
therein. Here, an outline of the aforementioned implemen-
tation is provided for the sake of clarity.

2.1. Algorithm CCA (CCA by computing
principal angles)

Given the zero-mean multivariate random vectors x =
[x1(t), . . . , xm(t)] and y = [y1(t), . . . , yn(t)], with t =
1, . . . ,N .

Step 1. Consider the matrices X̃ and Ỹ, defined as follows:

X̃=

⎡
⎢⎢⎣
x1(1) · · · xm(1)
...

...
x1(N) · · · xm(N)

⎤
⎥⎥⎦ , Ỹ=

⎡
⎢⎢⎣
y1(1) · · · yn(1)
...

...
y1(N) · · · yn(N)

⎤
⎥⎥⎦ .

(4)

Step 2. Compute the QR decompositions [11] of X̃ and Ỹ:

X̃ = QX̃RX̃ ,

Ỹ = QỸRỸ ,
(5)

where QX̃ and QỸ are orthogonal matrices and RX̃ and RỸ
are upper triangular matrices.

Step 3. Compute the SVD [11] of QT
X̃
QỸ :

QT
X̃
QỸ = USVT , (6)

where S is a diagonal matrix and U and V are orthogonal
matrices. The cosines of the principal angles are given by the
diagonal elements of S.

Figure 1: X-ray diffraction patterns of the investigated bone sam-
ple.

Step 4. Set the canonical correlation coefficients equal to the
diagonal elements of the matrix S and compute the corre-
sponding regression weights as wX̃ = R−1

X̃
U and wỸ = R−1

Ỹ
V.

The computation of the principal angles yields the most
robust implementation of CCA, since it is able to provide re-
liable results even when the matrices X̃ and Ỹ are singular.

3. CCA APPLIED TO CRYSTALLOGRAPHIC DATA

During the data acquisition procedure, a number of micro-
scopic X-ray diffraction images (XRDI) displaying the spatial
variation of different structural features are acquired. They
allow to map the mineralization intensity and bone orien-
tation degree around the pore. The results refer to two dif-
ferent scaffolds with different composition and morphology
for two different implantation times. In all the cases the re-
sults are similar with respect to the organization of the min-
eral crystals and collagen micro-fibrils. Thus, for the sake of
simplicity, we focus only on one set of such images. Each im-
age represents a two-dimensional X-ray diffraction pattern
of a scaffold volume element, called voxel. From the two-
dimensional diffraction images of the grid in Figure 1 uni-
dimensional signals were obtained by using the algorithm
developed in [12, 13], each characterized by a 2ϑ scattering
angle signal of length N . In the proposed tissue segmenta-
tion approach, the aim is to detect those voxels whose inten-
sity spectra correlate best with model tissue spectra, which
are defined a priori. When applying correlation analysis to
XRDI data, the variables x and y need to be specified. In OCA
x and y are univariate variables and, specifically, the x vari-
able consists of the intensity spectrum of the measured signal
contained in each voxel, while the y variable consists of the
model tissue intensity spectrum. The correlation coefficient
between x and y is computed and assigned to the voxel un-
der investigation. Once each voxel has been processed, a new
grid, of the same size of the original set of images, is obtained,
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Figure 2: CCA applied to a 3× 3 region of voxels in the diffraction
data of Figure 1 and a set of n spectral basis functions [14].

which contains correlation coefficients instead of XRDI sig-
nals. This new grid is called correlation map.

The difference between OCA and CCA mainly consists
in a different choice of the variables x and y. In fact, in or-
der to compute the correlation maps, it is possible to exploit
the spatial information characterizing the XRDI data set. The
variable x is a multivariate vector with components repre-
senting both the intensity spectrum of the considered voxel
and the intensity spectra of the neighbor voxels. Several spa-
tial models can be adopted for choosing the neighbor voxels,
typical examples of which are described in [7, 8]. The vari-
able y also consists of a multivariate vector. Its components
represent the basis functions of a signal subspace, that mod-
els the characteristic tissue intensity spectrum we are look-
ing for and its possible variations due to Poisson noise that
normally affects realistic XRDI data. Several approaches can
be adopted in order to model a proper signal subspace; an
exhaustive overview is given in [8]. Once the x and y vari-
ables have been defined, CCA is applied voxel by voxel and
the largest canonical coefficient is assigned to the voxel under
investigation, so that a correlation map is obtained as in the
OCA case. Figure 2 schematically shows the CCA approach
when processing a 3×3 voxel region containing the intensity
spectrum x5 along with its neighbor intensity spectra [14].
In this particular special model, called the “3×3” model, the
variable x contains 9 components, namely, x = [x1, . . . , x9]T .

3.1. Choice of the spatial model

As already mentioned in the previous section, several spatial
models can be chosen when applying CCA. As a particular
case, OCA can be considered as a single-voxel model. The
performance of the following spatial models [8] was investi-
gated:

(i) the single-voxel model (OCA);
(ii) the 3× 3 model (3× 3):

x = [x1, . . . , x9
]T
; (7)

(iii) the 3× 3 model without corner voxels:

x = [x2, x4, x5, x6, x8
]T
; (8)

(iv) the symmetric 3× 3 model:

x =
[
x5,

x1 + x9
2

,
x2 + x8

2
,
x3 + x7

2
,
x4 + x6

2

]T
; (9)

(v) the symmetric 3 × 3 model without corner voxels
(s 3× 3 wcv):

x =
[
x5,

x2 + x8
2

,
x4 + x6

2

]T
; (10)

(vi) the symmetric filter (sf):

x =
[
x5,

x2 + x4 + x6 + x8
4

]T
; (11)

(vii) the constrained symmetric filter (constrained sf): for
the sake of completeness we also consider a con-
strained version of the previous spatial model, where
the weights in the vectorwx are constrained to be non-
negative [15]. The constrained solution ensures that
sufficient weight is put on the center voxel so as to
avoid a possible interference from surrounding voxels.
To this end, the spatial model is chosen as

x =
[
x5, x5 +

x2 + x4 + x6 + x8
4

]T
. (12)

The optimal constrained CCA solution is then found
by applying CCA as follows.

(1) Apply CCA with

x =
[
x5, x5 +

x2 + x4 + x6 + x8
4

]T
. (13)

If the weights in wx are all positive (or all nega-
tive), this is the solution to the constrained prob-
lem, otherwise apply (2).

(2) Apply twice CCA with, respectively,

x = [x5
]T
,

x =
[
x5 +

x2 + x4 + x6 + x8
4

]T
.

(14)

The CCA approach providing the highest canon-
ical correlation coefficient gives the solution to
the constrained problem.

The results are described in the numerical results section.

3.2. Choice of the subspacemodel

Concerning the choice of the y variable, the so-called Tay-
lor model [8, 16] was considered in order to define the
proper signal subspace able to model the characteristic tis-
sue spectra and their possible variations. In our application,
five subspace models were defined. More precisely, in order
to define the first component of the variable y, five intensity
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Figure 3: Intensity spectra of characteristic tissue signals.

spectra were selected as characteristic of the component tis-
sues: silicon-stabilized tricalcium phosphate (Tcp), with two
different compositions named α and β, hydroxyapatite (Ha),
with two different crystal sizes at micrometer and nanometer
scale, and the amorphous tissue representing the old natural
bone. These intensity spectra represent our models and will
be called profile models. The first component of the y vari-
able was then defined as the chosen profile model. The sec-
ond component of y was obtained as the first-order deriva-
tive of the first component, approximated by first-order finite
differences. For the sake of clarity, the procedure to compute
the aforementioned subspace model is here outlined.

The Taylor subspacemodel

Step 1. Choose the profile model P(n), n = 1, . . . ,N , where
N = 1024, corresponding to the considered tissue type.

Step 2. Set the components of the variable y as

y1(n) = P(n),

y2(n) = P(n + 1)− P(n)
Δθ

,
(15)

where n = 1, . . . , 1024 andΔθ = 0.024◦ is the sampling angle.

Such a subspace model accounts for possible frequency
shifts of the peaks. Indeed, a simultaneous peak shift may oc-
cur in experimental spectra due to an instrumental bias (e.g.,
zero-angle shift). This shift is negligible for the broad spec-
tra of hydroxya (nano) and amorphous, while it may affect
the other spectra (see Figure 3). Finally, for the single voxel
approach, only one component was considered and set equal
to the first component of the Taylor subspace model, namely,
y = y1.

4. NUMERICAL RESULTS

In the experiment MD67, carried out at the European Syn-
chrotron Radiation Facility (ESRF) ID13 beamline, a local
interaction between the newly formed mineral crystals in the
engineered bone and the biomaterial has been investigated by
means ofmicrodiffraction with submicron spatial resolution.
Combining wide angle X-ray scattering (WAXS) and small
angle X-ray scattering (SAXS) with high spatial resolution
determines the orientation of the crystallographic geometry
inside the bone grains and the orientation of the mineral
crystals and collagen micro-fibrils with respect to the scaf-
fold. In [1–3] a quantitative analysis of both the SAXS and
WAXS patterns was performed showing that the grain size is
compatible with a model for mineralization in early stage. In
particular, the performance of SkeliteTM (MilleniumBiologix
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Figure 4: The nosologic image and the correlation maps (white corresponds to highest canonical coefficient) obtained from diffraction data
of Figure 1 by CCA s 3× 3 wcv (black: amorphous, dark gray: hydroxya (nano), gray: Tcp(α), light gray: hydroxya (micro)).

Corp., Kingston, Canada), a clinically available scaffold based
on Ha and Tcp, has been evaluated.

Figure 1 shows a screenshot of several microscopic XRDI
displaying the spatial variation of different structural fea-
tures, thus allowing to map the mineralization intensity and
bone orientation degree around the scaffold pore. The results
obtained by applying the standard quantitative analysis [5]
suggest that the ratio Tcp/Ha could change in proximity of
the interface scaffold/new bone and with the implantation
time. CCA was then used in order to retrieve the possible
material types characterizing the sample under investigation.

As already specified in Section 3.2, five different y vari-
ables were defined, one for each tissue. CCA was applied
between the experimental unidimensional data set and the
above mentioned y variables. We obtained five different cor-
relation maps and comparing, pixel by pixel, the five canon-
ical correlation coefficients, we built the nosologic image by
assigning the considered pixel to the tissue with the highest
canonical coefficient. We tested all the different spatial mod-
els reported in Section 3 and the best performance was ob-
tained by using the symmetric 3 × 3 model without corner
voxels and the symmetric filter model. The reason of such
a behavior is due to the choice of the neighbors to be used.

Specifically the single voxel approach does not exploit any
spatial information which makes the tissue detection more
reliable. With respect to the models involving information
from neighbors, we might expect that only the nearest ones
should be relevant. This is because the diffusion of materials
does not occur on space scales larger than 1 μm within the
time scale of the experiment, which is the spatial sampling
distance in diffraction measurements.

In Figure 4 the correlation maps obtained by CCA s 3×3
wcv are visualized for amorphous, Ha (nano), Ha (micro),
Tcp (α), and Tcp (β). The first frame in Figure 4 shows the
nosologic image, where the gray tones denote the tissue types
as follows: the black denotes the amorphous, the dark gray
indicates the Ha (nano), the gray corresponds to Tcp(α), the
light gray denotes Ha (micro).

In Figure 5, the nosologic images obtained by CCA when
applying different spatial models are shown. As it can be
observed, the symmetric 3 × 3 model without corner vox-
els gives a nosologic image that resembles the pattern of
Figure 1 quite well, so does the CCA sf spatial model of
Figure 5. This is because, as already argued, both of them ex-
ploit the information from the nearest neighbors. However,
the comparison with the two-dimensional X-ray patterns of
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Figure 5: Nosologic images obtained from diffraction data of Figure 1 by CCA when applying different spatial models (see the text for
details).

Figure 1 is just a guide to the eye since CCA is applied to one-
dimensional X-ray patterns, as previously stated. The latter
profiles show details that cannot be quantitatively appreci-
ated by a simple visual inspection of Figure 1. We made a
comparison with a quantitative analysis performed by the Ri-
etveld technique. This is a standard way to investigate the
unidimensional powder pattern [5] and to determine the
relative amounts of different components. We decided to
consider one-dimensional cross-sections of Figure 1. For in-
stance, in top parts of Figures 6-7 we report two arbitrary
cross-sections cut across and along the sample (similar re-
sults were obtained by considering different cross sections),
respectively. In both figures, we also show the results of CCA
analysis (middle parts) obtained by the different spatial mod-
els of Figure 5, and standard quantitative analysis (bottom
parts). We can see that the symmetric 3 × 3 model without
corner voxels and the symmetric filter are helpful in spotting
the expected tissue component in each scattering voxel. It is
worth to stress that the amorphous contribution, according
to the quantitative analysis, is largely dominant, as it can be
seen in bottom plots of Figures 6-7, and this may sometimes
produce a misassignment at interfaces with other tissues as,
for instance, it happens for the 5th pixel from left in CCA s
3× 3 wcv in Figure 6. This is due to the fact that in the con-
sidered multivoxel approach the neighbor pixels are equally
weighted and do not account for the overwhelming contribu-
tion of the amorphous. In Figure 7, the classification done by

CCA s 3× 3 wcv looks the best when compared to the results
of the quantitative analysis. Similar results are obtained by
using other cross-sections. According to the standard analy-
sis, it is evident that the lower is the amorphous signal along
the cross section, the higher is the hydroxya (nano) signal.
Therefore, the crystallographic approach requires a further
inspection by the user in order to assign the prevailing tissue
to the considered voxel. On the contrary, CCA is sensitive to
the subleading signal and is able to assign it to the considered
pixel without any further user interaction.

5. CONCLUSIONS

In this paper, we have proposed a method for tissue typ-
ing of XRDI data acquired from a clinically available scaf-
fold implanted in a damaged bone. The technique is based on
canonical correlation analysis and is able to provide reliable
tissue classification with its direct visualization and without
requiring any user interaction. These results give important
indication about the resorption mechanism and the role of
stromal cells in the structural change of scaffold. Canoni-
cal correlation analysis reveals as a valid tool for a system-
atic analysis of the materials as they appear in the X-ray
diffraction patterns. Probing to what extent, this new statisti-
cal technique provides convincing results as to other features
of the sample, for instance, the mineralization orientation is
an important endeavour to be investigated in the future.
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