
Hindawi Publishing Corporation
EURASIP Journal on Advances in Signal Processing
Volume 2007, Article ID 20248, 10 pages
doi:10.1155/2007/20248

Research Article
Fast �1 Minimization by Iterative Thresholding for
Multidimensional NMR Spectroscopy

Iddo Drori

Department of Statistics, Stanford University, Stanford, CA 94305-4065, USA

Received 18 September 2006; Revised 5 April 2007; Accepted 28 August 2007

Recommended by Sabine Van Huffel

Fast multidimensional NMR is important in chemical shift assignment and for studying structures of large proteins. We present
the first method which takes advantage of the sparsity of the wavelet representation of the NMR spectra and reconstructs the
spectra from partial random measurements of its free induction decay (FID) by solving the following optimization problem: min
‖x‖1 subject to ‖y − SFTWTx‖2 ≤ ε, where y is a given n × 1 observation vector, S a random sampling operator, F denotes the
Fourier transform, and W an orthogonal 2D wavelet transform. The matrix A = SFTWT is a given n× p matrix such that n < p.
This problem can be solved by general-purpose solvers; however, these can be prohibitively expensive in large-scale applications.
In the settings of interest, the underlying solution is sparse with a few nonzeros. We show here that for large practical systems,
a good approximation to the sparsest solution is obtained by iterative thresholding algorithms running much more rapidly than
general solvers. We demonstrate the applicability of our approach to fast multidimensional NMR spectroscopy. Our main practical
result estimates a four-fold reduction in sampling and experiment time without loss of resolution while maintaining sensitivity
for a wide range of existing settings. Our results maintain the quality of the peak list of the reconstructed signal which is the key
deliverable used in protein structure determination.

Copyright © 2007 Iddo Drori. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

High-dimensional NMR spectroscopy is time consuming,
requiring between days and weeks of acquisition time [1].
Numerous researchers are interested in reconstructing NMR
spectra from undersampled signals [2–5]. For example,
strategies include sampling along random lines in the indi-
rect dimension and along radial lines. In such methods there
are several observations per degree of freedom in the under-
lying object. Simple linear methods for reconstruction such
as backprojection lead to artifacts when used in an under-
sampled setting. More elaborate methods such as maximum
entropy suppress artifacts in a nonuniform fashion.

In this work we bring two new elements into play. The
first is the idea that there is a rigorously valid sense in which
NMR spectra are reconstructed from undersampled data,
which includes two components: (i) sparsity: representing
spectra in an orthogonal wavelet basis which results in a
sparse representation of the signal; and (ii) nonlinear re-
construction: application of an optimization criterion which
produces a sparse set of representation coefficients. The lim-
itation of this approach is computational complexity; there-

fore, the second idea is that for solving these massive opti-
mization problems, there are fast iterative algorithms based
on thresholding which are used for reconstruction. In this
paper, we combine these ideas and demonstrate effective re-
construction of 2D NMR spectra using significantly under-
sampled data. We experiment with various sampling patterns
and perform a detailed comparison of different reconstruc-
tion methods.

The wavelet transform is well known and efficiently used
for signal compression. It transforms the signal into a do-
main in which only a few significant coefficients are required
for reconstruction. Considering that a signal to be acquired
is sparse under some transform, the idea of this work is to
utilize the sparse representation of the NMR signal in some
domain to sample in advance only a subset of the signal, thus
reconstructing the original signal from a small set of mea-
surements.

Our work is motivated by fast methods for iterative im-
age reconstruction from random samples [6] and operations
performed on a sparse set of wavelet coefficients [7]. More
recently, the notions of compressed sensing and compressive
sampling [8–10] have been formulated—a signal which is
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compressible in a known basis (e.g., wavelet or Fourier) can
be reconstructed from fewer measurements than the nomi-
nal sampling density, provided that the samples are made on
a specially transformed version of the signal. Roughly speak-
ing, the samples measure linear functionals which look like
random linear combinations of the basis functions and re-
construction involves quadratic programming.

In this work, we use the sparsity of the NMR signal inher-
ent in the transform domain to sample the signal and recon-
struct it. The original signal is recovered by using a nonlinear
reconstruction scheme—an approximation to �1 minimiza-
tion of the transform.

2. �1 MINIMIZATION

Formally, the problem we wish to solve is finding the sparsest
solution to an underdetermined system of equations:

(
P0
)

min‖x‖0 subject to y = Ax, (1)

where y is observed data, A is a known n × p matrix, n < p,
and x is an unknown vector in Rp. Here ‖x‖0 represents the
number of nonzeros in x and is not a norm. This is a noncon-
vex combinatorial optimization problem. In general, finding
the sparsest solution is NP hard [11]. Traditionally, there are
three approaches to getting around NP hard problems: if the
inputs are very small, an algorithm with exponential time
may be satisfactory although not elegant; we may be able to
isolate special cases that are feasible in polynomial time; or
it may be possible to find a near optimal solution in polyno-
mial time using an approximation algorithm. Therefore, we
solve the problem for the �1 norm [12]:

(
P1
)

min‖x‖1 subject to y = Ax, (2)

which is convex and tractable. In addition, when the solution
is sufficiently sparse for certain levels of underdeterminicity
there exists equivalence between the �1 and sparsest solutions
[13].

The notion of using �1-penalization as a sparsifying con-
straint has been around for decades. In the context of statisti-
cal estimation, this has been made explicit by Efron and Tib-
shirani [14, 15] who suggested the following �1-constrained
minimization:

(
Lt
)
min

x
‖y − Ax‖2

2 subject to ‖x‖1 ≤ t. (3)

This problem can also be written in the augmented La-
grangian form,

(
Dλ
)
min

x

1
2
‖y − Ax‖2

2 + λ‖x‖1. (4)

Problems (Lt) and (Dλ) are equivalent. Indeed, it is easy to
verify that for x∗t , a solution of (Lt) for some t ≥ 0, there
exists a λ ≥ 0 such that x∗t solves (Dλ).

Problem (Dλ) has been introduced to the signal process-
ing community by Chen et al. [12] with the name basis pur-
suit denoising (BPDN) [16, 17]. This is equivalent to a lin-
ear objective perturbed by a quadratic term, yielding thus a

quadratic program, retaining structure similar to linear pro-
gramming:

min cTx +
1
2
‖p‖2 subject to Φx + p = y, x ≥ 0, (5)

where cTx is the inner product of two vectors with c a vec-
tor of ones, Φx is a matrix-vector product such that Φ =
(A,−A), and x ≥ 0 means that each entry of the vector x
must be nonnegative.

If A is orthogonal, then ‖y − Ax‖2 = ‖ ŷ − x‖2, for ŷ =
AT y, and problem (Dλ) is equivalent to

min
x

1
2

∑

i

(
ŷi − xi

)2
+ λ
∑

i

∣
∣xi
∣
∣ (6)

written coordinate-wise, and therefore we get the soft thresh-
olding nonlinearity which solves the scalar minimization
problem:

δλ(y) = 1
2

arg minx(y − x)2 + λ|x| (7)

and is the soft thresholding operator:
(
δλ(y)

)
i = sgn

(
yi
)(∣∣yi

∣
∣− λ

)
+. (8)

It is worth noting that (Lt) has been studied by Tibshi-
rani and others in the case n > p, that is Ax = y is an overde-
termined system of equations, whereas (Dλ) was introduced
[12] and analyzed [18] for n < p.

In most practical settings, we observe noisy data and
would like to solve the problem in the presence of noise [16]:

(
P1,ε
)

min‖x‖1 subject to ‖y − Ax‖ ≤ ε, (9)

which is equivalent to the optimization problem (Dλ). The
optimization problems (P1) and (P1,ε) can be cast as a per-
turbed linear program which is a quadratic program, and
therefore computationally tractable, and solved efficiently
using general purpose solvers such as simplex and interior
point methods [19, 20]. The simplex algorithm moves along
the exterior of the feasible region maintaining a solution
which is a vertex of the simplex, often solving linear pro-
grams quickly in practice, however the algorithm can re-
quire exponential time for specific inputs. In contrast, inte-
rior point methods move along the interior of the feasible re-
gion maintaining intermediate solutions which are not nec-
essarily vertices of the simplex, and run in polynomial time.

However, for many signal and image processing applica-
tions as well as for NMR applications, the problem sizes are
quite large, hence computational complexity is a driving con-
cern for these applications. Standard general-purpose solvers
such as the simplex and interior point methods can be used;
however, general-purpose solvers ultimately require solution
of “full” linear systems which may require cubic computation
of the order O(np2) which is prohibitive for large-scale appli-
cations. General-purpose optimizers, while extremely useful
for establishing the validity of �1-based methods, must give
way in actual applications to specialized optimizers. In this
work, we describe such specialized efficient algorithms which
solve these problems in quadratic time of the input size.
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Recently, �1-norm minimization problems have been ap-
plied to a range of important practical applications, particu-
larly in conjunction with sparse representation [10, 12, 17].
The �1-norm minimization is a way to attempt to regularize
the solution. Applications have been proposed in the context
of time-frequency representation [12], overcomplete signal
representation [17], compressed sensing [9, 10], MRI [21–
23], removing impulsive noise [24], error-correcting codes
[25, 26], and genome-wide analysis of mRNA lengths [27].

3. APPLICATION

An important motivation for multidimensional nuclear
magnetic resonance (NMR) spectroscopy is to determine the
structure of proteins. Briefly, NMR occurs when atomic nu-
clei immersed in a magnetic field are exposed to an oscillat-
ing magnetic field. When a substance is placed in a magnetic
field, some nuclei have orientations called spins. Each spin
corresponds to a different energy level and the spins jump
between levels when excited by radio waves whose frequency
matches the energy spacing, which is called resonance. By
changing frequency, the energy level spacings are measured,
and a signal is created when the spins flip at resonance. The
NMR spectrum shows the magnitude of the signal as a func-
tion of frequency.

Numerous processing and analysis steps are performed:
beginning with the initial recording of the free induction de-
cay (FID), computation of the spectrum, structure interpre-
tation and assignment. Several of the key desired properties
in this chain of operations are as follows: (i) feasible acqui-
sition time for high-dimensional experiments required for
handling large proteins, (ii) identifying exact peak positions,
and (iii) accurately determining structure from a peak list
and additional information. In this work, we focus on the
first point which is the most critical bottleneck in practical
settings.

Our approach is a general method for fast multidimen-
sional NMR by random sampling and fast �1 norm recon-
struction by iterative methods. Our main practical result es-
timates a four-fold reduction in sampling and experiment
time without loss of resolution while maintaining sensitiv-
ity for a wide range of existing settings. This is important for
chemical shift assignment and for studying protein structure.

Recent fast multidimensional NMR methods [28, 29] in-
clude parallel acquisition schemes, selective recording of out-
put spectra, reconstruction from a small set of projections,
and reconstruction from random and nonuniform measure-
ments.

Replacing serial acquisition in the indirect dimension
[30] with parallel acquisition by applying gradients along the
z-axis results in a method for obtaining 2D data in a single
scan. This high throughput hardware solution is extended
to reconstruction of 3D and 4D spectra by varying gradients
of additional axes in encoding. GFT-NMR [1] obtains a full
high-dimensional spectrum from a set of low-dimensional
spectra by coupling evolution of nuclei thereby reducing the
number of indirect dimensions. The approach recovers one
d-dimensional spectrum from 2d−k+1k-dimensional spectra,
with d > k, and involves a least squares fit to an overdeter-

mined system of equations. The application of GFT-NMR as
demonstrated for the protein ubiquitin results in a reduction
of experiment time by an order of magnitude for each re-
duced indirect dimension.

Similar to reconstruction methods used in tomography,
a full multidimensional spectrum can be reconstructed from
a small set of projections [31, 32], utilizing the Fourier
projection-slice theorem. More specifically, recent experi-
ments include reconstruction of 3D spectra of the small
ubiquitin protein and long protein HasA, in which a spec-
trum is reconstructed from (t1, t3), (t2, t3) projections as well
as 30, 60 degree projections with respect to the t1 axis.

In Hadamard spectroscopy, the evolution periods of the
pulse sequences are replaced by arrays which cover a narrow
range of the full frequency range. This setting reduces exper-
iment time for exploring specific sites. For example, an ex-
periment for recovering a subset of peaks in a spectrum of
the ubiquitin protein results in a speedup by two orders of
magnitude compared with full acquisition.

Multiway decomposition [33] represents the spectrum as
a multilinear form consisting of line shapes of peaks. For ex-
ample, in the 2D case, the spectrum is represented as XAYT ,
where A is a matrix of amplitudes, and X , Y are shape matri-
ces with various constraints such as nonnegativity, symme-
try, and orthogonality. This global parametric representation
results in filling in a decomposed sparsely sampled signal.

Maximum entropy is often used for reconstruction [2–
5] of a randomly sampled subset of FID measurements in
the indirect dimension. As expected, recovery of 3D protein
spectra from 20–33 percent sampling of the (t1, t2) plane re-
duces experiment time by factors of 3-4. Both maximum en-
tropy and �1 norm reconstruction use similar sampling pat-
terns; however, our approach is the first to utilize the under-
lying sparsity of the NMR spectra in the wavelet domain. An
FID has a known mathematical formulation involving a few
parameters, however this representation is nonlinear. The
representation in the wavelet domain has the advantage of
being a linear representation of the signal. The wavelet trans-
form has been previously used for smoothing and denoising
NMR spectra [30]. In this work, the wavelet transform is im-
portant for obtaining a sparse representation of the signal,
and the specific transform for a rapid decay of the wavelet
coefficients.

4. NUMERICAL SCHEME

In order to reconstruct an NMR spectrum from partial ran-
dom measurements of its free induction decay, we solve the
following optimization problem:

min‖x‖1 subject to ‖y − SFTWTx‖ ≤ ε, (10)

where y is the observation, S is a random sampling operator,
F denotes the 2D Fourier transform, and W an orthogonal
2D wavelet transform.

We apply iterative soft thresholding by the iteration

xk+1 = xk + δtk
(
A∗
(
y − A

(
xk
)))

, (11)

where xk is the kth approximate solution, δt is soft thresh-
olding at amplitude t and the threshold tk decreases with
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Input: n× p matrix A, observation vector y, ε.
Output: solution of (P1,ε).
Algorithm:
Initialization:
Residual r0 = y.
Correlation c0 = ATr0.
Threshold t0 = max (|c0|).
Solution x0 = 0 of length n.
while ‖rk‖2 ≥ ε‖y‖2:

update solution xk+1 = xk + δtk (ck).
compute residual rk+1 = y − Axk+1.
compute correlation ck+1 = ATrk+1.
update threshold tk+1 = μtk .

end while

Algorithm 1: Iterative soft thresholding pseudocode.

increasing iteration count. The “fast operator” composing
random sampling, Fourier transform, and the wavelet trans-
form is denoted by A and the conjugate by A∗. More specif-
ically, we use an orthonormal 2D wavelet transform with 8
vanishing moments.

As mentioned, there exist general purpose solvers for
finding the solution of the problem (P1,ε); thus, for large-
scale applications, we introduce efficient special purpose
solvers. In addition, recent work [34] has focused on find-
ing good sparse approximations for underdetermined linear
systems of equations for typical/random matrices; whereas in
the next section, we describe in detail fast iterative threshold-
ing algorithms suitable for large-scale practical applications.

4.1. Iterative soft thresholding

Iterative soft thresholding, in various guises, has been used
for years [30, 35, 36]. A set of thorough analysis works [37–
41] offer algorithms and proof of their convergence to the
global minima of the problems. While not all of these are ex-
actly comparable to the our setting, the family resemblance
should be clear. In our work, the process of iterative soft
thresholding approximately solves (P1,ε) when the solution
is sufficiently sparse and p and n are sufficiently large.

A fast solution to the (P1,ε) optimization problem is ob-
tained by a simple iterative soft thresholding (IST) algorithm.
Let δt(y) denote the soft thresholding operator:

(
δt(y)

)
i = sgn

(
yi
)(∣∣yi

∣
∣− t

)
+. (12)

Consider the iteration

xk+1 = xk + ρδtk
(
AT
(
y − Axk

))
. (13)

Here 0 < ρ ≤ 1, we start this iteration from x0 = 0, and tk
decreases from iteration to iteration. Each iteration requires
applications of A and AT ; if these can be performed rapidly,
then each step of IST will run rapidly.

Input: n×p matrix A and observation vector y, ε.
Output: solution of (P1,ε).
Algorithm:
Initialization:
Residual r0 = y.
Correlation c0 = ATr0.
Threshold t0 = max (|c0|).
Solution x0 = 0 of length n.
while ‖rk‖2 ≥ ε‖y‖2:

compute support I = {i : |ck| ≥ tk − ε}.
solve by least squares rk = AIdxI .
update solution xk+1 = xk + γdx.
compute residual rk+1 = y − Axk+1.
compute correlation ck+1 = ATrk+1.
update threshold tk+1 = μtk .

end while

Algorithm 2: Iterative thresholding by least squares pseudocode.

We view the sequence of iterates xk as approximately fol-
lowing the LARS [14] path at threshold tk. Indeed, this is a
sort of fixed point iteration for the solution x̃t which satisfies

0 = δt(AT(y − Ax̃t)) (14)

which is related to the normal equations ATAx = AT y, and
so, starting from a hypothetical point on the LARS path itself,
the iteration would produce no change. Moreover, small per-
turbations away from the LARS path produce countervailing
adjustments.

Algorithm 1 describes the pseudocode of the algorithm.
In iterative soft thresholding, A and AT are either applied
directly or as fast operators. It is an iterative algorithm in-
volving applications of A and AT which converges rapidly.
A variation on this is a block solution which accelerates the
basic soft threshold iteration. The matrix A is partitioned
into blocks A = [B1,B2 · · ·BJ] by taking random disjoint
columns. Then the least-squares projection of Bj is applied
in computing the correlations:

xk+1, j = xk, j + ρδtk
((
BT
j Bj
)−1

BT
j

(
y − Axk

))
. (15)

4.2. Iterative thresholding by least squares

A variant of iterative thresholding, differing in two lines of
code, begins with an empty model, an initial estimate of the
solution as zeros, and the residual as the observation. We pro-
ceed in an iterative fashion, finding the correlations above
a threshold and solve a least-squares problem in each iter-
ation. This means that in each iteration, as the threshold is
decreased, the algorithm solves a least-squares problem us-
ing an iterative conjugate-gradient-like method [42] with an
increasing number of elements on a larger space. Here, dxI is
defined as the least-squares solution of a linear system, such
that the elements of the vector dx outside the support I are
zeros. We have empirically found the choice of μ + γ = 1 to
be suitable for our purposes. Algorithm 2 describes the pseu-
docode of the algorithm.
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4.3. Computational complexity

In this section, we describe the time and space complexity of
our algorithms in various settings. In the case where A is an
explicit n × p matrix such that n < p, iterative soft thresh-
olding described in Algorithm 1 computes at each iteration
k the residual r = y − Ax and correlation vectors c = ATr,
and applies a soft thresholding operation δt(c). The number
of iterations is typically a small constant depending on the
thresholding schedule, and the computational complexity is
O(np).

The iterative method described in Algorithm 2 computes
the residual and correlation vectors as before, and applies
a small constant number of conjugate gradient steps to ap-
proximately solve the system AT

I AIdl(I) = cl(I), with I de-
noting the current active set. Each iteration involves applica-
tion of AI and AT

I in the order of O(n2).
We compare this setting to the performance of one spe-

cific interior-point method, namely a primal-dual barrier
method for convex optimization (PDCO) [19], for solving
the linear program arising from (P1). PDCO solves a stan-
dard form linear program by appending a log-barrier term
to the objective to replace the nonnegativity constraints and
forming the KKT matrix to solve for the Newton update di-
rection. The number of iterations is a small constant, and the
overall complexity isO(np2). The key point in this case is that
the space complexity which is linear in the input dimension is
impractical for large-scale problems such as processing mul-
tidimensional signals.

We therefore consider the case where A is represented as a
linear operator which is applied to a vector, for which we coin
the term “fast operator”. The Fourier transform, Hadamard
transform, and wavelet transform all belong to this class of
operators. Such operators are important in large-scale ap-
plications, where storing the explicit matrix A is only suit-
able for relatively small-scale problems. As described, the
main problem with representing the operator as an explicit
matrix is that the space complexity is O(np). In large-scale
applications it is not feasible to store the matrix in mem-
ory. In such a case, when using a “fast operator”, the iter-
ative algorithms presented and the specific interior method
both have modest space requirements which make them suit-
able for large-scale applications. For example, the iterative
method only requires storing the current estimate x and
residual vector r. Similarly, an efficient implementation of
PDCO stores in each stage the current primal and dual so-
lution estimates, the next primal and dual steps, and resid-
ual. Such space requirements make these methods superior
to LARS [14] or OMP [43, 44] in large-scale applications.
Similarly, the algorithms in �1-magic, a collection of meth-
ods for solving convex optimization programs, do not pro-
vide a method for solving the problem (Dλ) in which the
matrix is accessed only through matrix-vector multiplica-
tions involving A and AT or their fast operators. In this case,
the specific interior-point method discussed above requires
computing in each iteration the solution of a system which
is prohibitively large, in the order of the data size. When
A is given as a fast linear operator, such a system may be
solved using a conjugate-gradient-type solver which is dom-

inated by two matrix-vector multiplications per iteration of
PDCO.

Implementing the operation of the n × p matrix A as a
linear operator may take fewer than n·p operation to ap-
ply, and is dependent on the specific operator involved in
each application. For example, in the application described
in the next section the operator involves random sampling,
Fourier transform which is computed by applying the 1-
dimensional transform on each dimension in turn in any or-
der in O(p log p) independent of dimension d, and wavelet
transform, and therefore time complexity is equal to the time
complexity of applying a given operator.

5. SIMULATIONS

In one dimension, a characteristic NMR signal is simulated
by a sum of exponentially decaying sinusoids [30] with addi-
tive noise as a function of the number of peaks, amplitude,
phase, decay time, and frequency:

L∑

j=1

(
Aje

iϕj
)
e−kΔt/τ j e2πikΔtwj + z. (16)

Here L denotes the number of sinusoids, each correspond-
ing to a single nuclear resonance. For each sinusoid j, Aj

denotes the amplitude, ϕj its phase in radians, and τ j the
decay time. k denotes translation, Δt the sampling rate, and
z∼N(0, 1) the additive noise. This results in a spectrum
which is the sum of Lorentzian peaks at the frequencies wj .
In our simulation, the amplitude, phase, and frequencies are
random uniformly distributed, with constant decay time. A
two-dimensional NMR signal is simulated by extending the
characteristic one-dimensional equation such that there are
separate decays, phases, and frequencies for each dimension
d = 1, 2. The components in each dimension are of the same
amplitude, and the projection onto each dimension is given
by

eiϕd, j e−td, j

τd, j e2πitd, j fd, j
. (17)

Two-dimensional NMR was first proposed in 1971 by
Jeener and became practical in experiments by Ernst and
Freeman. In a normal pulsed NMR experiment, an excitation
pulse is followed immediately by data acquisition or detec-
tion in which the FID is recorded and data stored. The basic
principle of a 2D NMR experiment is that the first variable t1
is the period during which the system evolves, which can be
of the order of milliseconds to seconds. This is followed by a
constant mixing time which depends on the experiment, in
which the spin states are allowed to mix, and finally by a de-
tection phase at time t2 which is the second variable. Numer-
ous experiments are performed, each with increasing values
of t1. When the interferograms (FIDS) from all these exper-
iments undergo Fourier transform with respect to t2 we ob-
tain multiple frequency domain spectra f2. If decoupling is
applied during the whole experiment, all of the f2 spectra are
identical except for a decrease in intensity due to relaxation
during time t1. However, if the decoupler is on only during
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Figure 1: (a) Original spectrum. (b) �1 norm reconstruction. (c)
Slice of original and reconstructed result.

data acquisition, the nuclei and protons are coupled during
the evolution phase. In this work, we perform a realistic sim-
ulation of a broad range of 2D NMR spectra by using a data
set containing 35 complex signals with varying parameters,
including the rate of decay, noise, and peak crowdedness.
The data set is used in an experiment management system
for biomolecular NMR [45].

5.1. Random sampling

In the application of NMR spectroscopy, random sampling
in the indirect dimension of the signal translates into reduc-
ing the experiment and actual measurement time. We recon-
struct the spectra from the sampled signal by solving an op-
timization problem of the form (P1,ε). We set up a system in
which the observation is the signal in scanline order, break-
ing up its real and imaginary parts. For example, Figure 1
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Figure 2: Different sampling patterns with a comparable number
of samples: (a) equispaced radial lines. (b) Random radial lines.
(c) Uniform random horizontal lines.

shows an original spectrum in Figure 1(a), the correspond-
ing �1 norm reconstruction from random line samples in
Figure 1(b), and a slice of the original and reconstructed re-
sult in Figure 1(c).

We experiment with several different sampling pat-
terns as shown in Figure 2: Figure 2(a) equispaced radial
lines, Figure 2(b) random radial lines, and Figure 2(c) uni-
form and nonuniform random horizontal lines; as well as
randomly jittered radial lines and curves, to predict the
number of measurements required to reconstruct with good
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Table 1: Comparable undersampling factors for different sampling
patterns.

Complex points Random lines Radial lines Random radial lines

1282 64 115 114.2

2562 128 133 125.15

5122 256 165 119.6

10242 512 187 129.35

Table 2: Dimensions, number of peaks, iterations, reconstruction
accuracy, and running times for spectra.

Signal Dimensions Peaks Time (s)

Characteristic 1282 128 42.75

Characteristic 2562 256 146.6

Characteristic 5122 512 427.5

Synthetic 1282 128 45.9

Synthetic 1282 128 46

accuracy. We study the difference between sampling schemes
and compare the results empirically.

The mutual coherence M(A) of a matrix A is the maximal
off-diagonal entry of the Gram matrix ATA. Given a sam-
pling pattern as a binary matrix S and a basis matrix B, we
form the corresponding Gram matrix G = ATA, where A =
SB. We compare the quantities M(S,B) = max i �= j‖Gi, j‖/w2

averaged over 100 trials, where B is the Fourier basis, S the
various sampling patterns, and w a normalizing scalar. We
experiment with different sampling patterns illustrated in
Figure 2, while keeping the same undersampling factor as
shown in Table 1. As a numerical example, for a given syn-
thetic 1282 FID with a 2 : 1 sampling ratio, the mean recon-
struction error for radial sampling is 0.28 and for random
lines 0.67, whereas for a 4 : 1 sampling ratio the mean re-
construction error for radial sampling is 0.87 and for ran-
dom lines 1.3. This demonstrates improved accuracy in ra-
dial sampling compared to random sampling. However, ra-
dial sampling commonly results in artifacts. We therefore in-
troduce randomness into the sampling to diminish artifacts
while maintaining accuracy.

5.2. Reconstruction time

The undersampling factor is important for estimating the re-
duction in actual NMR experiment time by simulation using
characteristic and synthetic signals. There is a classical trade-
off here, which is that reconstructing the signal requires solv-
ing a large optimization problem—our motivation for de-
veloping rapid iterative solvers. Therefore the computational
efficiency of the nonlinear reconstruction becomes relevant.
Reconstruction running times for undersampling by a factor
of 2 are summarized in Table 2, on a standard PC running
Matlab. The algorithm converges consistently within RMSE
of 0.5 in under 50 iterations with a tolerance less than 1e-5
used in the stopping criterion. For a time comparison, solv-
ing an instance of the same optimization problem, ensur-
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Figure 3: (a) Uncrowded and (b) crowded spectra; (c) rapid decay
of approximation error for symmlet with 8 vanishing moments.

ing the same tolerance, for a 2562 complex FID using PDCO
takes more than three weeks of computation time.

5.3. Analysis of reconstruction results

We use the wavelet transform to represent NMR spectra. In
order to measure the compressibility of the NMR spectra, we
measure the decay of its wavelet coefficients. Figure 3 shows
the rapid decay of mean approximation error for crowded
(red) and uncrowded (blue) spectra using symmlet [46] with
8 vanishing moments. Figure 4 shows the decay of wavelet
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Figure 4: Decay of wavelet coefficients of real part on a semilog
scale for various wavelets and vanishing moments.
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Figure 5: Mean reconstruction error as a function of the number
of peaks for an increasing degree of peak crowdedness.

coefficients of the real part of spectra on a semilog scale for
different types of wavelets with varying number of vanishing
moments.

The peak crowdedness defines the number of peaks
tightly clustered together, and defines the degree of overlap
between peaks. We have experimented with reconstruction
using a random sampling schedule in the indirect dimension
for varying levels of peak crowdedness. Figure 5 shows the
linear behavior of the mean reconstruction error as a func-
tion of the number of peaks for an increasing degree of peak
crowdedness.

6. CONCLUSIONS

In conclusion, our methodology provides efficient iterative
thresholding algorithms for finding sparse solutions to un-
derdetermined systems of linear equations for large-scale
practical applications. We demonstrate the applicability of
our approach to NMR spectra by utilizing the sparsity of the
wavelet transform and provide a valuable tool for speeding-
up multidimensional NMR. We would like to compare the
accuracy and sensitivity of our approach with maximum
entropy reconstruction of high-dimensional spectra [2, 3].
Theoretically, it is well known that there exists an equiva-
lence between maximum entropy and iterative soft thresh-
olding up to a set of parameters. An important contribution
of our work compared with maximum entropy spectra re-
construction is our use of the wavelet transform to obtain a
sparse NMR representation.
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