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We focus on the problem of speech recognition in the presence of nonstationary sudden noise, which is very likely to happen
in home environments. As a model compensation method for this problem, we investigated the use of factorial hidden Markov
model (FHMM) architecture developed from a clean-speech hidden Markov model (HMM) and a sudden-noise HMM. While
in conventional studies this architecture is defined only for static features of the observation vector, we extended it to dynamic
features. In addition, we performed home-environment adaptation of FHMMs to the characteristics of a given house. A database
recorded by a personal robot called PaPeRo in home environments was used for the evaluation of the proposed method. Isolated
word recognition experiments demonstrated the effectiveness of the proposed method under noisy conditions. Home-dependent
word FHMMs (HD-FHMMs) reduced the word error rate by 20.5% compared to that of the clean-speech word HMMs.
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1. INTRODUCTION

A great deal of effort has been devoted to developing per-
sonal robots, such as household robots, educational robots,
or personal assistants, that interact with human beings in the
home environment. Most of those robots are equipped with
a speech-recognition function because their interface should
be sufficiently easy for children and elderly people to control.

While current speech-recognition systems give accept-
able performance under laboratory conditions, their perfor-
mance decreases significantly when they are used in actual
environments. This is mainly because many different kinds
of nonstationary noise exist in actual environments. Devel-
oping speech recognition devices that are robust against that
noise is important. There have been many studies on this
topic, and they are categorized as follows: speech enhance-
ment, missing data theory, and model compensation.

Speech enhancement aims at suppressing noise in the
speech signal with the risk of degrading the original clean sig-
nal. Spectral subtraction, filtering techniques, and mapping
transformation [1] belong to this category. They are known
to be effective when the noise is stationary, but their perfor-
mance degrades significantly for nonstationary noise.

Missing-data theory tries to determine the level of relia-
bility of each spectral region in the speech spectrogram [2],
assuming that some portions of the speech spectrum are not
contaminated by noise. However, this approach is effective
only for noise that selectively corrupts a small portion of the
signal spectrum.

Model-compensation methods use noise models and
combine them with speech models during the recognition
process. One example is the well-known HMM composi-
tion and decomposition method [3], which can deal with
nonstationary noise, but it is computationally expensive. A
simplified version of HMM composition and decomposi-
tion is the parallel model combination (PMC) approach [4].
Although computationally less expensive, the gain match-
ing term, which determines the signal-to-noise ratio (SNR),
must be manually chosen. Therefore, the PMC approach
works well only for noise with a relatively stable SNR.

We focus on the problem of speech recognition in the
presence of nonstationary sudden noise, which is very likely
to happen in home environments. This noise appears sud-
denly and lasts for a short time, and there is no informa-
tion about its SNR. We apply a model compensation method
based on factorial hidden Markov models (FHMMs) that
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have been introduced as a possible extension of HMMs in
[5] because speech enhancement methods and missing data
theory approaches are not suitable for this problem. By using
the log-max approximation, FHMM can calculate the out-
put probability of the combined model of speech and noise
without any gain matching term even when the SNR varies
significantly.

In our proposed method, an HMM for each word in
the dictionary and an HMM for sudden noise are created.
Then, these models are combined to create an FHMM for
each word. We propose an extension to employ dynamic
features as well because the FHMM architecture proposed
in [6] is applicable only to static features of speech signals.
We also investigate other possibilities to increase the FHMM
model accuracy by applying home-environment adaptation.
A database recorded by a personal robot called PaPeRo [7]
in home environments was used for the evaluation of the
proposed methods. These experiments confirmed that this
method improved the recognition accuracy under noisy con-
ditions.

2. ROBUST SPEECH RECOGNITION USING FHMMs

2.1. FHMM

An FHMM is formed as a dynamic belief network composed
of more than one layer. Each layer can be seen as a hidden
Markov chain that evolves independently from the other lay-
ers. The output observation of the FHMM depends on the
current states of all layers at each time t.

Let two HMMs, Q and R, with N and W states, respec-
tively, define an FHMM with two layers. The first layer, Q,
represents speech, while the second layer, R, models sudden
noise. Then, at each time, the speech and noise processes are
described by the FHMM metastate (q, r), which is defined as
a pair of states, q and r, of HMM Q and HMM R, respec-
tively. Furthermore, we assumed that the elementwise max-
imum of the output observations of the two layers is taken
[8]. The structure of this FHMM is shown in Figure 1.

2.2. Log-max approximation

Log-max approximation is based on the observation that,
unless two signals are synchronized, the spectrogram of their
mixture is almost the same as the elementwise maximum
of the spectrograms of these two signals. The spectrogram
of the noisy speech, y(t), which is the combination of clean
speech, x(t), and sudden noise, n(t), can be easily calculated
by using the following approximation [9]:
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where Y( jω), X( jω), and N( jω) are the Fourier transforms
of y(t), x(t), and n(t), respectively. This log-max approxima-
tion was also shown to hold for Mel frequency spectral co-
efficients (MFSC) [10], which are defined as the log-energy
outputs of the speech signal after they are filtered by a bank
of triangular bandpass filters on a Mel frequency scale.
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Figure 1: Structure of FHMM composed of two HMMs, Q and R.

2.3. Model formulation

2.3.1. Transitionmatrix

The FHMMwith layersQ and R defined in Section 2.1 can be
represented by a traditional HMM with N ×W states [11].
Its transition matrix is defined by the Cartesian product be-
tween the transition matrices AQ and AR of HMMs Q and R,
respectively [11]:

a(i, j)(k,l) = aQika
R
jl, 1 ≤ i, k ≤ N , 1 ≤ j, l ≤W. (2)

2.3.2. Output probability density function estimation

For each frame, let y = (y1, y2, . . . , yD)T , x = (x1, x2, . . . ,
xD)T , and n = (n1,n2, . . . ,nD)T be the D-dimensional MFSC
vector for noisy speech, clean speech, and noise, respectively.
Then, output y of the FHMM for each frame is given by the
log-max approximation

y ≈ max(x,n), (3)

where “max(·, ·)” stands for the operation selecting the
element-wise maximum. This approximation is based on the
assumption that, at each time and at each frequency band,
one of the mixed signals is much stronger than the other.
Hence, the contribution to the output probability density
function (pdf ) from the weaker signal can be neglected.

Let the output pdfs for state q in HMM Q and state r in
HMM R be represented by the mixture of Gaussians

pq(x) =
M
∑

m=1
cqmN

(

x | µqm,Σqm
)

,

pr(n) =
M
∑

m=1
crmN

(
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)

,

(4)

where M is the number of Gaussians in each state, µqm and
µrm are the mean vectors of the mth mixture components of
states q and r, and cqm and crm are the mth mixture coeffi-
cients, respectively. We assume that the covariance matrices
Σqm and Σrm of the mth mixture in states q and r, respec-
tively, are diagonal. Hence, a D-variate Gaussian N(· | ·, ·)
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is equivalent to the product of D univariate Gaussians. Then,
the pdf of the observation vector y for metastate (q, r) of the
FHMM is defined by [6]

p(q,r)(y) = pq(y)Fr(y) + pr(y)Fq(y), (5)

where
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Symbols pq(xd) and pr(nd) represent the dth univariate
Gaussians in states q and r of HMM Q and HMM R, respec-
tively.

2.4. Extension of FHMM to dynamic features

Temporal changes in the speech spectrum provide impor-
tant clues about human speech perception and are helpful
in describing speech trajectory. The most popular approach
to represent this information is to use Δ coefficients, which
are calculated as follows:

Δyt =
∑G

τ=1 τ
(

yt+τ − yt−τ
)

∑G
τ=1 τ2

, (7)

where yt and Δyt stand for static coefficients and dynamic
coefficients, respectively, of the observation vector y in frame
t. Parameter τ defines the time shift. It is known that rep-
resentation containing both static and dynamic features has
better performance in speech recognition than a representa-
tion with only static features [12].

The calculation of the output pdf defined in (5) is based
on the log-max approximation. Although this approxima-
tion is very effective for static features, it cannot be applied
directly to the dynamic part of observation vectors. The ele-
mentwise maximum operation between dynamic features of
two different signals is meaningless and does not approxi-
mate the Δ features of the mixed signal because dynamic fea-
tures contain information about changes in the signal over
time.

Therefore, we assume that the HMM for the dominant
signal, which was selected based on static features of mixed
signals, can be used to calculate the pdf for the dynamic fea-
tures as well. We incorporated Δ features by defining the out-
put pdf of FHMM p′q,r(y,Δy) as

p′(q,r)(y,Δy)

=
⎧

⎨

⎩

p(q,r)(y)pq(Δy) if pr(y)Fq(y) < pq(y)Fr(y),

p(q,r)(y)pr(Δy) otherwise,

(8)

where Δy represents the dynamic features of y, and pr(Δy)
and pq(Δy) are the output pdfs for the dynamic part of the
observation vector y given by HMM Q and HMM R, respec-
tively. The pdf p(q,r)(y) was defined in (5). The condition in

(8) defines whether process Q or process R is dominant at
a given time, thus defining which HMM should be used to
calculate the output pdf for the Δ features. Terms Fq(y) and
Fr(y) can be regarded as weighting coefficients.

2.5. Home-environment adaptation

It is generally observed that different groups of people ex-
hibits differences in their voice characteristics and differ-
ent places exhibits differences in their noise characteris-
tics. Therefore, a home-dependent FHMM (HD-FHMM)
adapted to a specific house is expected to yield better per-
formance than that of a home-independent FHMM (HI-
FHMM), which represents common characteristics shared by
all houses. For the FHMM models defined in Section 2, the
adaptation process is conducted independently for speech
layer Q and noise layer R.

We use a method proposed by Shinoda and Watanabe
[13] for the adaptation of the HMM of each layer. The ef-
fectiveness of this method and that of the (MLLR) method
[14] are comparable because both methods are piecewise lin-
ear transformations. In Shinoda’s algorithm, the tree struc-
ture is more flexible because the number of branches in
each level and the depth of the tree can be chosen manu-
ally. In this method, the mean of each Gaussian component
in the home-independent HMM (HI-HMM) is mapped to
the unknown mean of the corresponding Gaussian compo-
nent in the home-dependent HMM (HD-HMM). Let μi and
μ̂i be the mean of the ith Gaussian component of the HI-
HMM and the corresponding Gaussian component of the
HD-HMM, respectively. Then,

μ̂i = μi + δi, i = 1, . . . ,N ×M, (9)

where δi is a shift parameter from the mean of the HI-HMM,
N is the number of states in the model, andM is the number
of Gaussian components in each state. Shift δi is estimated
using a training algorithm such as the forward-backward al-
gorithm or the Viterbi algorithm. The number of δi is so large
(N×M) that the correct estimation of these shifts with a lim-
ited amount of adaptation data is often very difficult.

To overcome this problem, the proposed method con-
trols the number of shifts to be estimated by using a tree
structure (see Figure 2). This tree is constructed by cluster-
ing the Gaussian mixtures of the HI-HMM with a top-down
clustering method that employs the k-means algorithm. The
Kullback-Leibler divergence is used as a measure of distance
between two Gaussians. In such a tree, each leaf node i cor-
responds to Gaussian mixture i, and a tied-shift Δ j is defined
for each nonleaf node j. Using this tree structure, we can con-
trol the number of free parameters according to the amount
of data available. When we do not have a sufficient amount
of data, a tied-shift Δ j in the upper part of the tree is applied
to all the Gaussian components below node j. As the amount
of data increases, tied-shifts in the lower levels are chosen for
adaptation. To control this process, we use a threshold that
defines the minimum amount of data needed to estimate Δ j .
This threshold represents the number of data frames needed
for the precise estimation of the shifts attached to each node
and is chosen experimentally.
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Figure 2: Tree structure for shifts estimation.
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Figure 3: Database statistics.

3. EXPERIMENTS

3.1. Experimental conditions

For the evaluation of the proposed method, we used a
database recorded by a personal robot called PaPeRo devel-
oped by NEC Corporation [7], which was used in the houses
of 12 Japanese families (H01–H12). The database contains
74 640 sounds each of which was detected by the speech
detection algorithm equipped in PaPeRo. These sounds
were classified manually into three categories: clean speech
(speech without noise), speech corrupted by noise, and noise
(noise without speech). The database statistics are shown in
Figure 3. Each sample in the categories of clean speech and
speech corrupted by noise was transcribed manually. Further-
more, each sample in speech corrupted by noise and noise cat-
egories was labeled with the corresponding noise types. We

defined the following noise types: TV, human distant speech,
sudden noise, motor, kitchen sounds, electrical sounds, foot-
steps, robot speech, and miscellaneous (undefined noise).
There is a large variety of noise in the home environment,
so each sample can contain more than one noise type.

In this study, we used 16 000 samples of clean speech,
and 480 recordings of sudden noise such as doors slam-
ming, knocking, and falling objects. We also used 2828 sam-
ples of speech corrupted by sudden noise, which we call
recorded noisy speech. The statistics for each house are shown
in Figure 4. Samples were digitized at the 11 025Hz sam-
pling rate, and analyzed at a 10-millisecond frame period.
Log filter-bank parameters consisting of 24 static features, 24
Δ features, and Δ energy were used as the input features in
each frame. We developed a system for recognizing isolated
Japanese words. The vocabulary contains 1492 entries, con-
sisting of words and simple phrases (for simplicity we treated
each phrase as a word).

First, we constructed clean-speech HMMs and an HMM
for sudden noise. The recognition units in clean-speech
HMMs were triphones, which were trained using clean-
speech data. An HMM for sudden noise was trained using
sudden noise samples. Then, for each entry in the vocabulary,
a word HMMwas designed by concatenating the states of the
silence HMM and triphone HMMs according to their corre-
sponding sequence in the given entry. A noise HMM, which
consists of nine states (three states of silence, three states of
sudden noise, and the remaining states also of silence), was
built in a similar manner. The state output pdf for all HMMs
was a single Gaussian distribution. Finally, an FHMM that
models speech and noise in parallel for a given word was cre-
ated by combining the word HMM for clean speech and the
noise HMM, as described in Section 2.1.

3.2. Effectiveness of FHMMs

First, we evaluated the effectiveness of the proposed FHMMs.
In this experiment, the samples from eight houses (H02–
H06, H08, H09, and H11) were used for training the HMMs
of clean speech and sudden noise. The test set was prepared
as follows. From each of the remaining 4 houses, all samples
of sudden noise and 137 samples of clean speech were taken.
Then, each clean speech sample was paired with a sudden
noise sample that was selected randomly from the noise sam-
ples in the remaining 4 houses. Next, the paired speech and
noise samples were mixed at different SNRs:−5, 0, 5, 10, and
20 dB.

To achieve the desired SNR for each pair of speech and
noise samples, the power of speech and noise was calculated
as follows. Let w(i) be the power in the ith frame of the signal
s. In addition, let C := {i | w(i) ≥ λ}, that is, C is the set
of indices in which the ith frame has power greater than or
equal to threshold λ. The power of signal s is defined by

P(s) =
∑

i∈C w(i)
W

, (10)

where W is the number of frames in set C. For our exper-
iments, we set threshold λ = 400 for speech, and λ = 50
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Figure 4: Number of samples in our experiments.

for noise. These values were optimized in preliminary ex-
periments.1 Sudden noise has a much shorter duration than
speech, so we investigated three different ways of synthesiz-
ing the two signals: adding a noise sample at the beginning,
in the middle, and at the end of the speech sample. In prelim-
inary experiments, we found that a synthesized noisy speech
signal with noise at the center was the most difficult task for
the speech recognizer. Therefore, a clean speech sample and
a sudden noise sample were synthesized such that the mid-
point of these two samples was located at the same time.
An evaluation test with 548 utterances at each SNR was pre-
pared.

An example of the segmentation given by an FHMM
is shown in Figure 5, where artificial noisy speech (in
Figure 5(2)) is made by synthesizing the clean speech sam-
ple (Figure 5(1)) and a sudden noise sample at an SNR
of 0 dB. The FHMM correctly detected the noisy part of
the signal as well as the speech sequence, as shown in
Figure 5(2b). Its alignment was only slightly different from
that of Figure 5(1a) for clean speech, while the segmentation
of Figure 5(2c) given by the clean-speech HMMwas different
from that shown in Figure 5(1a).

We compared the recognition accuracies of clean-speech
HMMs without Δ features, clean-speech HMMs with Δ fea-
tures, FHMMs with Δ features, and FHMMs without Δ fea-
tures for the five different SNRs. The results averaged over the
four houses are shown in Figure 6. The FHMMs performed
better than their corresponding clean-speech HMMs. The
FHMMs defined only for static features improved the recog-
nition accuracy by 6.2% absolute at −5 dB, by 6.4% absolute
at 0 dB, by 1.8% absolute at 5 dB, and by 4.8% absolute at
10 dB. When Δ features were included, further improvement
was obtained. The proposed FHMM improved the recogni-

1 We decided not to use the standard SNR measure methods, such
as NIST standard, because they calculate the SNR from the noisy
speech only, not from the clean speech and the noise separated signals
(http://www.nist.gov/smartspace/snr.html).

Clean speech

(1a) sil g u: sil

(1)

(a)

Noisy speech

(2c) sil g u: sil

(2b) (sil, sil) (g, sil) (g, noise) (u:, noise) (u:, sil) (sil, sil)

(2)

(b)

Figure 5: Segmentation for sound “gu:”. Segmentations (1a) and
(2c) are given by clean-speech HMMs. Segmentation (2b) is given
by FHMM, where each unit is represented by a pair of speech and
noise units.

tion accuracy obtained from clean-speech HMMs by 2.0%
absolute at 10 dB, by 3.5% absolute at 5 dB, by 7.7% abso-
lute at 0 dB, and by 6.1% absolute at −5 dB. As the SNR in-
creased, however, the difference between the baseline clean-
speech HMMs and the proposed FHMMs decreased, giv-
ing an advantage to the conventional HMM at 20 dB SNR
and under clean conditions. This may be because slight mis-
matches between the training data and the test data in the
clean part of the noisy speech were misrecognized as noise
when the SNR is high.When the recognizer chooses the noise
as the stronger signal [see (8)], the wrong HMM model is
used to calculate the pdf of Δ features of the clean speech

http://www.nist.gov/smartspace/snr.html
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Figure 6: Recognition rates of speech artificially corrupted by sud-
den noise. HMMs (baseline) and the proposed method (noisy FH-
MMs) with and without Δ features.

signal. Hence, the initial error is amplified and is more dif-
ficult to correct. A second possible explanation for the re-
duced performance of our proposed algorithm compared to
the baseline is the way that word FHMM is constructed (see
Section 3.1). Although the noise signal is not detected, the
output pdf for a given sequence of observation vectors is
practically calculated by the combination of all clean-speech
HMM states and silence states of noise HMM. The silence
states do not perfectly model the noise absence and this may
cause the degradation of the output pdf given by FHMMs.

3.3. Comparisonwithmatched HMM

Knowing whether our FHMM is more effective thanmatched
HMMs that were trained by using noisy speech samples
(HMMs trained in matched condition) is important. How-
ever, we could not construct such HMMs due to the insuf-
ficient number of recorded noisy speech samples. To over-
come this problem, we adapted the clean speech HMMs to
noisy speech using the available recorded noisy speech sam-
ples. For adaptation, we used 1811 recorded noisy speech
samples from eight houses (H02–H06, H08, H09, and H11).
The recorded noisy speech samples from the other 4 houses,
1017 samples, were used for evaluation. The results are given
in Figure 7. While the matched HMMs improved the recog-
nition accuracy by 1.1% absolute, FHMMs improved it by
13% absolute. This result confirmed that FHMMs are more
effective.

This result can be explained by the characteristics of
sudden noise. This sudden noise appears for only a lim-
ited time, so it corrupts only a small portion of each speech
sample; the remaining part of the sample is not distorted.
Hence, obtaining an HMM that represents the characteris-
tics of sudden noise and clean speech well is very difficult.

Clean-speech
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Noisy-speech
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Figure 7: Recognition rates of clean HMMs (baseline), noisy
HMMs, and noisy FHMMs for recorded noisy speech.

On the contrary, our FHMMs represent such characteristics
efficiently. The speech and noise layers in FHMM compete
in each frame to represent each observation vector of noisy
speech. Depending on whether the speech or noise signal is
stronger, the FHMM switches the layers to calculate the out-
put probability.

3.4. Home-environment adaptation

Finally, we evaluated the effect of home-environment adap-
tation of FHMMs. We applied supervised and unsupervised
home-environment adaptation only for speech layerQ in the
FHMM. We did not adapt noise layer R because for most of
the houses there was not a sufficient number of sudden noise
samples to perform the adaptation. In supervised adaptation,
we assumed that the transcription of clean speech samples
for adaptation is known. On the contrary, in unsupervised
adaptation, samples are unlabeled and their transcription is
performed via a speech recognition process.

For the evaluation, we used a “leave-one-out” method,
where the training and testing process was repeated for
each house, except for H11, which had a very small num-
ber of noisy speech samples. For each house, the training
data consisted of samples of clean speech from all other
houses. Recorded noisy speech samples of the given house
were taken for a testing set. The sizes of the test sets were
different for each house, ranging from 24 to 500 samples
(see Figure 4). For supervised and unsupervised adaptation,
we used a randomly chosen set of 183 clean speech sam-
ples from each house, which were not included in the train-
ing or testing set. The adaptation procedure was as follows.
First, a clean-speech home-independent HMM (HI-HMM)
and noise HMM were trained using clean speech samples
and noise samples as the training data, respectively. Then,
the speech HI-HMM was transformed to HD-HMM for the
given house using the adaptation procedure described in
Section 2.5. We constructed the tree structure for shifts as
a binary tree with four levels. The threshold, which defines
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Table 1: Threshold for home-environment adaptation—minimum
amount of data needed to estimate Δ j .

House ID Number of frames

01 10

02 25

03 10

04 18

05 7

06 17

07 26

08 17

09 18

10 40

12 55

the minimum amount of data needed to estimate Δ j , was
chosen experimentally for each house (see Table 1). A noisy
HD-FHMM was created from the HD-HMM and the noise
HMM, as described in Section 3.1.

We compared the home-independent FHMMs (HIFH-
MMs) and home-dependent FHMMs (HD-FHMMs). The
results are shown in Figures 8 and 9. When supervised adap-
tation was applied, the HD-FHMM exhibited better perfor-
mance than that of HI-FHMMs, giving improvement rang-
ing from 1.1 to 16.7% absolute (H06 to H04), respectively,
for almost all houses except H12.

On average, HD-FHMMs achieved 8.9% relative error
reduction compared to that of HI-FHMMs. Using the HI-
FHMMs resulted in a 17.9% relative error reduction com-
pared to that of HI-HMMs. Overall, the proposed method
reduced the relative error rate by 25.2%, compared to that of
HI-HMMs.

Unsupervised adaptation gave slightly worse results than
those of supervised adaptation, as shown in Figure 10. This
was expected because the system might use incorrect labels
for given samples during the adaptation process. Neverthe-
less, applying the speech-adaptation process to HI-FHMMs
resulted in a 20.5% relative error rate reduction, taking clean-
speech HI-HMMs as a baseline. The HD-FHMMs outper-
formed HI-FHMMs by 1.5% absolute.

In addition, this experiment demonstrated the effec-
tiveness of HI-FHMM over HI-HMMs, as in Section 3.2.
This time, instead of using synthesized data, we used actual
recorded noisy data. In 7 houses out of 11, the recognition
accuracy was improved by more than 10% absolute.

4. CONCLUSION AND FUTUREWORK

We investigated the use of FHMMs for speech recognition
in the presence of nonstationary sudden noise, which is very
likely to be present in home environments. The proposed
FHMMs achieved better recognition accuracy than clean-
speech HMMs for different SNRs. In the best case, at 0 dB, an
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Figure 8: Results for supervised home-environment adaptation.
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Figure 9: Results for unsupervised adaptation.
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Figure 10: Averaged results of home-environment adaptation.
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improvement of 7.1% absolute was obtained. The usability
of FHMMs was further investigated by using a recorded
noisy speech test set. The overall relative error reduction
given by FHMMs with Δ features was 17.9% compared to
that given by the clean-speech HMMs. Our experiments also
demonstrated the effectiveness of home-environment adap-
tation. We achieved relative error-reduction rates of 20.5%
and 25.2% for unsupervised and supervised adaptation, re-
spectively.

We created a noisy FHMM by combining an HMM for
clean speech and anHMM for noise, both of which have sim-
ple structures in this study. HMMs created with more com-
plex structures (more Gaussians per state, different HMMs
topologies, and number of states) need to be investigated.
In addition, we designed an FHMM for each word, while a
phone is a more natural unit for our problem. Our next plan
is to create phone FHMMs and combine them with phone
HMMs in various ways. In our experiments, we used MFSC
features because they follow the log-max approximation. In
the future, we would like to apply more robust features to
FHMM architecture. Moreover, we only considered one kind
of noise at a time; however, in home environments there
are many other kinds of noise such as footsteps, TV sounds,
and distant speech. FHMMs for the combination of different
noises should also be investigated. Finally, we performed the
adaptation using only clean speech; however, the same can be
done in a similar manner for noise. In the future, we would
like to perform home-environment adaptation of FHMMs
using noise and noisy speech samples and test online adapta-
tion as well.
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