Hindawi Publishing Corporation

EURASIP Journal on Advances in Signal Processing
Volume 2007, Article ID 21850, 10 pages
doi:10.1155/2007/21850

Research Article

On the Solution of the Rational Matrix Equation

X=Q+LX LT

Peter Benner' and Heike FaBbender?

! Fakulgit fiir Mathematik, Technische Universitit Chemnitz, 09107 Chemnitz, Germany
2 Institut Computational Mathematics, Technische Universitiit Braunschweig, 38106 Braunschweig, Germany

Received 30 September 2006; Revised 9 February 2007; Accepted 22 February 2007

Recommended by Paul Van Dooren

We study numerical methods for finding the maximal symmetric positive definite solution of the nonlinear matrix equation
X = Q+ LX'L", where Q is symmetric positive definite and L is nonsingular. Such equations arise for instance in the analysis
of stationary Gaussian reciprocal processes over a finite interval. Its unique largest positive definite solution coincides with the
unique positive definite solution of a related discrete-time algebraic Riccati equation (DARE). We discuss how to use the butterfly
SZ algorithm to solve the DARE. This approach is compared to several fixed-point and doubling-type iterative methods suggested

in the literature.

Copyright © 2007 P. Benner and H. Faf8bender. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

1. INTRODUCTION
The nonlinear matrix equation
X = f(X) with f(X)=Q+LX'LT, (1)

where Q = QT € R™" is positive definite and L € R"™" is
nonsingular, arises in the analysis of stationary Gaussian re-
ciprocal processes over a finite interval. The solutions of cer-
tain 1D stochastic boundary value problems are reciprocal
processes. For instance, the steady state distribution of the
temperature along a heated ring or beam subjected to ran-
dom loads along its length can be modeled in terms of such
reciprocal processes. A different example is a ship surveil-
lance problem: given a Gauss-Markov state-space model of
the ship’s trajectory, it is desired to assign a probability dis-
tribution not only to the initial state, but also to the final
state, corresponding to some predictive information about
the ship’s destination. This has the effect of modeling the tra-
jectory as a reciprocal process. For references to these exam-
ples see, for example, [1].

The problem considered here is to find the (unique)
largest positive definite symmetric solution X of (1). This
equation has been considered, for example, in [2-7]. In [2],
the set of Hermitian solutions of (1) is characterized in
terms of the spectral factors of the matrix Laurent polyno-
mial £(z) = Q+ Lz — LTz, These factors are related to the

Lagrangian deflating subspace of the matrix pencil

LT 0 01

N . I
In particular, one can conclude from the results in [2, Sec-
tion 2] that this matrix pencil does not have any eigenvalues
on the unit circle and that the spectral radius p(X;'LT) is
less than 1 as [ , | spans the stable Lagrangian deflating sub-
space of G — AH. Alternatively, one could rewrite (1) as the
discrete Lyapunov equation X; — (X7 'LT)TX, (X7'LT) = Q.
As Q and X are positive definite, we get p(X;'LT) < 1 from
the discrete version of the Lyapunov stability theorem (see,
e.g., [8, page 451]). Moreover, it is shown in [2] that the
unique largest positive definite solution of (1) coincides with
the unique positive definite solution of a related Riccati equa-
tion. For this, it is noted in [2] that if X solves (1), then it also
obeys the equation

X=f(f(X)) =Q+F(R'+Xx ") 'F" (3)

with F = LL"T and R = LTQ 'L = R” positive definite.
Using the Sherman-Morrison-Woodbury formula to derive
an expression for (R™! + X~ !)~!, we obtain

DR(X)=Q+FXF" —FX(X+R)'XF' - X, (4)

0=Q+FX(I+R'X) 'FT - X, (5)



EURASIP Journal on Advances in Signal Processing

a discrete-time algebraic Riccati equation (DARE). Because
(F,I) is controllable and (F, Q) is observable, a unique sta-
bilizing positive definite solution X, exists [9, Theorem
13.1.3]. This unique solution coincides with that solution
of (1) which one is interested in. DAREs appear not only in
the context presented, but also in numerous procedures for
analysis, synthesis, and design of control and estimation sys-
tems with H, or Hy performance criteria, as well as in other
branches of applied mathematics and engineering, see, for
example, [9-13].

In [2], essentially three ideas for solving (1) have been
proposed. The straightforward one is a basic iterative algo-
rithm that converges to the desired positive definite solution
X of (1). Essentially, the algorithm interprets (1) as a fixed-
point equation and iterates X;;; = f(X;); see Section 2.1 for
more details.

The second idea is to compute the desired solution from
the stable Lagrangian deflating subspace of G — AH. If we can
compute Y, Y, € R™" such that the columns of | Q] span
the desired deflating subspace of G—AH, then X, = —Y,Y, 1
is the desired solution of (1). (In order to distinguish the
unique largest positive definite symmetric solution of (1) ob-
tained by the different algorithms discussed, we will use dif-
ferent subscripts for each approach.)

The third idea is to compute the desired solution via the
unique solution X, of the DARE. The solution X, can be
found by direct application of Newton’s method for DAREs
[3, 9, 14, 15]. However, comparison with the basic fixed-
point iteration is not favorable [3, Section 5]. Therefore, this
approach of solving the DARE is not considered here. Instead
we will compute its solution via the stable deflating subspace
of an associated matrix pencil. As R is positive definite, we

can define
FT 0 I —R7!
N I T

As (F,I) is controllable, (F, Q) is observable, and Q and R™!
are positive definite, M — AN has no eigenvalues on the unit
circle; see, for example, [9]. It is then easily seen that M —
AN has precisely n eigenvalues in the open unit disk and n
outside. Moreover, the Riccati solution X, can be given in
terms of the deflating subspace of M — AN corresponding
to the n eigenvalues A4,...,A, inside the unit disk using the

relation
FT 0 1 I —R! 1
| | R

where A € R™" with the spectrum o(A) = {A,...,A,}.
Therefore, if we can compute Yi,Y, € R"™" such that
the columns of [Q] span the desired deflating subspace of
M — AN, then X, = —Y,Y; ! is the desired solution of the
DARE (4). See, for example, [9, 15, 16] and the references
therein.

Hence, two of the ideas stated in [2] how to solve (1) can
be interpreted as the numerical computation of a deflating
subspace of a matrix pencil A —AB. This is usually carried out
by a procedure like the QZ algorithm. Applying the numeri-
cally backward stable QZ algorithm to a matrix pencil results

in a general 2n X 2n matrix pencil in generalized Schur form
from which the eigenvalues and deflating subspaces can be
determined.

Both matrix pencils to be considered here (G — AH and
M—AN) have a symplectic spectrum, that is, their eigenvalues
appear in reciprocal pairs A, A~!. They have exactly n eigen-
values inside the unit disk, and n outside. Sorting the eigen-
values in the generalized Schur form such that the eigen-
values inside the unit disk are contained in the upper left
n X n block, the desired deflating subspace can easily be read
off and the solution X, respectively X.., can be computed.
(This method results in the popular generalized Schur vector
method for solving DAREs [17].) Due to roundoff errors un-
avoidable in finite-precision arithmetic, the computed eigen-
values will not in general come in pairs {A, A7}, although the
exact eigenvalues have this property. Even worse, small per-
turbations may cause eigenvalues close to the unit circle to
cross the unit circle such that the number of true and com-
puted eigenvalues inside the open unit disk may differ. More-
over, the application of the QZ algorithm to a 2n X 2n ma-
trix pencil is computationally quite expensive. The usual ini-
tial reduction to Hessenberg-triangular form requires about
703 flops plus 24n* for accumulating the Z matrix; each iter-
ation step requires about 8872 flops for the transformations
and 136n* flops for accumulating Z; see, for example, [18].
An estimated 407> flops are necessary for ordering the gener-
alized Schur form. This results in a total cost of roughly 41513
flops, employing standard assumptions about convergence of
the QZ iteration (see, e.g., [19, Section 7.7]).

The use of the QZ algorithm is prohibitive here not
only due to the fact that it does not preserve the symplectic
spectra, but also due to the costly computation. More effi-
cient methods have been proposed which make use of the
following observation: M — AN of the form (6) is a sym-
plectic matrix pencil. A symplectic matrix pencil M — AN,
M,N € R?™2" is defined by the property

MJMT = NJNT, (8)

where
0 I,
[ ”

and I, is the n X n identity matrix. The nonzero eigenval-
ues of a symplectic matrix pencil occur in reciprocal pairs:
if A is an eigenvalue of M — AN with left eigenvector x, then
A-1is an eigenvalue of M — AN with right eigenvector (Jx).
Hence, as we are dealing with real symplectic pencils, the
finite generalized eigenvalues always occur in pairs if they
are real or purely imaginary or in quadruples otherwise. Al-
though G — AH as in (2) is not a symplectic matrix pencil,
it can be transformed into a very special symplectic pencil
G — AH as noted in [5]. This symplectic pencil G — AH al-
lows the use of a doubling algorithm to compute the solution
X, . These methods originate from the fixed-point iteration
derived from the DARE. Instead of generating the usual se-
quence {Xj}, doubling algorithms generate {X5x}. This class
of methods attracted much interest in the 1970s and 1980s,
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see [18] and the references therein. After having been aban-
doned for the past decade, they have recently been revived by
a series of papers, for example, [5, 20]. To be more specific,
define

N(G H) = {[G*,H*] Gy, H, € R22n

rank [G.,H« ] = 2n,[G«, H. | [ﬁ] = 0}.

Since rank|[ f%] < 2n, it follows that N (G, H) # @. For any
given [G4,H.] € N(@,ﬁ), define

H=H,H. (11)
The transformation
-\ — G-H (12)

is called a doubling transformation. The doubling algorithm
consists of applying the doubling transformation repeatedly.
An important feature of this kind of transformation is that
it is structure preserving [21], eigenspace preserving [21-
23], and eigenvalue squaring. In [5], an appropriate doubling
transformation for the symplectic pencil G—AH is given. The
resulting algorithm has very nice numerical behavior, with
a quadratic convergence rate, low computational cost, and
good numerical stability. Essentially, the same algorithm was
proposed in [6] using a different motivation. See Section 2.2
for more details. Alternatively, a doubling algorithm could
be applied directly to the DARE (5). This is discussed in
Section 2.2.1.

Here we propose to compute the desired solution X via
an approximate solution of the DARE (4) by the (butterfly)
SZ algorithm applied to the corresponding symplectic pen-
cil [24-26]. This algorithm is a fast, reliable, and structure-
preserving algorithm for computing the stable deflating sub-
space of the symplectic matrix pencil M — AN (6) associated
with the DARE. The matrix pencil M — AN is first reduced to
the so-called symplectic butterfly form, which is determined
by only 4n — 1 parameters. By exploiting this special reduced
form and the symplecticity, the SZ algorithm is fast and effi-
cient; in each iteration step only O(n) arithmetic operations
are required instead of O(n?) arithmetic operations for a QZ
step. We thus save a significant amount of work. Of course,
the accumulation of the Z matrix requires O(n?) arithmetic
operations as in the QZ step. Moreover, by forcing the sym-
plectic structure, the above-mentioned problems of the QZ
algorithm are avoided. See Section 3 for more details.

Any approximate solution X computed, for example,
with one of the methods described above, can be improved
via defect correction. This is considered in Section 4. Finally,
in Section 5 we compare the different algorithms for solving
(1) discussed here.

2. ITERATIVE ALGORITHMS FOR (1)
2.1. The fixed-point iteration

As suggested in [2], (1) can be solved directly by turning it
into a fixed-point iteration

X1 = f(Xi) = Q+LX; 'LT (13)

with initial condition Xo = Q. In [2], it is shown that the
sequence {X;} converges to the unique positive definite solu-
tion X, of (1). This convergence is robust as for any positive
€ there exists a neighborhood Y of X such that for any initial
condition X € Y, the sequence generated by (13) remains in
a ball of radius € centered in X, and converges to X,. More-
over, the sequence generated by (13) converges to X, for any
positive definite initial condition X, as well as for any initial
condition such that Xy < —LQ'L”. The convergence rate is
related to the spectral radius p(X;'LT). The convergence is
linear, but, if p(X;'LT) is close to 1, the convergence may be
very slow. See also [3, Section 2].

An inverse free variant of the fixed-point iteration is pos-
sible. However, the algorithm is not always convergent, |3,
last paragraph, Section 3].

Our implementation of the fixed-point iteration first
computes the Cholesky decomposition X; = CiCiT , next the
linear system L = C;B; is solved (i.e., B; = LC; ') and finally

Xir1 = Q+B; B is computed. The total flop count for one it-
eration step is therefore (7/3)n? flops, as the first step involves
about n°/3, the second one n?, and the last one > flops.

In many applications, rather than the solutions of matrix
equations themselves, their factors (such as Cholesky or full-
rank factors) are needed; see, for example, [18, 27]. More-
over, subsequent calculations can often be performed using
the factors which usually have a much better condition num-
ber. Therefore, it may be desirable to have such a method
that computes such a factor directly also for (1) without ever
forming the solution explicitly. Such a method can also eas-
ily be derived based on the fixed point iteration (1). As all
iterates are positive definite, it is natural here to use their
Cholesky factors. Assuming we have a Cholesky factorization
X; = Y;Y/[, then the Cholesky factor of

X1 = Q+LX'LT = cCT + L(y;YT)'LT
= [C,LY; ][C,LY; ]

(14)

can be obtained from the leading n X n submatrix of the L-
factor of the LQ factorization of

[C, LY "] = [B D] (15)

Note that the Q-factor is not needed as it cancels:

Xip = Yin Y}, = LQQILT = [L;0][L;,0]" = LiLT.

(16)
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An LQ factorization for the specially structured matrix in
(15) is implemented in the SLICOT! subroutine MB04JD.
Employing this, the factorized fixed-point iteration yielding
the sequence Y; of Cholesky factors of X; requires 3#° flops
per iteration and is thus slightly more expensive than the
fixed-point iteration itself. Additionally, n*/3 flops for the
initial Cholesky factorization of Q are needed.

2.2. Thedoubling algorithm

As already observed in [2], the solution X of (1),

X=Q+LX LT, (17)

ORI

for some matrix W € R™", where

LT 0 01
o[ w-[2i] w

Hence, the desired solution X can be computed via an ap-
propriate deflating subspace of G — AH. This could be done
by employing the QZ algorithm. But the following idea sug-
gested in [5] achieves a much faster algorithm.

Assume that X is the unique symmetric positive definite
solution of (1). Then it satisfies (18) with W = X 1LT. Let

satisfies

L=LQ'L, QO=Q+LQ'LT, P=1LTQL,
X =X+P.
(20)
Then it follows that
I N
~ = N 2
o[1]-a[2]w o
where
R T 0 ~ Jo I
A A=~ _|. 22
G [Q+P —1]’ [L o] (22)

The pencil G—AH is symplectic as GJGT = HJHT. (As G and
H are not symplectic themselves, the butterfly SZ algorithm
described in the next section cannot be employed directly in
order to compute the desired deflating subspace of G-1H)
It is easy to see that X satisfies (21) if and only if the equation

X=(Q+pP)-1X 1T (23)

has a symmetric positive definite solution X.

I See http://www.slicot.org.

In [5], it is suggested to use a doubling algorithm to com-
pute the solution X of (21). An appropriate doubling trans-
formation for the symplectic pencil (21) is given. Applying
this special doubling transformation repeatedly, the follow-
ing structure-preserving doubling algorithm (SDA) arises:

fori=0,1,2,...
Lin = LT(Q —P) 'L,
Qi = Q- Li(Q-P) LT,  (24)
Py =Pi+L1(Q - P) 'L

until convergence

with

Ly=L, Q=Q+P, Py=0. (25)

As the matrix Q; — P; is positive definite for all i [5], the
iterations above are all well defined. The sequence Q;; will
converge to X. Thus, the unique symmetric positive definite
solution to (1) can be obtained by computing

X, =X -P. (26)

Essentially, the same algorithm was proposed in [6] using a
different motivation.

Both papers [5, 6] point out that this algorithm has very
nice numerical behavior, with a quadratic convergence rate,
low computational cost, and good numerical stability. The al-
gorithm requires about 6.3n° arithmetic operations per iter-
ation step when implemented as follows: first a Cholesky de-
composition of Q; — P; = CI C; is computed (#/3 arithmetic
operations), then LTC;! and C;TL! are computed (both
steps require n° arithmetic operations), finally Li;1, Qi+1, Pit1
are computed using these products (4n® arithmetic opera-
tions if the symmetry of Qi;; and Pi, is exploited). Hence,
one iteration step requires (19/3)n> arithmetic operations.

Despite the fact that a factorized version of the doubling
iteration for DAREs has been around for about 30 years, see
[18] and the references therein, the SDA (24) for (1) cannot
easily be rewritten to work on a Cholesky factor of Q; due to
the minus sign in the definition of the Q;’s.

2.2.1.  Adoubling algorithm for (6)

As explained in the introduction, the solution X of (1) can
also be obtained from the deflating subspace of the pencil (6).
In [28], a doubling algorithm for computing this solution has
been developed as an acceleration scheme for the fixed-point
iteration from (5),

Xpe1 = Q+ FXp (I +R'Xe) 'FT

-T -17-T “lr_igT (27)
=Q+LL "X (I+L7'QL"'Xy) "L7'L".
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Using the notation introduced here, that algorithm (here
called SDA-DARE) can be stated as follows (see [20]):

initialize Ao=LL T =F, Go=L7'QL T=R"!, X,=Q
fori=0,1,2,...

W =1+GX; (28)
solve for Vi : WV, = A;, (29)
solve for V5 : Vo WT = G;, (30)
Gir1 = G+ A V,AT, (31)
Xi1 = X; + VIXiA;, (32)
Aiy = AiVy (33)

until convergence.

The algorithm requires (44/3)n* flops: the matrix mul-
tiplications in (28) and (33) require about 2n® flops each,
the computation of the symmetric matrices in (31) and (32)
comes at about 3n® flops, the decomposition of W costs
(2/3)n* flops, and the computations in (29) and (30) re-
quire 21° flops each. Its quadratic convergence properties are
analyzed in [20]. Compared to the doubling algorithm dis-
cussed in the previous section, this algorithm is more costly:
(19/3)n* flops versus (44/3)n® flops, but it avoids using the
inverse of Q. The inverse of L is used instead.

Like the fixed-point iteration, the doubling algorithm for
DAREs can be rewritten in terms of (Cholesky) factors so that
the iterates resulting from (32) in factorized form converge to
a (Cholesky) factor of the solution. This has been known for
decades (see [18] and the references therein), a slightly re-
fined variant that computes a low-rank factor of the solution
in case of rank deficiency of X has recently been proposed
in [29]. In contrast to the usual situation for DAREs where
G and Q are often of low rank, no efficiency gain can be ex-
pected from such an implementation in our situation as G,
Q, and X are all full-rank matrices.

3. THE BUTTERFLY SZ ALGORITHM

As shown in [2], instead of solving (1) one can solve the re-
lated DARE (4),

DR(X)=Q+FEXFT —FX(X+R)'XFT - X.  (34)

One approach to solve this equation is via computing the sta-
ble deflating subspace of the matrix pencil from (6), that is,

FT 0 I —R!
N L[ ) S

Here we propose to use the butterfly SZ algorithm for com-
puting the deflating subspace of M — AN. The butterfly SZ
algorithm [25, 26] is a fast, reliable, and efficient algorithm
especially designed for solving the symplectic eigenproblem
for a symplectic matrix pencil M — AN in which both matri-
ces are symplectic; that is, MJMT = NJNT = J. The above
symplectic matrix pencil

FT 0 1 I -R7'| |L7LT o 1 I —-L'QL T
QI| “|lo F || @ 1| ~|o LLT

(36)

can be rewritten (after premultiplying by [ § ;% ) as

~ .~ LT 0 L -QL T
M—/\N: |:L1Q Ll] —/\|:O I(?fT :|) (37)

where both matrices M = N7 are symplectic. In [25, 26] it
is shown that for the symplectic matrix pencil M — AN there
exist numerous symplectic matrices Z and nonsingular ma-

trices S which reduce M — AN to a symplectic butterfly pencil
A —AB:

ST -AR)Z = A— 1B = [g CDI}—A[? ‘TI] (38)

where C and D are diagonal matrices, and T is a symmetric
tridiagonal matrix. (More generally, not only the symplec-
tic matrix pencil in (37), but any symplectic matrix pencil
M — AN with symplectic matrices M R N can be reduced to
a symplectic butterfly pencil). This form is determined by
just 4n — 1 parameters. The symplectic matrix pencil A — AB
is called a symplectic butterfly pencil. If T is an unreduced
tridiagonal matrix, then the butterfly pencil is called unre-
duced. If any of the n — 1 subdiagonal elements of T are zero,
the problem can be split into at least two problems of smaller
dimension, but with the same symplectic butterfly structure.

Once the reduction to a symplectic butterfly pencil is
achieved, the SZ algorithm is a suitable tool for computing
the eigenvalues/deflating subspaces of the symplectic pencil
A — AB [25, 26]. The SZ algorithm preserves the symplectic
butterfly form in its iterations. It is the analogue of the SR al-
gorithm (see [24, 26]) for the generalized eigenproblem, just
as the QZ algorithm is the analogue of the QR algorithm for
the generalized eigenproblem. Both are instances of the GZ
algorithm [30].

Each iteration step begins with an unreduced butterfly
pencil A — AB. Choose a spectral transformation function g
and compute a symplectic matrix Z such that

Z7'q(A7'B)e; = ae (39)
for some scalar a. Then transform the pencil to
A-AB=(A-AB)Z. (40)

This introduces a bulge into the matrices A and B. Now
transform the pencil to

A-AB=SYA-1B)Z, (41)

where A — AB is again of symplectic butterfly form. S and
7 are symplectic, and fel = ¢;. This concludes the itera-
tion. Under certain assumptions, it can be shown that the
butterfly SZ algorithm converges cubically. The needed as-
sumptions are technically involved and follow from the GZ
convergence theory developed in [30]. The convergence the-
orem says roughly that if the eigenvalues are separated, and
the shifts converge, and the condition numbers of the accu-
mulated transformation matrices remain bounded, then the
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SZ algorithm converges. For a detailed discussion of the but-
terfly SZ algorithm see [25, 26].

Hence, in order to compute an approximate solution of
the DARE (4) by the butterfly SZ algorithm, first the sym-
plectic matrix pencil M — AN as in (37) has to be formed,
then the symplectic matrix pencil A — AB as in (38) is com-
puted. That is, symplectic matrices Zy and Sy are computed
such that

A —AB:= S;'MZ, — AS;'NZ, (42)

is a symplectic butterfly pencil. Using the butterfly SZ algo-
rithm, symplectic matrices Z; and S, are computed such that

S 'AZ, - AST'BZ, (43)
is a symplectic butterfly pencil and the symmetric tridiago-
nal matrix T in the lower right block of S; ' BZ; is reduced to
quasidiagonal form with 1 X 1 and 2 X 2 blocks on the diag-
onal. The eigenproblem decouples into a number of simple
2 X 2 or 4 X 4 generalized symplectic eigenproblems. Solv-
ing these subproblems, finally symplectic matrices Z5, S, are
computed such that

A=S8'8"42,2, = [¢“ ‘b”} ,

0 ¢
(44)
B=8,'8"B22, = [V’él iﬂ ,

where the eigenvalues of the matrix pencil ¢;; — Ay, are pre-
cisely the n stable generalized eigenvalues. Let Z = ZyZ,2;.
Partitioning Z conformably,

| Zn Zn
Z= |:Z21 Zzz} ’ (45)

the Riccati solution Xy is found by solving a system of linear
equations:

v = —ZnZpl. (46)

This algorithm requires about 1951 arithmetic opera-
tions in order to compute the solution of the Riccati equa-
tion (and is therefore cheaper than the QZ algorithm which
requires about 422n° arithmetic operations). The cost of the
different steps of the approach described above are given as
follows. The computation of L™1Q and L™! using an LU de-
composition of L requires about (14/3)n? arithmetic opera-
tions. A careful flop count reveals that the initial reduction of
M — AN to butterfly form A — AB requires about 75n? arith-
metic operations. For computing Z,, additional 28#° arith-
metic operations are needed. The butterfly SZ algorithm re-
quires about O(n?) arithmetic operations for the computa-
tion of A — AB and additional 85#> arithmetic operations
for the computation of Z (this estimate is based on the as-
sumption that 2/3 iterations per eigenvalue are necessary as
observed in [25]). The solution of the final linear system
requires (14/3)n® arithmetic operations. Hence, the entire
algorithm described above requires about (586/3)n° arith-
metic operations.

However, it should be noted that in the SZ algorithm
nonorthogonal equivalence transformations have to be used.
These are not as numerically stable as the orthogonal trans-
formations used by the QZ algorithm. Therefore, the approx-
imate DARE solution computed by the SZ algorithm is some-
times less accurate than the one obtained from using the QZ
algorithm. A possibility to improve the computed solution is
defect correction as discussed in the next section.

4. DEFECT CORRECTION

Any approximate solution X computed, for example, with
one of the methods described above, can be improved via
defect correction. Let

X =X+E, (47)
where X is the exact solution of (1), X = Q+LX"'LT. Then
X=E+Q+Lx'LT
=E+Q+LX -E)'LT
—E+Q+L((I-EX"H)X) LT (48)
—E+Q+LX'(I-EX ") 'LT.

Assume that ||E|| < 1/|X"'||. Then we have |[EX~!| < 1.
Using the Neumann series [19, Lemma 2.3.3] yields

X=E+Q+LX '(I+EX '+ (EX"1)*+.--)LT
=E+Q+LX 'LT+LX 'EX LT

+LX Y(EX)’LT + (1)
=E+Q+LX 'LT+1X 'EX LT
+LX'EX'EX'LT +
—E+Q+LX 'LT+IELT+TEX'FLT + - - -,
where
L=1X"! (50)
With the residual
RX)=X-Q-1XLT, (51)

we thus have R(X) ~ E + LELT. By dropping terms of order
O(/|E||?), we obtain the defect correction equation

N

RX)=E+1ET". (52)

Hence, the approximate solution X can be 1mpr0ved by solv-
ing (52) for E. The improved X is then given be X-E

Lemma 1. Equation (52) has a unique solution if p(L)
p(L)?’l) <1.

Proof. Note that (52) is equivalent to the linear system of
equations

(Ip+ILT L") vec(E) = vec (R()?)), (53)
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where ® denotes the Kronecker product and vec(A) =
(G115 nl> @12y A2y e s Ainy- - - Ann] L is the vector that
consists of the columns of A = [a;;]};_, stacked on top of

each other from left to right [31, Section 4.2]. As p(f) <

1, the assertion follows from o(I,> + ITe Il = {1+
A,’A]‘ | A,‘,/lj S O'(L)}. O

Note that Lemma 1 also follows from a more general ex-
istence result for linear matrix equations given in [7, Propo-
sition 3.1].

In [3], essentially the same defect correction was derived
by applying Newton’s method to (1). Written in the notation
used here, the defect correction equation derived in [3] reads

X-Q+IXL" =E+1ELT +2LL". (54)

It is easy to see that this is equivalent to (52). In [3], it is sug-
gested to solve the defect correction equation with a general
Sylvester equation solver as in [32]. In that case, the com-
putational work for solving the defect correction equation
would be roughly 18 times that for the basic fixed point iter-
ation. But a more efficient algorithm which makes use of the
special structure of (52) can be easily devised: first, note that
(52) looks very similar to a Stein (discrete Lyapunov) equa-
tion. The only difference is the sign in front of E. With this
observation and a careful inspection of the Bartels-Stewart-
type algorithm for Stein equations suggested in [33] and
implemented in the SLICOT basic control toolbox? func-
tion slstei (see also [34]), (52) can be solved efficiently
with this algorithm when only a few signs are changed. This
method requires about 14 times the cost for one fixed-point
iteration as the Bartels-Stewart-type algorithm requires 321°
flops [18].

5. NUMERICAL EXPERIMENTS

Numerical experiments were performed in order to com-

pare the four different approaches for solving (1) discussed

here. All algorithms were implemented in Matlab Version

7.2.0.232 (R2006a) and run on an Intel Pentium M processor.
In particular, we implemented the following:

(i) the fixed-point iteration as described in Section 2.1
which requires (7/3)n® arithmetic operations per iter-
ation;

(ii) the doubling algorithm SDA as described in Section
2.2 which requires (19/3)n> arithmetic operations per
iteration and uses the inverse of Q;

(iii) the doubling algorithm SDA-DARE as described in
Section 2.2.1 which requires (44/3)n? arithmetic oper-
ations per iteration and uses the inverse of L;

(iv) the SZ algorithm as described in Section 3 which re-
quires (586/3)n> arithmetic operations and uses the
inverse of L.

2 See http://www.slicot.org.

Slow convergence of the fixed-point iteration has been ob-
served in, for example, [2, 3]. The convergence rate depends
on the spectral radius p(X;L~T). One iteration of the dou-
bling algorithm SDA costs as many as 2.7 iterations of the
fixed-point iteration. In [5], no numerical examples are pre-
sented, in [6] only one example is given (see Example 3) in
which the doubling algorithm is much faster than the fixed-
point iteration. Our numerical experiments confirm that this
is so in general. The SZ algorithm costs as many as 84 itera-
tions of the fixed-point iteration, as many as 31 iterations of
the doubling algorithm SDA, and as many as 13 iterations of
the doubling algorithm SDA-DARE.

Example 2. First, the fixed-point equation approach as de-
scribed in Section 2.1 was compared to the SZ approach as
described in Section 3. For this, each example was first solved
via the SZ approach. The so-computed solution X was used
to determine the tolerance tol

||X — Q- LX'LT||,
X[

to which the fixed point iteration is run. That is, the fixed-
point iteration was stopped as soon as

tol =

(55)

Xin1 — Xi Xi—Q-LX;'LT
|| i+1 1||F _ || i Q i ||F < tol. (56)
[ Xl Xl
For the first set of examples Q and L were constructed as
follows (using Matlab notation):

[Q,R]= qr(rand(n));
Q = Q’*diag(rand(n,1))*Q;
L = rand(n);

100 examples of size n = 5,6,7,...,20 and n = 30,40,
50,...,100 were generated and solved as described above.
The fixed-point iteration was never run for more than 300
steps. Table 1 reports how many examples of each size needed
more than 84 iteration steps as well as how many examples
of each size needed more than 300 iteration steps; here it
denotes the number of iteration steps. Moreover, an aver-
age number av of iterations is determined, where only those
examples of each size were counted which needed less than
300 iteration steps to converge. It can be clearly seen, that the
larger n is chosen, the more iteration steps are required for
the fixed-point iteration. Starting with n = 40 almost all ex-
amples needed more than 84 iteration steps. Hence the SZ
approach is cheaper than the fixed-point approach. But even
for smaller 7, most examples needed more than 84 iterations,
the average number of iterations needed clearly exceeds 84
for all n = 5. Hence, overall, it is cheaper to use the SZ ap-
proach.

The accuracy of the residual (55) achieved by the SZ ap-
proach was in general of the order of 107! for smaller n
and 107® for larger n. But, as nonorthogonal transformations
have to be used, occasionally, the accuracy can deteriorate to
1073, In that case, defect correction as described in Section 4
or the fixed-point iteration with starting matrix X, = X, can
be used to increase the accuracy of the computed solution.
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TasLE 1: First set of test examples. about 5 iteration steps, the achieved accuracy just stagnated,
Fixed-point iteration SDA | SDA-DARE usually only slightly larger than the accuracy achieved by the
n w it > 84 > 300 w w SZ algorithm. The matrices Q generated for these tests had a
fairly small condition number
5 86.02 41 1 6.01 5.82
6 89.52 43 2 6.06 5.91 1< x(Q) < 10°, (58)
7 92.28 47 1 6.08 5.97
8 84.25 44 0 5.97 5.73 and a small norm
9 | 100.15 53 0 6.17 6.03 03<1Qll < 1. (59)
10 101.51 57 2 6.34 6.14
11 110.31 56 0 6.30 6.02 In order to generate a different set of test matrices, Q and
12 108.76 64 1 6.35 6.20 L were constructed as follows (using Matlab notation as be-
13 100.59 61 0 6.38 6.20 fore):
14 | 111.42 64 1 6.35 6.10 Q = triu(rand(n));
15 | 117.01 71 3 6.58 6.21 Q = Q’*Q;
16 117.40 65 1 6.56 6.25 L = rand(n);
17 111.33 70 1 6.59 6.29 .
100 examples of size n = 5,6,7,...,20 and n = 30,40,
18 122.62 68 0 6.53 6.15 .
50,...,60 were generated and solved as described above. The
19 102.92 82 0 6.65 6.36 matrices Q generated for these tests had a small norm
20 118.40 74 0 6.69 6.35
30 | 12537 76 2 6.74 6.36 1.6 < ||1Qll, < 405, (60)
40 | 15433 90 2 7.10 6.64 _ .
0 158.60 % 0 791 6.69 but a fairly large condition number, we allowed for
60 | 165.62 92 1 7.40 6.84 1< #(Q) < 10", (61)
70 159.71 97 1 7.45 6.91
30 167.62 98 3 7 46 6.81 As can be seen from Table 2, the fixed-point iteration per-
90 175.44 98 4 760 6.83 formed much better for these examples, but the number
100 186.52 99 5 7 67 6.84 of iterations necessary for convergence seems to be unpre-

Next the doubling algorithm SDA was used to solve the
same set of examples. Its iteration solves (23), the desired
solution X, is obtained from the computed solution via
(26). The iteration was run until the residuum was less than
n - [|Qllr - eps, where eps is Matlab’s machine epsilon. This
does not imply the same accuracy for the solution X, of (1).
Due to the back substitution (26), the final solution X, may
have a larger residual error. For these examples, only about 7
iterations were needed to determine an X, which has about
the same (or better) accuracy as the solution X, computed
via the SZ algorithm. Therefore, for these examples, the dou-
bling algorithm is certainly more efficient than the fixed-
point iteration or the SZ algorithm.

Finally, the SDA-DARE algorithm was used to solve the
same examples. As the iterates X; converge not only to the
solution of the DARE (5), but also to the solution of (1), the
iteration is run until

[IXi - Q - LX; LT[
1l

< tol. (57)

The average number of iterations needed for convergence is
similar to that of the SDA algorithm, but each iteration here
is more expensive than for the SDA algorithm. Hence, over-
all, for these examples, the SDA algorithm is the most effi-
cient algorithm. For each n, for about two or three examples
out of the 100 examples generated, the SDA-DARE did not
quite achieve the same accuracy as the SZ algorithm: after

dictable. The doubling iteration SDA performs better than
before, less iterations were needed for convergence. But while
the iteration is run until the residual is less than - [| Q| ¢ - eps,
it is clearly seen here that this does not imply the same accu-
racy for the solution X, of (1). The larger n is chosen, the
worse the residual

I|IXo — Q- LXJ'LT||,
|IXo |l

Rspa = (62)

becomes compared to the residual tol obtained by the SZ al-
gorithm. Hence, the SZ algorithm may require more arith-
metic operations, but usually it generates more accurate so-
lutions. For most examples, the SDA-DARE algorithm con-
verges in about 5 iterations to the same accuracy as the SZ
algorithm, hence it is much more efficient. But as before, for
few examples, the SDA-DARE algorithm did not achieve the
same accuracy as the SZ algorithm as it stagnated at an ac-
curacy 10 - tol. Rarely, the algorithm stagnated after about 5
iterations at a much larger error.

In case examples with ill-conditioned L are solved, the
SDA-DARE and the SZ algorithm obviously will be a bad
choice, while the fixed-point iteration and the SDA algorithm
do not have any (additional) problems with ill-conditioned
L.

Example 3. In [3], the following example is considered:

50 10 32
L= [20 60]’ Q= [2 4]' (63)
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TaBLE 2: Second set of test examples.

" Fixed-point iteration SDA SDA-DARE

av | it>84|it>300| av | #(Rspa) > tol av
5 5601 16 2 5.15 23 5.17
6 6931 27 2 5.39 31 5.42
7 |55.13| 12 0 5.05 28 5.15
8 |60.88 | 14 0 5.06 47 5.24
9 [55.85| 14 0 4.97 48 5.19
10|54.83| 8 0 4.87 56 5.26
11{51.93| 12 0 4.70 56 5.01
124897 | 5 0 4.60 66 5.13
13| 4840 | 6 0 4.55 70 5.09
14|51.55| 10 0 4.60 68 5.17
15| 45.62| 3 0 441 72 4.98
16 | 46.64 | 2 0 4.42 75 5.04
17 | 46.89 | 4 0 423 84 5.04
18 | 45.56 | 4 0 4.15 84 5.00
194277 | 2 0 4.03 81 4.94
2014527 | 2 0 3.97 88 4.98
3013580 0 0 3.49 96 4.79
40| 34.07| 0 0 3.23 96 4.78
50 (3234 0 0 2.93 98 4.61
603132 0 0 2.82 100 4.44
The solution X is given by

. [51.7993723118 16.0998802679]. (64)
16.0998802679 62.2516164469

Slow convergence for the fixed point iteration was already ob-
served in [3], after 400 iteration steps one obtains the residual
norm
|1 X400 — Q = LX 40 L" ||
|1 Xs00] |

=3.78 10710, (65)

and the error
|IX+ —X400||F =1.64-107%, (66)

since p(X;'LT) = 0.9719. The doubling iteration SDA yields
after 8 iterations

[1Xo = Q- LX LTIl _ (oo oo
[1Xo 1 (67)
[1X: = Xol|p =7.77 - 1071,
while the SDA-DARE algorithm yields after 9 iterations
[[Xo = Q- LXS'LT||, ~6.68-10°13,
X[ (68)
|X: — Xol|p = 6.92 - 107
The SZ algorithm obtains
X = Q- LX LTl _y og yom
X1 (69)
||X; — Xul|p = 6.98 - 10711,

Hence, the doubling iterations outperform the SZ algorithm
here.

6. CONCLUSIONS

We have discussed several algorithms for a rational matrix
equation that arises in the analysis of stationary Gaussian re-
ciprocal processes. In particular, we have described the ap-
plication of the SZ algorithm for symplectic pencils to solve
this equation. Moreover, we have derived a defect correc-
tion equation that can be used to improve the accuracy of
a computed solution. Several examples comparing the iter-
ative methods with the SZ approach show that none of the
methods discussed is superior. Usually, both doubling-type
algorithms SDA and SDA-DARE compute the approximate
solution very fast, but due to the back transformation step,
the accuracy of the SDA algorithm can deteriorate signifi-
cantly. On the other hand, the fixed-point iteration is often
very slow. The SZ approach needs a predictable computing
time which is most often less than that of the fixed-point iter-
ation when a comparable accuracy is requested, but is usually
much higher than for the doubling algorithms. The accuracy
of the SZ approach is not always the best compared to the
other methods, but in a number of examples, the doubling
algorithms are unable to attain the same accuracy while the
fixed-point iteration is significantly slower.
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