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Falls in the elderly are a major public health problem due to both their frequency and their medical and social consequences. In
France alone, more than two million people aged over 65 years old fall each year, leading to more than 9 000 deaths, in particular in
those over 75 years old (more than 8 000 deaths). This paper describes the PARAChute project, which aims to develop a method-
ology that will enable the detection of an increased risk of falling in community-dwelling elderly. The methods used for a remote
noninvasive assessment for static and dynamic balance assessments and gait analysis are described. The final result of the project
has been the development of an algorithm for movement detection during gait and a balance signature extracted from a force
plate. A multicentre longitudinal evaluation of balance has commenced in order to validate the methodologies and technologies
developed in the project.
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1. INTRODUCTION

The study of balance deficits is of interest for many reasons,
in particular for people with various pathological conditions
affecting balance and the elderly. In respect to an elderly pop-
ulation, falls are a major problem, in terms of both frequency
and consequences. In France alone, more than two million
falls are recorded among the elderly each year, leading to
more than 9000 deaths [1]. Most prospective studies have at-
tempted to identify risk factors, particularly in groups at high
risk of falling [2-5]. The factors identified in these studies
have often varied, mainly due to differences in methodology,
diagnosis, and the study population [6]. Nevertheless, several
factors are regularly cited, such as muscular weakness [6], a
previous fall [5], or balance problems [2, 4, 7-10]. In addi-
tion, several factors that augment the risk of falling, such as
visual, vestibular, or proprioceptive problems, can manifest
themselves by adversely affecting balance [11-13]. In most
of these studies, balance is measured using either clinical or
biomechanical tests. Several different clinical tests exist, such
as the Timed Get-up-and-go [14], the Berg Balance Scale
[15], and the Tinetti Balance Scale [8], which can be used

to predict the risk of falling. Even though these tests have
demonstrated their capacity to identify the risk of falling in
the following year, they are not able to identify progressive
changes in fall risk. To this end, these tests are not suited
to use as a daily test. A simple biomechanical test of bal-
ance [16] and several parameters derived from it, such as the
area and the form of the displacement of the centre of pres-
sure [3, 17], have also been able to predict falls. However,
these measures have never been integrated into a home-based
test.

With respect to gait analysis, the gait signature has essen-
tially been used to identify individuals [18-20] or for classi-
fication and/or the determination of the type of gait [21, 22].
More recently, gait has been used as a biometric trait for
identification purposes [23]. The hypotheses related to gait
analysis are generally very restrictive: fixed camera, gait at
a constant velocity, a frontoparallel approach in relation to
the camera, all of the subjects visible, constant luminosity,
absence of distractions, and so forth. In contrast to the ap-
proach of the present study, these experiments have been per-
formed in a laboratory setting and no real application has
been demonstrated.
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Two major classes of methods are used for gait analysis:
calculation of implicit periodic space-time models [18, 20,
23,24], which requires a history to be kept; and calculation of
specific characteristics (velocity, cadence, stride length, etc.),
usually in real time [19, 22]. Even though these methods have
not resulted in any practical applications, these studies have
at least highlighted the concept of the signature on which the
current methodology is based.

A risk evaluation, such as that outlined above, will be of
no discernible benefit if it is not followed by a reduction in
risk due to the intervention of a health professional. Many re-
search teams have worked in this area over the last 10 years,
and have reported the results of intervention studies on the
risk of falling. Several multidisciplinary intervention studies
have been found to be effective [25, 26], but the approach
that has demonstrated the most potential is the adoption of
an exercise program, either in a group [27, 28], or at home
[29, 30]. The benefits of an exercise program are related to
the fact that the principal risk factors (muscular weakness
and balance problems) are those which exercise programs
have the greatest effect of [31]. In order for such programs to
be put in place without costing too much, the programs need
to be administered only to those people identified as having
a high risk [30, 32]. Given such a requirement, the necessity
for a simple and effective evaluation of balance is obvious.

The aim of the PARAChute project was to propose a
methodology and a technology that would enable the detec-
tion of an evolution towards a risk of falling in community-
dwelling elderly. The technique is based on evaluations of the
quality of balance and gait.

The methodology used has to take into account the mul-
tiple constraints related to home-based testing.

(i) The evaluation system needed to be adapted to the
home of the elderly person under supervision, with-
out disturbing their typical environment.

(ii) The protocol needed to use typical daily activities.

(iii) The protocol should not require the presence of a third
person.

(iv) Allaspects of the system needed to preserve the privacy
of the person. Irrespective of the data obtained, the in-
formation exiting the system should only be related to
an evaluation of the risk of falling.

(v) The system needed to be able to function indepen-
dently, as well as a part of a home-based vigilance net-
work.

Balance was assessed using a miniature force plate, while gait
was assessed using a video camera placed in a corridor of the
home. The camera included an image analyzer, which en-
sured that rather than transmit images, only information on
the gait signature was sent, thus preserving the privacy of the
person being assessed.

The paper is organized as follows: Sections 2 and 3 de-
scribe the procedures for balance assessment and gait analy-
sis, respectively. Each of these sections includes results and
discussion related to the assessment method. In Section 4,
the remote monitoring system is outlined, while in Section 5,
conclusions and future work are presented.

2. BALANCE ASSESSMENT

Balance can be assessed using either clinical or biomechanical
tests, as outlined previously. Given the requirement of a clin-
ician to be present for clinical tests, only biomechanical tests
were considered for remote assessment. Furthermore, those
biomechanical tests that require the subject to undergo per-
turbation, such as dynamic posturography, are obviously un-
suited to remote testing, due to the lack of supervision avail-
able [33]. The only biomechanical test of posture suitable for
remote monitoring is static posturography, whereby subjects
are required to step onto a force plate, remain stationary for
a pre-defined period of time, before stepping down off the
force plate. Such a test is similar to that required to weigh
oneself using a bathroom scale, something that should be
within the capabilities of an elderly person living in the com-
munity.

Although it is not possible to perform dynamic pos-
turography due to the lack of supervision during the test-
ing procedure, information related to dynamic posture can
still be obtained from the force plate measurements. The
initiation of a movement from a static posture needs pos-
tural equilibrium to be broken, thus requiring the genera-
tion of ground reaction forces (GRFs). These GRFs consti-
tute a source of perturbation for postural equilibrium. In
order to successfully perform a movement, the nervous sys-
tem must control the destabilizing effect of force generation.
It has been suggested that falls are most likely to occur in
the elderly during stepping up or descending from a stair
or a step. Almost all of the previous studies related to stair
or step descent have mainly analyzed forward descent [34—
38]. However, it has been suggested that the effect of ex-
amining backward movement could enable the identification
of otherwise undetected pathological locomotion that would
have remained undetected by analysis of forward movement
alone [39].

An analysis of the control of dynamic postural equilib-
rium in the elderly was therefore performed using the move-
ment of stepping up and descending from the force plate
used in the static study. The analysis of such a movement
enabled the identification of parameters related to dynamic
equilibrium, which could then be combined with more clas-
sical measures of static equilibrium in order to provide an
overall evaluation of equilibrium.

2.1. Static equilibrium

Postural stability can be measured using a force plate, from
which measures of centre of pressure (COP) displacement in
anteroposterior (AP), mediolateral (ML), and resultant (RD)
directions are obtained. The stabilogram is a representation
of the centre of pressure displacement in AP and ML, and
can also be expressed as a function of time (see Figure 1).
The parameters that characterize static equilibrium are then
extracted from the stabilogram signal.

The classical parameters that are typically extracted from
such COP signals include temporal (mean, RMS), spatiotem-
poral (surface of the ellipse), and spectral parameters (me-
dian frequency, deciles), as detailed in [40]. More recently,
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FiGuUre 1: Typical stabilogram of the displacement of the centre of
pressure (COP). Data are for a healthy 24-year-old adult subject.

parameters linked to underlying physiological control sys-
tems have been identified to contain information related
to long-term correlations and self-similarity. One of these
parameters is the Hurst exponent (H), which can be esti-
mated using several methods: rescaled range analysis (R/S),
detrended fluctuation analysis (DFA), and stabilogram dif-
fusion analysis (SDA) [41, 42]. A high value of H indicates
self-similarity, and a corresponding movement that is closely

controlled. Such parameters might provide a means of fol-
lowing balance disorders longitudinally [43].

2.1.1.  Methods

In order to compare the capacity of different estimates of the
Hurst exponent to discriminate between elderly and adult
subjects, an experimental study was performed. The Hurst
exponent was estimated using SDA [41] and DFA [44]. In
the present study, all time series were found to be fractional
Brownian motion (fBm) after application of DFA. If the slope
o obtained from DFA is greater than 1, this indicates that the
series is fBm. It was not possible, therefore, to use the R/S
method, which can only be applied to fractional Gaussian
motion [45].

Subjects were 90 healthy young adults (57 males, 33 fe-
males) and 10 healthy elderly (4 males, 6 females). For the
young adults, the mean age, height, and weight were 19.7 =
0.8 years, 174.9 + 9.5 cm, and 67.0 = 11.1 kg, respectively. For
the elderly subjects, the mean age, height, and weight were
80.5 = 4.7 years, 165.6 + 7.0 cm, and 71.9 = 9.9kg, respec-
tively. All subjects who participated gave their written in-
formed consent. No subjects reported any musculoskeletal
or neurological conditions that precluded their participation
in the study.

Subjects were instructed to look straight ahead, with their
arms placed at their sides in a comfortable position, and
were tested either barefoot or wearing socks. Upon a ver-
bal command, subjects stepped onto a force plate (4060-80,
Bertec Corporation, Colombus, Ohio, USA) with no con-
straint given over foot position. Subjects were instructed to
look ata 10 cm cross-placed on a wall 2 m in front of the force
plate. After 10 seconds, subjects stepped down backwards off
the force plate.

Data were acquired with an NIDAQ card (6036E, Na-
tional Instruments, Natick, USA) at 100 Hz with a lowpass
Butterworth filter (8th-order, cutoff frequency 10 Hz). The
initial COP signals were calculated with respect to the cen-
tre of the force plate before normalization by subtraction of
the mean. All calculations of COP data were performed with
Matlab. The intraclass correlation coefficient (ICC) was used
as a measure of reliability [46].

2.1.2. Results

The results for the SDA method are only for the short-term
region of the At by (Ax)? curve used to calculate SDA. No
significant differences were observed for the long-term re-
gion, with values often less than zero, making interpretation
impossible. This could have been due to the short duration
of the time series used in the present study (10 seconds) in
keeping with the constraints of a home-based test.

A comparison of the SDA method for the two popula-
tions is presented in Figure 2. No significant differences were
observed between groups for mediolateral (ML) displace-
ment. However, elderly subjects had significantly greater val-
ues for both anteroposterior (AP) and the resultant (RD) dis-
placement than the control subjects.
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FIGURE 2: Estimation of the Hurst exponent using SDA for elderly
and control subjects. Data are means and SD. * denotes significant
difference from control subjects.

A comparison of the DFA method for the two popu-
lations is presented in Figure 3. Significantly greater values
were observed for elderly subjects for ML displacement. In
contrast, elderly subjects had significantly smaller values for
AP displacement.

2.1.3. Interpretation of results

As expected, the results of the SDA method showed higher
values for elderly subjects, which are indicative of a less
precisely controlled movement. The DFA method showed
higher values for elderly subjects for ML displacement. In
contrast, the DFA method yielded lower values for AP dis-
placement for elderly subjects. DFA values less than 0.5 are
indicative of antipersistence, with the lower the value, the
greater the antipersistence, indicating a more closely con-
trolled posture. Thus, elderly subjects were more stable than
the control subjects for AP displacement. A possible inter-
pretation for the greater stability observed for elderly sub-
jects in the AP direction is that they controlled their move-
ment in the AP direction more precisely, as identified by Nor-
ris et al. [47]. With respect to the results for AP displace-
ment for SDA and DFA, the differences are due to the meth-
ods used. The short-term results for the SDA method are
for short-term oscillations related to persistence, as all values
were greater than 0.5. The DFA results, for which values were
less than 0.5, are for the entire signal, which demonstrated
antipersistence. Thus, the two methods provide information
that can be considered complementary, with each method re-
lated to different aspects of postural control, for short-term
and long-term autocorrelations for SDA and DFA, respec-
tively.

2.2. Dynamic equilibrium

As mentioned previously, dynamic equilibrium is implicated
in falls in the elderly. There are two approaches that could
be used to calculate dynamic equilibrium during stepping
up and climbing down, which are known as local and global
biomechanical approaches. A local approach analyzes move-
ment in terms of joint moments, muscle power modifica-
tions, and joint angular displacement [38, 48], whereas a

FIGURE 3: Estimation of the Hurst exponent using DFA for elderly
and control subjects. Data are means and SD. * denotes significant
difference from control subjects.

global approach analyzes whole-body dynamics [49]. In the
context of the present study, it would not be feasible to use a
local approach due to the requirement for measures that can-
not be obtained remotely. In contrast, a global approach re-
quires only GRE, which can be obtained from the force plate
in a remote setting. A detailed description of dynamic equi-
librium obtained from force-plate measures can be found in
(50, 51].

2.2.1.  Parameter selection

The parameters chosen for this part of the study were those
extracted from GRF (impulse, acceleration, and velocity of
the CoM, slope of vertical GRF) relative to temporal param-
eters (durations of anticipatory postural adjustment, weight
transfer, and swing phases) of the movement. Given that
the protocol for static equilibrium required subjects to step
onto a force plate, it seemed logical to measure dynamic pa-
rameters during the perturbation caused by this stepping-up
movement. In addition, as it has been suggested that the ef-
fect of examining backward movement rather than forward
movement enabled the identification of an otherwise unde-
tected pathological gait, parameters were also extracted for
the stepping-down movement from the force plate.

Selected parameters for stepping up

(i) Temporal parameters (see Figure 4). The total duration of
the entire movement (dTOTAL) and the durations of the
individual phases (WT: weight-transfer phase; SW: swing
phase).

(ii) Ground reaction force parameters (see Figure 4). The
impulsion of the reaction forces measured at the second foot-
off the ground (FO2) for all three axes of movement. The
acceleration of the centre of gravity of the subject measured
at FO2 for all three axes. The variation of the velocity of the
centre of gravity of the subject measured at the second foot
contact with the force plate (FC2) for all three axes. The load-
ing rate of the lower limb (LR), taken as the mean slope of
the ground reaction forces measured for the vertical axis and
normalized by subject weight.
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FI1GURE 4: Biomechanical data obtained from a force plate for a typical control subject during stepping up and stepping down. Ry, R, R:
GRF normalized to body weight for AP, ML, and vertical directions. (f: forward, b: backward, 1: left, r: right, u: upward, d: downward).
(a) Stepping-up traces: FC1: first foot-contact on the step; FO2: second foot-off the ground; FC2: second foot-contact on the step; WT:
weight-transfer phase; SW: swing phase; dTOTAL: stepping-up movement; LR: slope of vertical force. (b) Stepping-down traces: f,: first
modifications of biomechanical traces; FO1: first foot-off from the force plate; FC1: first foot-contact on the ground; FO2: second foot-off
from the force plate; dTOTAL: total duration of the backward stepping-down movement; dAPA: anticipatory postural adjustment duration;
SW: swing phase; WT: weight-transfer phase; ULR: slope of vertical force.

(iii) Parameters related to the trajectory of the centre of
pressure. The total length of the displacement of the COP for
the resultant, as well as the individual movement directions
(AP and ML).

Selected parameters for the descent

(i) Temporal parameters (see Figure 4). The total duration of
the entire movement (dTOTAL) and the durations of the in-
dividual phases (APA: anticipatory postural adjustment; SW:
swing phase; WT: weight-transfer phase).

(ii) Ground reaction force parameters (see Figure 4). The
impulsion of the reaction forces measured at FO2 for all three
axes of movement. The velocity of the centre of gravity of the
subject measured at FO1 for all three axes. The GRF mea-

sured at FC1 for all three axes. The unloading rate of the
lower limb (ULR), taken as the mean slope of the ground
reaction forces measured for the vertical axis and normalized
by subject weight.

(iii) Parameters related to the trajectory of the centre of
pressure. The total length of the displacement of the COP for
the resultant, as well as the individual movement directions
(AP and ML).

2.2.2. Methods

Given that the dynamic parameters have not been used be-
fore, it was necessary to test them to ensure that they were
able to distinguish between elderly and control subjects. To
this end, two groups of subjects were analyzed: 11 control



EURASIP Journal on Advances in Signal Processing

100

80 —

— %

Phase duration (%)

dWT dSw

mm Control
3 Elderly

FIGURE 5: Temporal parameters during stepping up. dWT: relative
weight-transfer phase duration, expressed as a percentage of to-
tal movement duration; dSW: relative swing-phase duration. * de-
notes being significantly different from control subjects (P <.05).

0 1
> —0.005 H
=
=)
o —0.01 4
2
£
F -0.015 1 *
=
2
S —0.02 A
L
o
3
@ —0.025
-0.03 -
mm Control
3 Elderly

F1GURE 6: Slope of vertical force (LR) during stepping up. * denotes
being significantly different from control subjects (P <.05).

(mean age 33.3 = 7.4 years) and 14 elderly subjects (mean
age 85.5 =+ 4.9 years) were tested. The protocol used was the
same as that described in Section 2.1.1. All temporal events
were detected automatically using algorithms developed in
Matlab (Mathworks Inc, Natick, Mass, USA). An analysis of
the ability of the algorithms to automatically compute the
time location of the various events was performed using an
expert, who verified 40 trials in a pilot study, with a mean
error of 0.03 seconds. Precise details of the methodology can
be found in [50, 51].

Phase duration (s)
*
*

0 - T T T 1
dTOTAL dAPA dSw dWT

mm Control
3 Elderly

FIGUREg 7: Temporal parameters during stepping down. dTOTAL:
total movement; dAPA: anticipatory postural adjustment; dWT:
weight-transfer phase duration; dSW: swing phase duration. * de-
notes being significantly different from control subjects (P <.05).

2.2.3. Results

The most important differences between elderly and control
subjects for stepping up and stepping down are presented
here.

Stepping up

With respect to the temporal parameters, elderly subjects
spent more time in the weight-transfer phase and less time in
the swing phase of the movement than did the control sub-
jects (see Figure 5).

With respect to the GRF parameters, elderly subjects had
a slower loading rate than control subjects (see Figure 6).

Stepping down

With respect to the temporal parameters, elderly subjects
spent more time performing the movement due to the in-
creased duration of the anticipatory postural adjustment and
weight-transfer phases (see Figure 7).

In respect to the GRF parameters, elderly subjects had
markedly lower anteroposterior CoM velocity than control
subjects (see Figure 8). Unloading rate was also lower for el-
derly subjects (see Figure 9).

2.2.4. Interpretation of results

Elderly subjects were found to use different motor strate-
gies in order to achieve the same movement as the control
subjects both for stepping up and stepping down from the
force plate. The principal differences were that elderly sub-
jects decreased the duration of the swing phase, the moment
when postural stability is the most precarious, while increas-
ing the duration of the stance phase when posture is more
stable. In addition, elderly subjects reduced the intensity of
the perturbation forces, thus adopting a more precaution-
ary approach to stepping up than control subjects. With re-
spect to the descent, elderly subjects also adopted a more
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precautionary approach than control subjects, as shown by
the decreases in the acceleration of the centre of gravity, the
GRE, and the unloading rate.

2.3. Reliability

There were a number of issues that needed to be addressed
related to the testing protocol, in order for such a test to be
feasible in a remote setting. Given that subjects will be used
as their own reference, it is important that measures are re-
liable between tests. In a laboratory setting, it is possible to
precisely control the measurement protocol, such that sub-
jects’ foot position and stance are almost identical between
tests. Obviously, such a constraint is not possible in a remote

setting, where subjects are free to choose their foot position
and stance. Furthermore, precise information on the stance
adopted by the subject is not available. To this end, a reliabil-
ity study was performed. The subjects were those described
in Section 2.1.1. Subjects were tested four times in order to
determine reliability between testing sessions. The intraclass
correlation coefficient (ICC) was used as a measure of relia-
bility [46].

2.3.1. Results

The ICC values for the static variables ranged from 0.40 to
0.91, with 70% of the values exceeding the 0.7 value consid-
ered to represent a “good” correlation [52]. With respect to
the ICC values for the dynamic variables, values ranged from
0.66 to 0.95, with 91% of the values exceeding 0.7. The relia-
bility values for ML displacement were generally greater than
those for AP, which is not surprising, given that subjects’ dis-
placement varies more in an AP direction than in an ML di-
rection due to the constraints on the system imposed by the
ankle and knee joints. With respect to the reliability observed
in previous studies, the present values are broadly in agree-
ment. Lafond et al. reported ICC values for temporal, spa-
tiotemporal, and spectral parameters that ranged from 0.22
to 0.87 for 30-second recordings [53]. However, only those
ICC for COP velocity exceeded 0.5. In keeping with these re-
sults, the ICC values reported by Du Pasquier et al. for COP
velocity was 0.79 for both displacement directions [54]. In
one study in which the reliability of SDA parameters was as-
sessed, Chiari et al. reported ICC values ranging from 0.41 to
0.79, in keeping with the values reported in the present study
[55].

There were major methodological differences between
the studies cited above, and the present study in relation to
foot position, recording duration, the time between tests, and
the total number of tests. In all of the studies cited above,
each subject’s foot position was noted for the first trial, and
all subsequent tests were performed using an identical foot
position. In contrast, subjects in the present study were left to
choose their foot position. It would have been expected that
this freedom over foot position would have adversely affected
the ICC reported. However, the ICC values reported were of
a similar magnitude, irrespective of foot position. With re-
spect to the duration of measurement, the present study used
10-second times series, far shorter than that used previously,
whereby ICC values were calculated for 30 seconds [53, 54],
50 seconds [55], or even 120 seconds [56].

An additional difference concerned the time taken be-
tween measures, which was 14 days between the first and last
tests in the present study. In contrast, only the study of Cor-
riveau et al. left a similar (up to 7 days) time period between
tests. Other studies used rest periods up to three minutes
between tests [53—55]. Finally, the number of tests used to
obtain the ICC estimation varied from two [54, 56] to 9-
10 [53, 55], in contrast to the four tests used in the present
study. It is a well-known property of ICC values that an in-
creased number of tests will produce an increase in the value
observed.
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2.4. Parameter selection and detection of
a degradation in equilibrium

The method best suited to detect a degradation in bal-
ance quality appears to be support vector data description
(SVDD), which was developed by [57-61]. This method is
based on the support vector machines of Vapnik [62], which
finds the optimal separating hyperplane between data sets.
In contrast, SVDD finds the sphere of minimal volume (or
minimal radius) containing all (or most of) the objects. For
a data set containing N data objects, {x1,...,xN}, it is nec-
essary to solve the following equation in order to find the
sphere described by the centre a and the radius R that con-
tains the most objects:

N
minggR? + C Z &,
i=1 (1

with (x; —a) (x; —a) < R*+& Vi& =0,

where &; are slack variables, the variable C gives the trade-
off between simplicity (or the volume of the sphere) and the
number of errors (the number of target objects rejected). The
dual Lagrangian problem of (1) will be

ming Z oot (xi, x) — Z i {xi, i)
i

" (2)
with Zoc,-zl, 0<wa; <CVi
i

Equality in (1) is satisfied for only a small set of objects,
which are those on the boundary of the sphere itself. These
objects, for which the coefficients «; will be nonzero, are
called support objects, and are all that is needed to describe
the sphere. The radius R of the sphere can be obtained by
calculating the distance from the centre of the sphere to a
support vector with a weight smaller than C. Those objects
for which «; = C are outside the sphere, and are considered
to be outliers. To determine whether a test point z is within
the sphere, the distance to the centre of the sphere has to be
calculated. A test object z is accepted when this distance is
smaller than the radius, that is, when (z — a)T(z — a) < R2.
Expressing the centre of the sphere in terms of the support
vectors, the objects z is accepted when f(z) is positive:

f(Z) =R? - Zaiaj(xi,xj) +220¢,-(Z,x,») —(z,2). (3)
ij i

To generalize the method to be used with kernels, the in-
ner products of objects {x; - x;) can be replaced by a kernel
function K(x;, xj), which implicitly maps the objects x; into
some feature space. When a suitable feature space is chosen,
a tighter description can be obtained.

Therefore, all inner products (x; - x;) are replaced by
K (xi,x;) and the problem of finding a data domain descrip-
tion is now given by

ming Z aioiK (xi, %) — Z a;K (x, xi),
i

N @)
with Z(xizl, 0<a; <CVi
i

A test object z is accepted when f(z) is positive:
f(2) = R* = > ajajK (xi,xj) +2 > aiK (2, %) — K(z,2).
ij i

(5)

Given that each subject will act as its own reference, one-class
SVDD will be used. More than 100 variables have been iden-
tified to characterize the equilibrium of a person, with those
related to the organization of the COP trajectory of particu-
lar interest for a method based on self-learning. Such a large
number of variables will need to be reduced using feature se-
lection, before application of the SVDD model. The choice
of a one-class model will require the use of nonsupervised
feature selection to decrease the number of parameters in the
model. In this way, it should be possible to identify subjects
whose signature has changed in comparison to the model
learnt during the initial phase of self-learning.

2.4.1. Results

The robustness and the sensitivity/specificity of the system
are currently being evaluated as part of a two-year clinical
trial. This trial will determine those parameters that are sen-
sitive to changes in the equilibrium of the subjects studied.
The system has already been tested with data for subjects
who had an invoked degradation in postural equilibrium by
means of vibration applied to the tibialis anterior tendon
[63]. Vibration was applied bilaterally to the tibialis ante-
rior tendon for 10 seconds using the VB115 vibrator (Techno
Concept, Cereste, France). Subjects were then tested post-
vibration. Preliminary results using SVDD have shown the
system to be 100% accurate at detecting a degradation in
equilibrium. It should be noted that the magnitude of any
degradation in elderly subjects is likely to differ from that
in the artificially-invoked procedure detailed above. Never-
theless, the initially results are promising with respect to the
future application.

3. GAIT ANALYSIS

The aim was to analyze gait quality in order to detect an evo-
lution towards a risk of falling. The gait analysis system con-
ceived for the project was developed to analyze the gait of an
elderly person by the means of one or more cameras installed
in their everyday living environment. Most gait analysis sys-
tems such as Vicon (Vicon Peak, Lake Forest, Calif, USA),
use markers placed on the subjects at specific points, such as
the knee and ankle joints. These markers are then detected by
infrared cameras positioned in precise locations in the envi-
ronment in which the person moves. A triangulation system
is then used to reconstitute the position of these markers in
space, from which it is possible to follow the trajectory of
these points. Clinical conclusions can then be drawn on the
quality of the gait of the person studied. These high-tech sys-
tems are expensive and have multiple constraints over their
use. For instance, markers need to be placed on the subject,
clothing must be reduced to a minimum, and an operator is
required at all times. Given these constraints, such a system
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FIGURE 10: The articulated body model defined by 19 points and 17
segments.

is not suitable for a home-based test. However, the function-
alities of such systems are of interest, as the richness of the
information obtained enables most of the gait analysis pa-
rameters cited in the literature to be measured. To this end, it
was decided to develop a similar system, without the need to
position markers on the body, using low-cost video cameras.

3.1. Methodology

A detailed description of the methodology can be found in
[64]. Subjects were taken as their own control, which re-
quired the identification of any significant variation in gait
parameters that could predict fall risk. As in most 3D mark-
erless motion capture systems, a 3D articulated body model
was used (see Figure 10). This model is formed by 19 points
representing key points of the human body (head, elbows,
knees, etc.). These points are joined up by 17 segments mod-
elling the human body. In order to simulate the way a hu-
man body moves, each of these segments was given a num-
ber of degrees of freedom (DOF) based on the rotation about
3D axes. The total number of DOF for the model used was
31. The proportion of the dimensions of the different body
parts to the body’s height was established using the “Vitru-
vian man” model of Leonardo da Vinci. Thus, the articulated
model’s dimensions were adapted to the height of the person
tracked. The 3D positions of the 19 points in the model were
calculated knowing the 31 DOF and the 3D position of a par-
ticular point, termed the body origin. This approach can be
qualified as simple and generic since neither dynamic mod-
elling nor trained body-models were used.

The articulated model’s configuration (established
through its degrees of freedom) is then evaluated in order
to determine the closeness of fit to the real body pose in the
image using a likelihood function. A silhouette image of the
tracked person is constructed by subtracting the background
from the current image (video feed) and then by applying a
threshold filter. This image is then compared to a synthetic

FiGURE 11: Estimation of the likelihood of the model. (a) The real
image is obtained using a digital video camera. (b) The silhouette
is extracted. (c¢) The virtual model is calculated. (d) The model is
compared with the silhouette.

image representing the 2D projection of the 3D model
configuration to which the likelihood is to be assigned (see
Figure 11). This chosen method is simple, although it can
be less effective when a person has loose clothing and in the
presence of heavy shadows or poor lighting. These latter
problems can partly be solved by adjusting the threshold
filter or by applying a shadow suppression filter based on
HSV color information [65].

The estimation of the 3D positions of the 19 body points
(motion tracking) is then performed by finding the model
configuration that best fits (having the highest likelihood
function value) the real body pose, as represented in the
video feed (silhouette). This problem can be considered as
a Bayesian state estimation. In fact, the configuration of the
3D model represents the state vector of the model, X. In addi-
tion to the state model, an observation Z is defined, through
which the likelihood of a state vector at t = f; is evaluated by
calculating P(Zy/X). In this approach, the observation is the
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TaBLE 1: Comparison between the IPF and Vicon systems. Data are
mean values for two subjects.

Parameter Vicon IPF Difference
Mean walking speed (m/s) 1.196 1.174 1.8%
Mean left-leg stride length (m) 0.509  0.500 1.8%
Mean right-leg stride length (m) 0.436  0.427 2.1%

image of the person being tracked, while the weight (like-
lihood) of a model’s configuration m represents the obser-
vation probability (w¥)(m) = P(Zx/X = m)). A particle
filtering or condensation algorithm was chosen as the state
estimator due to its capacity to handle non-Gaussian and
multimodal probability densities (as in the case of motion
tracking). Particle filtering searches for the best-fitting parti-
cle (state model configuration) in a well-defined particle set
created at each time step. The basic particle filtering algo-
rithm needs a large number of particles to provide a good es-
timation, particularly in high-dimensional spaces, where an
increased complexity could make such an algorithm inappli-
cable.

The interval particle filtering (IPF) used has some sim-
ple modifications to the condensation algorithm in order to
adapt the particle-search space configuration, thus making it
more efficient whilst preserving the advantages of a particle
filter. The IPF uses the same three-step structure of the con-
densation algorithm. In the selection step, a reduced number
of particles are chosen among the heaviest particles produced
in the previous time step. During prediction, each of these
particles is replaced by a number of particles covering a mul-
tidimensional interval of neighboring particles. This interval
is formed in a deterministic way, in accordance with the evo-
lution of each component of the state model. The measure
step remains unaltered in IPE. Details about this algorithm
can be found in [64].

The IPF algorithm (coded in C++ Builder) was applied
with 4096 particles, in order to track the movement of nor-
mal subjects moving in an ordinary environment. Video
feeds of around 6 seconds were captured at 25 frames/second
using a single commercial digital camera (Sony DV). Pro-
cessing was performed offline using a Pentium 4 3 GHz PC.
The image resolution used was 360 x 288 pixels and 20 sec-
onds of processing time were required per frame to find the
body-part configuration using IPE. Although this processing
speed is far from real time, the system developed is suitable
for the requirements of the current study. No calibration is
needed, although the initial distance of the tracked person to
the camera is specified. The initial results obtained from the
IPF system were then compared to results obtained simulta-
neously using a Vicon system [64].

3.2. Results

The number of strides taken by subjects during the six-
second data collection period varied from six to eight, de-
pending on gait velocity.
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Figure 12: Comparison of X position of the sacrum between the
IPF and Vicon systems for a typical subject.

The comparison results between the IPF and Vicon sys-
tems can be performed using either the actual coordinates for
the points of the 17-segment model, or by comparison of the
extracted parameters. Typical results for the x coordinate of
the position of the sacrum, as identified by the two systems,
are shown above (see Figure 12).

A comparison of the two systems for several parameters
is shown in Table 1.

3.3. Discussion

Knowing 3D positions of the body’s key points would enable
the extraction of all classical gait parameters such as veloc-
ities, accelerations, stride length, stride width, and time of
support. On the other hand, using a single camera would not
provide accurate tracking of all points as some body parts
would be occluded for along portion of the video, depending
on the view angle. The use of multiple cameras would solve
this problem. Work is currently underway on developing a
multicamera system. Another aspect currently being investi-
gated is related to the extraction of new parameters, partic-
ularly those related to stride-time variability. Fractal analysis
of fluctuations in gait rhythms has been shown to be related
to fall risk and fear of falling in the elderly [66, 67]. Such
analyses typically need long time series, something which can
prove difficult for elderly subjects. However, in a home-based
test, repeated passages in front of the recording system might
be able to be combined in order to provide longer time series.
Work is currently underway in order to address this issue.

4. REMOTE MONITORING SYSTEM

The system consists of a local installation of a sensor and a lo-
cal processing unit (LPU), which can communicate remotely
with other parts of the surveillance network (see Figure 13).
Precise details can be found in [68].

Although the final system needs to be lowcost, the initial
design used the force plate technology outlined previously
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FIGURE 13: Schematic diagram of a remote monitoring system for
balance assessment.

(4060-80, Bertec Corp., USA) fitted with a wireless Bluetooth
data transmission module. The force plate had local intelli-
gence in order to choose the information to send to the LPU,
using proprietary software that cannot be modified remotely.
The force plate was battery powered, with measurement time
set to 10 seconds. In order to aid energy conservation and to
avoid any perturbation of the measurement, data transmis-
sion is performed at the end of the recording period. The
force plate remains on standby, and is activated by the ap-
proach of the person using a presence sensor.

Upon activation, the force plate starts measurement and
memorization. Once the force values pass a threshold, indi-
cating that someone is on the force plate, the timer starts for
the static measurement. At the end of the predetermined du-
ration for static measurement, an indicator is activated to sig-
nify that the person can step down from the force plate. Data
recording stops at the end of the measurement period and
the COP signals are calculated, before being transmitted via
Bluetooth to the local processing unit. After data transmis-
sion, the force plate disconnects and returns to standby.

In contrast to the force plate, the camera will perform
image processing, in order to ensure that no images of the
person will be transmitted, thus protecting the privacy of the
person being observed. Instead of images, parameters related
to gait quality will be sent to the LPU.

In the present application, the LPU is a mobile phone
(6600, Nokia, Finland), with programs written in Java. The
functions contained in the LPU include signal processing and
extraction of relevant parameters from the force plate signals
using algorithms based on clinical data [50, 69], reception of
the gait analysis parameters [64], and a decision making ca-
pability. The LPU also communicates with both the sensors,

and the rest of the surveillance network. The LPU can trans-
mit the decision outcome by SMS or by Internet using GSM
technology.

The LPU has three processes that survey the arrival of
data. The first surveys Bluetooth to detect the arrival of the
data from the force plate and integrates the data processing
functions. This process waits for a request for a Bluetooth
connection, receives the data for storage in memory, before
closing the connection. The signature is then calculated from
these data and is compared with previous data to determine
if there has been any change. Depending on the results of
the test, an SMS can be sent to a neighbor, a friend, a family
member, or a possible sociomedical network. Thereafter, a
connection can be established with a remote server in order
to transmit the latest results that are stored in the database.

The second process surveys Bluetooth to detect the ar-
rival of the data from the camera. This process functions as
for the force plate, but without the requirement for data pro-
cessing.

The third process surveys the telephone connection in or-
der to respond to any modification of the detection param-
eters by the remote system, with priority given to the first
process. When the server receives a demand for an update,
a connection is established with the mobile phone via GSM
and the parameters are updated. The new parameters are ini-
tially stored in a FIFO (first input first output), before the
telephone is disconnected. The new parameters are stored as
soon as it is possible to access the common memory, before
the process returns to its initial state, waiting for a new call.

All of the actors in the network are linked to a dedi-
cated server. The four different types of actors in the net-
work use a communication type that varies according to their
tunction. The local support network (family, friends, and
neighbors) and emergency services receive information via
phone or SMS, whereas the medical support network (doc-
tors, nurses, etc.) receives more detailed information by In-
ternet. The telecommunications service communicates with
the LPU to verify functioning and update programs and de-
cision parameters.

The system created is nonintrusive, low cost, and easily
adaptable, thanks to the JAVA technology, and can be con-
trolled remotely. The local installation part of the system has
been tested successfully in a laboratory setting for both Inter-
net and SMS communication. Telecommunications are now
being evaluated, in particular the update facility, after which
a field trial of remote assessment of balance in elderly sub-
jects will begin. Such data is needed to adapt the treatment
algorithms, and to evaluate the efficacy of the system.

5. CONCLUSION

The aim of the project was to develop a methodology and
a technology that would enable the detection of an evolu-
tion towards a risk of falling in community-living elderly. To
this end, it has been demonstrated that it is possible to ob-
tain parameters characterizing static and dynamic equilib-
rium from a force plate, with no constraint on the posture
of the person measured. In addition, it has been shown that
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a simple video camera is capable of following the movements
of a person without requiring any markers or reflectors. The
model, thus obtained, enables the calculation of kinematic
and spatiotemporal variables already identified as pertinent
in an analysis of the risk of falling.

Despite the advances made, there are a number of chal-
lenges still remaining. Firstly, it will be necessary to develop
a methodology to exploit the information provided by the
two sensors synergistically in order to make a decision re-
lated to the behavior of the individual studied. This decision
will need to be based on a self-learning process, with each
subject as its own reference. Data fusion requires the simulta-
neous use of several different data sources in order to obtain
better-quality information. In order to obtain the best possi-
ble results, it will be necessary to have large quantities of clin-
ical data from both systems. To this end, the second aspect of
the followup to the PARAChute project is to perform a clin-
ical study to establish the medical validity of the approach
adopted. An initial validation is already underway in a con-
trolled environment, while a longitudinal study is scheduled
for 2007 and 2008. This latter study will run for two years us-
ing diverse sites in order to offer the possibility of analyzing
different study populations with different levels of balance
impairment.
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