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1. INTRODUCTION

Detecting signals of interest, particularly with wide signal
variability, in noisy environments has long been a challeng-
ing issue in various fields of signal processing. Among a
number of previously developed detectors, the well-known
matched subspace detector (MSD) [1], orthogonal subspace
detector (OSD) [1, 2], spectral matched filter (SMF) [3, 4],
and adaptive subspace detectors (ASD) also known as adap-
tive cosine estimator (ACE) [5, 6], have been widely used to
detect a desired signal (target).

Matched signal detectors, such as spectral matched filter
and matched subspace detectors (whether adaptive or non-
adaptive), only exploit second-order correlations, thus com-
pletely ignoring nonlinear (higher-order) spectral interband
correlations that could be crucial to discriminate between
targets and background. In this paper, our goal is to provide
a complete comparative analysis of the kernel-based versions
of MSD, OSD, SMF, and ASD detectors [7–10] which have
equivalent nonlinear versions in the input domain. Each ker-
nel detector is obtained by defining a correspondingmodel in
a high- (possibly infinite) dimensional feature space associ-
ated with a certain nonlinear mapping of the input data. This

nonlinear mapping of the input data into a high-dimensional
feature space is often expected to increase the data separabil-
ity and provide simpler decision rules for data discrimination
[11]. These kernel-based detectors exploit the higher-order
spectral interband correlations in a feature space which is im-
plicitly achieved via a kernel function implementation [12].

The nonlinear versions of a number of signal process-
ing techniques such as principal component analysis (PCA)
[13], Fisher discriminant analysis [14], clustering in feature
space [15], linear classifiers [16], nonlinear feature extraction
based on kernel orthogonal centroid method [17], matched
signal detectors for target detection [7–10], anomaly detec-
tion [18], classification in nonlinear subspace [19], and clas-
sifiers based on kernel Bayes rule [20] have already been de-
fined in kernel space. Furthermore, in [21] kernels were used
as generalized dissimilarity measures for classification and in
[22] kernel methods were applied to face recognition.

This paper is organized as follows. Section 2 provides
the background to the kernel-based learning methods and
kernel trick. Section 3 introduces the linear matched sub-
space detector and its kernel version. The orthogonal sub-
space detector is defined in Section 4 as well as its kernel
version. In Section 5 we describe the conventional spectral
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matched filter and its kernel version in the feature space in
terms of the kernel function using the kernel trick. Finally, in
Section 6 the adaptive subspace detector and its kernel ver-
sion are introduced. Performance comparison between the
conventional and the kernel version of these algorithms is
provided in Section 7. Conclusions are given in Section 8.

2. KERNELMETHODS AND KERNEL TRICK

The basic principle behind kernel-based algorithms is that
a nonlinear mapping is used to extend the input space to a
higher-dimensional feature space. Implementing a simple al-
gorithm in the feature space then corresponds to a nonlin-
ear version of the algorithm in the original input space. The
algorithm is efficiently implemented in the feature space by
using a Mercer kernel function [11] which uses the so-called
kernel trick property [12]. Suppose that the input hyperspec-
tral data is represented by the data space (X ⊆ Rl) and F
is a feature space associated with X by a nonlinear mapping
function φ

φ :X −→ F , x �−→ φ(x), (1)

where x is an input vector in X which is mapped into a po-
tentially much higher (could be infinite) dimensional feature
space. Due to the high dimensionality of the feature space
F , it is computationally not feasible to implement any algo-
rithm directly in feature space. However, kernel-based learn-
ing algorithms use an effective kernel trick given by (2) to
implement dot products in feature space by employing ker-
nel functions [12]. The idea in kernel-based techniques is to
obtain a nonlinear version of an algorithm defined in the in-
put space by implicitly redefining it in the feature space and
then converting it in terms of dot products. The kernel trick
is then used to implicitly compute the dot products in F
without mapping the input vectors into F ; therefore, in the
kernel methods, the mapping φ does not need to be identi-
fied.

The kernel representation for the dot products in F is
expressed as

k
(
xi, x j
) = φ(xi) · φ

(
x j
)
, (2)

where k is a kernel function in terms of the original data.
There are a large number of Mercer kernels that have the ker-
nel trick property; see [12] for detailed information about
the properties of different kernels and kernel-based learning.
Our choice of kernel in this paper is the Gaussian radial basis
function (RBF) kernel and the associated nonlinear function
φ with this kernel generates a feature space of infinite dimen-
sionality.

3. LINEARMSD AND KERNELMSD

3.1. LinearMSD

In this model the target pixel vectors are expressed as a lin-
ear combination of target spectral signature and background
spectral signature, which are represented by subspace target
spectra and subspace background spectra, respectively. The

hyperspectral target detection problem in a p-dimensional
input space is expressed as two competing hypothesesH0 and
H1:

H0 : y = Bζ + n, target absent,

H1 : y = Tθ + Bζ + n =
[
T B
][θ

ζ

]

+ n, target present,

(3)

where T and B represent orthogonal matrices whose p-
dimensional orthonormal columns span the target and back-
ground subspaces, respectively; θ and ζ are unknown vec-
tors whose entries are coefficients that account for the abun-
dances of the corresponding column vectors of T and B, re-
spectively; n represents Gaussian random noise (n ∈ Rp)
distributed as N (0, σ2I); and [T B] is a concatenated ma-
trix of T and B. The numbers of the column vectors of T
and B, Nt , and Nb, respectively, are usually smaller than p
(Nt ,Nb < p).

The generalized likelihood ratio test (GLRT) for model
(3) was derived in [1], given as

L2(y) = yT
(
I− PB

)
y

yT
(
I− PTB

)
y

H1

≷
H0

η, (4)

where PB = B(BTB)−1BT = BBT is a projection matrix as-
sociated with the Nb-dimensional background subspace 〈B〉;
PTB is a projection matrix associated with the (Nbt = Nb +
Nt)-dimensional target-and-background subspace 〈TB〉:

PTB =
[
T B
][[

T B
]T [

T B
]]−1 [

T B
]T

. (5)

L2(y) is compared to η to make a final decision about which
hypothesis best relates to y. In general, any sets of orthonor-
mal basis vectors that span the corresponding subspace can
be used as the column vectors of T and B. In this paper,
the significant eigenvectors (normalized by the square root
of their corresponding eigenvalues) of the target and back-
ground covariance matrices CT and CB are used to create the
column vectors of T and B, respectively.

3.2. LinearMSD in the feature space and its
kernel version

The hyperspectral detection problem based on the target and
background subspaces can be described in the feature space
F as

H0φ : φ(y) = Bφζφ + nφ, target absent,

H1φ : φ(y) = Tφθφ + Bφζφ + nφ

=
[
Tφ Bφ

]
[
θφ
ζφ

]

+ nφ, target present,

(6)

where Tφ and Bφ represent matrices whose orthonormal
columns span target and background subspaces 〈Bφ〉 and
〈Tφ〉 in F , respectively; θφ and ζφ are unknown vectors
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whose entries are coefficients that account for the abun-
dances of the corresponding column vectors of Tφ and
Bφ, respectively; nφ represents Gaussian random noise; and
[Tφ Bφ] is a concatenated matrix of Tφ and Bφ. The signifi-
cant eigenvectors (normalized) of the target and background
covariance matrices (CTφ and CBφ) in F form the column
vectors of Tφ and Bφ, respectively. It should be pointed out
that the above model (6) in the feature space is not exactly
the same as applying the nonlinear map φ to the additive
model given in (3). However, this model in the feature space
is equivalent to a specific nonlinear model in the input space
which is capable of modeling the nonlinear interband rela-
tionships within the data. Therefore, defining MSD using the
model (6) is the same as developing an MSD for an equiva-
lent nonlinear model in the input space.

Using a similar reasoning as described in the previous
subsection, the GLRT of the hyperspectral detection problem
depicted by the model in (6) as shown in [7] is given by

L2
(
φ(y)
) = φ(y)T

(
PIφ − PBφ

)
φ(y)

φ(y)T
(
PIφ − PTφBφ

)
φ(y)

H1φ

≷
H0φ

ηφ, (7)

where PIφ represents an identity projection operator in F ;
PBφ = Bφ(BT

φBφ)−1BT
φ = BφBT

φ is a background projection
matrix; and PTφBφ is a joint target-and-background projec-
tion matrix in F :

PTφBφ =
[
Tφ Bφ

][[
Tφ Bφ

]T [
Tφ Bφ

]]−1 [
Tφ Bφ

]T

=
[
Tφ Bφ

]
⎡

⎣
TT
φTφ TT

φBφ

BT
φTφ BT

φBφ

⎤

⎦

−1 [
TT
φ

BT
φ

]

.

(8)

To kernelize (7) we will separately kernelize the numera-
tor and denominator. First consider its numerator:

φ(y)T
(
PIφ − PBφ

)
φ(y) = φ(y)TPIφφ(y)− φ(y)TBφBT

φφ(y).
(9)

Using (A.3), as shown in the appendix, Bφ and Tφ can be
written in terms of their corresponding data spaces as

Bφ =
[
eb1 eb2 · · · ebNb

]
= φZBB̃, (10)

Tφ =
[
et1 et2 · · · eNt

t

]
= φZT T̃ , (11)

where eib and e
j
t are the significant eigenvectors of CBφ and

CTφ , respectively; φZB = [φ(y1) φ(y2) · · · φ(yM)], yi ∈
ZB is the background reference data and φZT =
[φ(y1) φ(y2) · · · φ(yN )], yi ∈ ZT is the target refer-

ence data; and the column vectors of B̃ and T̃ represent
only the significant eigenvectors (β̃1, β̃2, . . . , β̃Nb

) and (α̃1,
α̃2, . . . , α̃Nt ) of the background centered kernel matrix
K(ZB,ZB) = (K)i j = k(yi, y j), yi, y j ∈ ZB, and target centered
kernel matrix K(ZT,ZT) = (K)i j = k(yi, y j), yi, y j ∈ ZT,
normalized by the square root of their associated eigenval-
ues, respectively. Using (10) the projection of φ(y) onto Bφ

becomes BT
φφ(y) = B̃

T
k(ZB, y) and, similarly, using (11) the

projection onto Tφ is TT
φφ(y) = T̃

T
k(ZT, y), where k(ZB, y)

and k(ZT, y), referred to as the empirical kernel maps in the
machine learning literature [12], are column vectors whose
entries are k(xi, y) for xi ∈ ZB and xi ∈ ZT, respectively.
Now we can write

φ(y)T B̃φB̃T
φφ(y) = k

(
ZB, y
)T
B̃B̃

T
k
(
ZB, y
)
. (12)

The projection onto the identity operator φ(y)TPIφφ(y)
also needs to be kernelized. PIφ is defined as PIφ := ΩφΩ

T
φ ,

whereΩφ = [eq1 eq2 · · ·] is a matrix whose columns are all
the eigenvectors with λ �= 0 that are in the span of φ(yi), yi ∈
ZT ∪ ZB := ZTB. From (A.3) Ωφ can similarly be expressed
as

Ωφ =
[
eq1 eq2 · · · eqNbt

]
= φZTB Δ̃, (13)

where φZTB = φZT ∪ φZB and Δ̃ is a matrix whose columns
are the eigenvectors (κ1, κ2,. . . , κNbt ) of the centered kernel
matrix K(ZTB,ZTB) = (K)i j = k(yi, y j), yi, y j ∈ ZTB, with
nonzero eigenvalues, normalized by the square root of their
associated eigenvalues. Using PIφ = ΩφΩ

T
φ and (13),

φ(y)TPIφφ(y) = φ(y)TφZTB Δ̃Δ̃
TφT

ZTB
φ(y)

= k
(
ZTB, y

)T
Δ̃Δ̃Tk

(
ZTB, y

)
;

(14)

k(ZTB, y) is the concatenated vector [k(ZT, y)T k(ZB, y)T]T .
The kernelized numerator of (7) is now given by

k(ZTB, y)T Δ̃Δ̃Tk(ZTB, y)− k(ZB, y)TB̃B̃
T
k(ZB, y).

(15)

We now kernelize φ(y)TPTφBφφ(y) in the denominator of
(7) to complete the kernelization process. Using (8), (10),
and (11) we have

φ(y)TPTφBφφ(y)

= φ(y)T
[
Tφ Bφ

]
⎡

⎣
TT
φTφ TT

φBφ

BT
φTφ BT

φBφ

⎤

⎦

−1 ⎡

⎣
TT
φ

BT
φ

⎤

⎦φ(y)

=
[
k
(
ZT, y
)T
T̃ k
(
ZB, y
)T
B̃
]

×
⎡

⎢
⎣
T̃

T
K
(
ZT,ZT

)
T̃ T̃

T
K
(
ZT,ZB

)
B̃

B̃
T
K
(
ZB,ZT

)
B̃ B̃

T
K
(
ZB,ZB

)
B̃

⎤

⎥
⎦

−1

×
⎡

⎢
⎣
T̃

T
k
(
ZT, y
)

B̃
T
k
(
ZB, y
)

⎤

⎥
⎦ .

(16)

Finally, substituting (12), (14), and (16) into (7) the
kernelized GLRT is given by
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L2K =
(
k
(
ZTB, y

)T
Δ̃Δ̃

T
k
(
ZTB, y

) − k
(
ZB, y
)T
B̃B̃

T
k
(
ZB, y
))

⎛

⎜
⎝k
(
ZTB, y

)T
Δ̃Δ̃

T
k(ZTB, y) −

[
k
(
ZT, y
)T
T̃ k
(
ZB, y
)T
B̃
]
Λ−11 ×

⎡

⎢
⎣
B̃

T
k
(
ZT, y
)

B̃
T
k
(
ZB, y
)

⎤

⎥
⎦

⎞

⎟
⎠

, (17)

where

Λ1 =
⎡

⎢
⎣
T̃

T
K
(
ZT,ZT

)
T̃ T̃

T
K
(
ZT,ZB

)
B̃

B̃
T
K
(
ZB,ZT

)
T̃ B̃

T
K
(
ZB,ZB

)
B̃

⎤

⎥
⎦ . (18)

In the above derivation (17) we assumed that each
mapped input data φ(xi) in the feature space was centered
φc(xi) = φ(xi)− μ̂φ, where μ̂φ represents the estimated mean

in the feature space given by μ̂φ = (1/N)
∑N

i=1 φ(xi). However,
the original data is usually not centered and the estimated
mean in the feature space can not be explicitly computed,
therefore, the kernel matrices have to be properly centered
as shown by (A.14) in the appendix. The empirical kernel
maps k(ZT, y), k(ZB, y), and k(ZTB, y) have to be centered by
removing their corresponding empirical kernel map means

(e.g., k̃(ZT, y) = k(ZT, y) − (1/N)
∑N

i=1 k(yi, y) ·�1, yi ∈ ZT,

where�1 = (1, 1, . . . , 1)T is an N-dimensional vector).

4. OSP AND KERNEL OSP ALGORITHMS

4.1. Linear spectral mixturemodel

The OSP algorithm [2] is based on maximizing the signal-
to-noise ratio (SNR) in the subspace orthogonal to the back-
ground subspace. It does not provide directly an estimate of
the abundance measure for the desired end member in the
mixed pixel. However, in [23] it is shown that the OSP classi-
fier is related to the unconstrained least-squares estimate or
the maximum-likelihood estimate (MLE) (similarly derived
by [1]) of the unknown signature abundance by a scaling fac-
tor.

A linear mixturemodel for pixel y consisting of p spectral
bands is described by

y =Mα + n, (19)

where the (p×l) matrixM represent l endmembers spectra, α
is a (p×1) column vector whose elements are the coefficients
that account for the proportions (abundances) of each end-
member spectrum contributing to the mixed pixel, and n is
a (p × p) vector representing an additive zero-mean noise.
Assuming now we want to identify one particular signature
(e.g., a military target) with a given spectral signature d and
a corresponding abundance measure αl, we can represent M
and α in partition form asM = (U : d) and α = [ γ

αl ] then the
model (19) can be rewritten as

r = dαl + Bγ + n, (20)

where the columns of B represent the undesired spectral sig-
natures (background signatures or eigenvectors) and the col-
umn vector γ is the abundance measure for the undesired
spectral signatures. The reason for rewriting the model (19)
as (20) is to separate B fromM in order to show how to anni-
hilate B from an observed input pixel prior to classification.

To remove the undesired signature, the background re-
jection operator is given by the (p × p) matrix

P⊥B = I− BB#, (21)

where B# = (BTB)−1BT is the pseudoinverse of B. Applying
P⊥B to the model (20) results in

P⊥B r = P⊥Bdαl + P⊥Bn. (22)

The operator w that maximizes the signal-to-noise ratio
(SNR) of the filter output wP⊥B y,

SNR(w) =
[
wTP⊥Bd

]
α2l
[
dTP⊥Bw

]

wTP⊥BE
[
nnT
]
P⊥Bw

, (23)

as shown in [2], is given by the matched filter w = κd, where
κ is a constant. The OSP operator is now given by

qTOSP = dTP⊥B (24)

which consists of a background signature rejecter followed
by a matched filter. The output of the OSP classifier is given
by

DOSP = qTOSPr = dTP⊥By. (25)

4.2. OSP in feature space and its kernel version

A new mixture model in the high-dimensional feature space
F is now defined which has an equivalent nonlinear model
in the input space. The new model is given by

φ(r) =Mφαφ + nφ, (26)

where Mφ is a matrix whose columns are the endmember
spectra in the feature space; αφ is a coefficient vector that ac-
counts for the abundances of each endmember spectrum in
the feature space; nφ is an additive zero-mean noise. Again
this new model is not quite the same as explicitly mapping
the model (19) by a nonlinear function into a feature space.
But it is capable of representing the nonlinear relationships
within the hyperspectral bands for classification. The model
(26) can also be rewritten as

φ(r) = φ(d)αpφ + Bφγφ + nφ, (27)
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where φ(d) represents the spectral signature of the desired
target in the feature space with the corresponding abundance
αpφ and the columns of Bφ represent the undesired back-
ground signatures in the feature space which are obtained by
finding the significant normalized eigenvectors of the back-
ground covariance matrix.

The output of the OSP classifier in the feature space is
given by

DOSPφ = qTOSPφr = φ(d)T
(
Iφ − BφBT

φ

)
φ(r), (28)

where Iφ is the identity matrix in the feature space. This out-
put (28) is very similar to the numerator of (7). It can easily
be shown [8] that the kernelized version of (28) is now given
by

DKOSP = k
(
ZBd,d

)T
Υ̃Υ̃

T
k
(
ZBd, y

)

− k
(
ZB,d
)T
B̃B̃

T
k
(
ZB, y
)
,

(29)

where ZB = [x1 x2 · · · xN ] corresponds to N-input back-

ground spectral signatures and B̃ = (β̃
1
, β̃

2
, . . . , β̃Nb

)T are
the Nb significant eigenvectors of the centered kernel ma-
trix (Gram matrix) K(ZB,ZB) normalized by the square root
of their corresponding eigenvalues. k(ZB, r) and k(ZB,d) are
column vectors whose entries are k(xi, y) and k(xi,d) for
xi ∈ ZB, respectively. ZBd = ZB ∪ d and Υ̃ is a matrix whose
columns are theNbd eigenvectors (υ1, υ2, . . . , υNbd ) of the cen-
tered kernel matrix K(ZBd,ZBd) = (K)i j = k(xi, x j), xi, x j ∈
ZB ∪ d, with nonzero eigenvalues, normalized by the square
root of their associated eigenvalues. Also k(ZBd, y) is the
concatenated vector [k(ZB, r)T k(d, y)T]T and k(ZBd,d) is
the concatenated vector [k(ZB,d)T k(d,d)T]T . In the above
derivation (29) we assumed that the mapped input data was
centered in the feature space. For noncentered data the kernel
matrices and the empirical kernel maps have to be properly
centered as is shown in the appendix.

5. LINEAR SMF AND KERNELMSF

5.1. Linear SMF

In this section, we introduce the concept of linear SMF.
The constrained least-squares approach is used to derive
the linear SMF. Let the input spectral signal x be x =
[x(1), x(2), . . . , x(p)]T consisting of p spectral bands. We can
model each spectral observation as a linear combination of
the target spectral signature and noise:

x = as + n, (30)

where a is an attenuation constant (target abundance mea-
sure). When a = 0 no target is present and when a > 0 a tar-
get is present, the vector s = [s(1), s(2), . . . , s(p)]T contains
the spectral signature of the target and vector n contains the
additive background clutter noise.

Let us define X to be a p×N matrix of theN background
reference pixels obtained from the input test image. Let each
observation spectral pixel to be represented as a column in
the sample matrix X

X =
[
x1 x2 . . . xN

]
. (31)

We can design a linear matched filter w = [w(1),w(2),
. . . ,w(p)]T such that the desired target signal s is passed
through while the average filter output energy is minimized.
This constrained filter design is equivalent to a constrained
least-squares minimization problem, as was shown in [24–
27], which is given by

min
w

{
wT R̂w

}
subject to sTw = 1, (32)

where minimization of minw{wT R̂w} ensures that the back-
ground clutter noise is suppressed by the filter w, and the
constrain condition sTw = 1 makes sure that the filter gives
an output of unity when a target is detected.

The solution to this constrained least-squares minimiza-
tion problem is given by

w = R̂−1s
sT R̂−1s

, (33)

where R̂ represents the estimated correlation matrix for the
reference data. The above expression is referred to as mini-
mum variance distortionless response (MVDR) beamformer
in the array processing literature [24, 28], and more re-
cently the same expression was also obtained for hyperspec-
tral target detection and was called constrained energy min-
imization (CEM) filter or correlation-based matched filter
[25, 26]. The output of the linear filter for the test input r,
given the estimated correlation matrix, is given by

yr = wTr = sT R̂−1r
sT R̂−1s

. (34)

If the observation data is centered a similar expression is
obtained for the centered data which is given by

yr = wTr = sT Ĉ−1r
sT Ĉ−1s

, (35)

where Ĉ represents the estimated covariance matrix for the
reference centered data. Similarly, in [4, 5] it was shown that
using the GLRT, a similar expression as in MVDR or CEM
(35) can be obtained if n is assumed to be the background
Gaussian random noise distributed as N (0,C) where C is
the expected covariancematrix of only the background noise.
This filter is referred to as matched filter in the signal process-
ing literature or Capon method [29] in the array processing
literature. In this paper, we implemented the matched filter
given by the expression (35).

5.2. SMF in feature space and its kernel version

We now consider a model in the kernel feature space which
has an equivalent nonlinear model in the original input space

φ(x) = aφφ(s) + nφ, (36)
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where φ is the nonlinear mapping associated with a kernel
function k, aφ is an attenuation constant (abundance mea-
sure), the high-dimensional vector φ(s) contains the spectral
signature of the target in the feature space, and vector nφ con-
tains the additive noise in the feature space.

Using the constrained least-squares approach that was
explained in the previous section it can easily be shown that
the equivalent matched filter wφ in the feature space is given
by

wφ =
R̂−1φ φ(s)

φ(s)T R̂−1φ φ(s)
, (37)

where R̂φ is the estimated correlation matrix in the feature
space. The estimated correlation matrix is given by

R̂φ = 1
N
XφXφ

T , (38)

where Xφ = [φ(x1) φ(x2) · · · φ(xN )] is a matrix whose
columns are the mapped input reference data in the feature
space. The matched filter in the feature space (37) is equiva-
lent to a nonlinear matched filter in the input space and its
output for an input φ(r) is given by

yφ(r) = wT
φ φ(r) =

φ(s)T R̂−1φ φ(r)

φ(s)T R̂−1φ φ(s)
. (39)

If the data was centered the matched filter for the centered
data in the feature space would be

yφ(r) = wT
φ φ(r) =

φ(s)T Ĉ−1φ φ(r)

φ(s)T Ĉ−1φ φ(s)
. (40)

We now show how to kernelize the matched filter ex-
pression (40), where the resulting nonlinear matched filter is
called the kernel matched filter. It is shown in the appendix
that the pseudoinverse (inverse) of the estimated background
covariance matrix can be written as

Ĉ#
φ = XφBΛ−2BTXT

φ . (41)

Inserting (41) into (40) it can be rewritten as

yφ(r) =
φ(s)TXφBΛ−2BTXT

φφ(r)

φ(s)TXφBΛ−2BTXT
φφ(s)

. (42)

Also using the properties of the kernel PCA as shown by
(A.13) in the appendix, we have the relationship

K−2 = 1
N2

BΛ−2BT . (43)

We denote K = K(X,X) = (K)i j an N ×N Gram kernel ma-
trix whose entries are the dot products 〈φ(xi),φ(x j)〉. Substi-
tuting (43) into (42) the kernelized version of SMF is given
by

yKr =
k(X, s)TK−2k(X, r)
k(X, s)TK−2k(X, s)

= kTs K
−2kr

kTs K−2ks
, (44)

where ks = k(X, s) and kr = k(X, r) are the empirical kernel
maps for s and r, respectively. As in the previous section, the
kernel matrix K as well as the empirical kernel maps, ks and
kr, need to be properly centered if the original data was not
centered.

6. ASD AND KERNEL ASD

6.1. Linear adaptive subspace detector

In this section, the GLRT under the two competing hypothe-
ses (H0 andH1) for a certainmixture model is described. The
subpixel detection model for a measurement x is expressed
as

H0 : x = n, target absent,

H1 : x = Uθ + σn, target present,
(45)

where U represents an orthogonal matrix whose or-
thonormal columns are the normalized eigenvectors that
span the target subspace 〈U〉; θ is an unknown vec-
tor whose entries are coefficients that account for the
abundances of the corresponding column vectors of U
and n represents Gaussian random noise distributed as
N (0,C).

In model (45), x is assumed to be a background noise
underH0 and a linear combination of a target subspace signal
and a scaled background noise, distributed as N (Uθ, σ2C),
under H1. The background noise under the two hypotheses
is represented by the same covariance but different variances
because of the existence of subpixel targets under H1. The
GLRT for the subpixel problem described by (45), the so-
called ASD [5], is given by

DASD(x) = xT Ĉ−1U
(
UT Ĉ−1U

)−1
UT Ĉ−1x

xT Ĉ−1x

H1

≷
H0

ηASD, (46)

where Ĉ is the MLE of the covariance C and ηASD represents
a threshold. Expression (46) has a constant false alarm rate
(CFAR) property and is also referred to as the adaptive co-
sine estimator because (46) measures the angle between x̃
and 〈Ũ〉, where x̃ = Ĉ−1/2x and Ũ = Ĉ−1/2U.

6.2. ASD in the feature space and its kernel version

We define a new subpixel model in a high-dimensional fea-
ture space F given by

H0φ : φ(x) = nφ, target absent,

H1φ : φ(x) = Uφθφ + σφnφ, target present,
(47)

where Uφ represents a matrix whose M1 orthonormal
columns are the normalized eigenvectors that span target
subspace 〈Uφ〉 in F ; θφ is unknown vectors whose entries
are coefficients that account for the abundances of the corre-
sponding column vectors of Uφ; nφ represents Gaussian ran-
dom noise distributed by N (0,Cφ); and σφ is the noise vari-
ance under H1φ . The GLRT for the model (47) in F is now
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given by

D(φ(x)) = φ(x)T Ĉ−1φ Uφ(UT
φ Ĉ

−1
φ Uφ)−1UT

φ Ĉ
−1
φ φ(x)

φ(x)T Ĉ−1φ φ(x)
, (48)

where Ĉφ is the MLE of Cφ.
We now show how to kernelize the ASD expression (48)

in the feature space. The inverse (pseudoinverse) background
covariance matrix in (48) can be represented by its eigenvec-
tor decomposition (see the appendix) given by the expression

Ĉ#
φ = XφBΛ−2BTXT

φ , (49)

where Xφ = [φc(x1) φc(x2) · · · φc(xN )] represents the
centered vectors in the feature space corresponding to
N independent background spectral signatures, X =
[x1 x2 · · · xN ] and B = [β1 β2 · · · βN1 ] are the
nonzero eigenvectors of the centered kernel matrix (Gram
matrix) K(X,X). Similarly, Uφ is given by

Uφ = YφT̃ , (50)

where Yφ = [φc(y1) φc(y2) · · · φc(yM)] are the centered
vectors in the feature space corresponding to theM indepen-
dent target spectral signatures Y = [y1 y2 · · · yM], and
T̃ = [α̃1 α̃

2 · · · α̃
M1 ],M1 < M, is a matrix consisting of

theM1 eigenvectors of the kernel matrix K(Y,Y) normalized
by the square root of their corresponding eigenvalues. Now,
the term φ(x)T Ĉ−1φ Uφ in the numerator of (48) becomes

φ(x)T Ĉ−1φ Uφ = φ(x)TXφBΛ−2BTXφ
TYφT̃

= k(x,X)TK(X,X)−2K(X,Y)T̃ ≡ Kx,
(51)

whereBΛ−2BT is replaced by K(X,X)−2 using the relation-
ship (A.13), as shown in the appendix.

Similarly,

Uφ
T Ĉ−1φ φ(x) = T̃

T
K(X,Y)TK(X,X)−2k(x,X) = KT

x ,

Uφ
T Ĉ−1φ Uφ = T̃

T
K(X,Y)TK(X,X)−2K(X,Y)T̃ .

(52)

The denominator of (48) is also expressed as

φ(x)T Ĉ−1φ φ(x) = k(x,X)TK(X,X)−2k(x,X). (53)

Finally, the kernelized expression of (48) is given by

DKASD(x) = Kx
[
T̃

T
K(X,Y)TK(X,X)−2K(X,Y)T̃

]−1
KT
x

k(x,X)TK(X,X)−2k(x,X)
.

(54)

As in the previous sections all the kernel matrices K(X,Y)
and K(X,X) as well as the empirical kernel maps need to be
properly centered.

7. EXPERIMENTAL RESULTS

The proposed kernel-based matched signal detectors, the
kernel MSD (KMSD), kernel ASD (KASD), kernel OSP
(KOSP), and kernel SMF (KSMF) as well as the correspond-
ing conventional detectors are implemented based on two
different types of data sets—illustrative toy data sets and real-
hyperspectral images that containmilitary targets. The Gaus-
sian RBF kernel, k(x, y) = exp(−‖x− y‖2/c), was used to
implement the kernel-based detectors, where c represents the
width of the Gaussian distribution. The value of c was chosen
such that the overall data variations can be fully exploited by
the Gaussian RBF function; the value for c was determined
experimentally.

7.1. Illustrative toy examples

Figures 1 and 2 show contour and surface plots of the con-
ventional detectors and the kernel-based detectors, on two
different types of two-dimensional toy data sets: a Gaus-
sian mixture in Figure 1 and nonlinearly mapped data in
Figure 2. In the contour and surface plots, data points for the
desired target were represented by the star-shaped symbol
and the background points were represented by the circles.
In Figure 2 the two-dimensional data points x = (x, y) for
each class were obtained by nonlinearly mapping the origi-
nal Gaussian mixture data points x0 = (x0, y0) in Figure 1.
All the data points in Figure 2 were nonlinearly mapped by
x = (x, y) = (x0, x20 + y0). In the new data set the second
component of each data point is nonlinearly related to its first
component.

For both data sets, the contours generated by the kernel-
based detectors are highly nonlinear and naturally following
the dispersion of the data and thus successfully separating the
two classes, as opposed to the linear contours obtained by
the conventional detectors. Therefore, the kernel-based de-
tectors clearly provided significantly improved discrimina-
tion over the conventional detectors for both the Gaussian
mixture and nonlinearly mapped data. Among the kernel-
based detectors, KMSD and KASD outperform KOSP and
KSMFmainly because targets in KMSD and KASD are better
represented by the associated target subspace than by a sin-
gle spectral signature used in KOSP and KSMF. Note that the
contour plots for MSD (Figures 1(a) and 2(a)) represent only
the numerator of (4) because the denominator becomes un-
stable for the two-dimensional cases; that is, the value inside
the brackets (I−PTB) becomes zero for the two-dimensional
data.

7.2. Hyperspectral images

In this section, hyperspectral digital imagery collection ex-
periment (HYDICE) images from the desert radiance II data
collection (DR-II) and forest radiance I data collection (FR-
I) were used to compare detection performance between
the kernel-based and conventional methods. The HYDICE
imaging sensor generates 210 bands across the whole spectral
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Figure 1: Contour and surface plots of the conventional matched signal detectors and their corresponding kernel versions on a toy dataset
(a mixture of Gaussian).

range (0.4–2.5 μm) which includes the visible and short-
wave infrared (SWIR) bands. But we only use 150 bands
by discarding water absorption and low-SNR bands; the
spectral bands used are the 23rd–101st, 109th–136th, and
152nd–194th for the HYDICE images. The DR-II image in-
cludes 6 military targets along the road and the FR-I im-
age includes total 14 targets along the tree line, as shown
in the sample band images in Figure 3. The detection per-
formance of the DR-II and FR-I images was provided in
both the qualitative and quantitative—the receiver operat-
ing characteristics (ROC) curves—forms. The spectral sig-
natures of the desired target and undesired background sig-
natures were directly collected from the given hyperspectral
data to implement both the kernel-based and conventional
detectors.

All the pixel vectors in a test image are first normalized
by a constant, which is a maximum value obtained from
all the spectral components of the spectral vectors in the

corresponding test image, so that the entries of the normal-
ized pixel vectors fit into the interval of spectral values be-
tween zero and one. The rescaling of pixel vectors was mainly
performed to effectively utilize the dynamic range of Gaus-
sian RBF kernel.

Figures 4–7 show the detection results including the ROC
curves generated by applying the kernel-based and conven-
tional detectors to the DR-II and FR-I images. In general,
the detected targets by the kernel-based detectors are much
more evident than the ones detected by the conventional de-
tectors, as shown in Figures 4 and 5. Figures 6 and 7 show the
ROC curve plots for the kernel-based and conventional de-
tectors for the DR-II and FR-I images; in general, the kernel-
based detectors outperformed the conventional detectors. In
particular, KMSD performed the best of all kernel-based de-
tectors detecting all the targets and significantly suppressing
the background. The performance superiority of KMSD is
mainly attributed to the utilization of both the target and
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Figure 2: Contour and surface plots of the conventional matched signal detectors and their corresponding kernel versions on a toy dataset:
in this toy example, the Gaussian mixture data shown in Figure 1 was modified to generate nonlinearly mixed data.

(a) (b)

Figure 3: Sample band images from (a) the DR-II image and (b) the FR-I image.

background kernel subspaces representing the target and
background signals in the feature space, respectively.

8. CONCLUSIONS

In this paper, kernel versions of several matched signal de-
tectors, such as KMSD, KOSP, KSMF, and KASD have been
implemented using the kernel-based learning theory. Perfor-
mance comparison between thematched signal detectors and
their corresponding nonlinear versions was conducted based

on two-dimensional toy examples as well as real hyperspec-
tral images. It is shown that the kernel-based nonlinear ver-
sions of these detectors outperform the linear versions.

APPENDIX

KERNEL PCA

In this appendix we will show the derivation of the kernel
PCA and its properties. Our goal is to prove the relationships
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(a) MSD (b) KMSD

(c) ASD (d) KASD

(e) OSP (f) KOSP

(g) SMF (h) KSMF

Figure 4: Detection results for the DR-II image using the conventional detectors and the corresponding kernel versions.

(a) MSD (b) KMSD

(c) ASD (d) KASD

(e) OSP (f) KOSP

(g) SMF (h) KSMF

Figure 5: Detection results for the FR-I image using the conventional detectors and the corresponding kernel versions.

(49) and (A.13) from the kernel PCA properties. To drive the
kernel PCA consider the estimated background clutter co-
variance matrix in the feature space and assume that the in-
put data has been normalized (centered) to have zero mean.
The estimated covariance matrix in the feature space is given
by

Ĉφ = 1
N
XφXT

φ . (A.1)

The PCA eigenvectors are computed by solving the eigen-
value problem

λvφ = Ĉφvφ = 1
N

N∑

i=1
φ
(
xi
)
φ
(
xi
)T
vφ

= 1
N

N∑

i=1

〈
φ(xi), vφ

〉
φ
(
xi
)
,

(A.2)
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Figure 6: ROC curves obtained by conventional detectors and the
corresponding kernel versions for the DR-II image.

where vφ is an eigenvector in F with a corresponding
nonzero eigenvalue λ. Equation (A.2) indicates that each
eigenvector vφ with corresponding λ �= 0 are spanned by
φ(x1), . . . ,φ(xN ); that is,

vφ =
N∑

i=1
λ−1/2βiφ

(
xi
) = Xφβλ

−1/2, (A.3)

where Xφ=[φ(x1) φ(x2) · · · φ(xN )] and β = (β1,β2, . . . ,
βN )T . Substituting (A.3) into (A.2) and multiplying with
φ(xn)T yields

λ
N∑

i=1
βi
〈
φ
(
xn
)
,φ
(
xi
)〉

= 1
N

N∑

i=1
βiφ
(
xn
)
φ
(
xi
)
φ
(
xi
)T

N∑

i=1
φ(xi)

= 1
N

N∑

i=1
βi
〈
φ
(
xn
)
,
N∑

j=1
φ
(
x j
)
〈

φ
(
x j
)
,φ
(
xi
)〉
〉

∀n = 1, . . . ,N.

(A.4)

We denote by K = K(X,X) = (K)i j the N ×N kernel matrix
whose entries are the dot products 〈φ(xi),φ(x j)〉. Equation
(A.4) can be rewritten as

Nλβ = Kβ, (A.5)

where β turn out to be the eigenvectors with nonzero eigen-
values of the centered kernel matrix K. Therefore, the Gram
matrix can be written in terms of it eigenvector decomposi-
tion as

K = BΩBT , (A.6)
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Figure 7: ROC curves obtained by conventional detectors and the
corresponding kernel versions for the FR-I image.

whereB = [β1 β2 · · · βN ] are the eigenvectors of the ker-
nel matrix and Ω is a diagonal matrix with diagonal values
equal to the nonzero eigenvalues of the kernel matrix K.

Similarly, from the definition of PCA in the feature space
(A.2) the estimated background covariance matrix is decom-
posed as

Ĉφ = VφΛVφ
T , (A.7)

where Vφ = [v1φ v2φ · · · vNφ ] and Λ is a diagonal matrix
with its diagonal elements being the nonzero eigenvalues of
Ĉφ. From (A.2) and (A.5) the eigenvalues of the covariance
matrix Λ in the feature space and the eigenvalues of the ker-
nel matrix Ω are related by

Λ = 1
N
Ω. (A.8)

Substituting (A.8) into (A.6) we obtain the relationship

K = NBΛBT , (A.9)

where N is a constant representing the total number of back-
ground clutter samples, which can be ignored.

The sample covariance matrix in the feature space is rank
deficient consisting ofN columns and the number of its rows
is the same as the dimensionality of the feature space which
could be infinite. Therefore, its inverse cannot be obtained
but its pseudoinverse can be written as [30]

Ĉ#
φ = VφΛ

−1Vφ
T , (A.10)

where Λ−1 consists of only the reciprocals of the nonzero
eigenvalues (which is determined by the effective rank of the
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covariance matrix [30]). The eigenvectors Vφ in the feature
space can be represented as

Vφ = XφBΛ−1/2 = XφB̃, (A.11)

then the pseudoinverse background covariance matrix Ĉ#
φ

can be written as

Ĉ#
φ = VφΛ

−1Vφ
T = XφBΛ−2BTXφ

T . (A.12)

The maximum number of eigenvectors in the pseudoinverse
is equal to the number of nonzero eigenvalues (or the num-
ber of independent data samples), which cannot be exactly
determined due to round-off error in the calculations. There-
fore, the effective rank [30] is determined by only including
the eigenvalues that are above a small threshold. Similarly,
the inverse Gram matrix K−1 can also be written as

K−1 = 1
N
BΛ−1BT . (A.13)

If the data samples are not independent then the pseudoin-
verse of the Gram matrix has to be used, which is the same
as (A.13) except only that the eigenvectors with eigenvalues
above a small threshold are included in order to obtain a nu-
merically stable inverse.

In the derivation of the kernel PCA we assumed that the
data has already been centered in the feature space by remov-
ing the sample mean. However, the sample mean cannot be
directly removed in the feature space due to the high dimen-
sionality of F . That is the kernel PCA needs to be derived in
terms of the original uncentered input data. Therefore, the
kernel matrix K̂ needs to be properly centered [12]. The ef-
fect of centering on the kernel PCA can be seen by replacing
the uncentered Xφ with the centered Xφ−μφ (where μφ is the
mean of the reference input data) in the estimation of the co-
variance matrix expression (A.1). The resulting centered K̂ is
shown in [12] to be given by

K̂ = (K− 1NK−K1N + 1NK1N
)
, (A.14)

where the N × N matrix (1N )i j = 1/N . In the above (A.6)
and (A.13) the kernel matrix K needs to be replaced by the
centered kernel matrix K̂.
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