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atomic signal modeling of electric disturbance signals. The disturbance signal is modeled using a linear combination of damped
sinusoidal components which are closely related to the phenomena typically observed in power systems. The signal model obtained
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1. INTRODUCTION

Electric disturbance signals are acquired by digitizing the
voltage and/or current waveforms with digital fault recorders
(DFRs) at several points of the power system network.
Figure 1 illustrates a typical DFR data, composed by the volt-
age and current waveforms of a three-phase system and the
correspondent neutrals in a transmission line. In Figure 1, we
can observe the three main parts of interest for fault anal-
ysis. The prefault shows the system behavior prior to the
fault occurrence and the postfault shows the system state af-
ter fault recovering. Along with fault signals, power quality
events are also acquired in order to monitor transient behav-
ior and evaluate the impacts of power consumer apparatuses
on the power quality. The analysis of disturbance signals al-
lows the identification of patterns and characteristics of faults
and also to assess power quality [1–6].

The number of points monitored in power systems is
increasing rapidly because: (a) the power system operation
bounds get more critical as demand increases; (b) at large in-
terconnected systems, it is necessary to establish precisely the
causes of the disturbance as well as the responsibilities for the

resulting effects. Storage and transmission of disturbance sig-
nals may generate an information overload, even though the
cost of storage is decreasing rapidly, the general tendency is to
sample signals at higher rates and for longer periods of time.
Thus, storage capacity and transmission bandwidth prob-
lems persist, demanding good compression schemes. Also,
the information overload is a serious problem to disturbance
analysis, as human experts (that perform the analysis) have
in general difficulty to analyze very large amounts of data.
This creates a demand for computational tools (i) that aid in
the analysis of the phenomena; (ii) that allow efficient trans-
mission and storage of the information. Very different signal
processing techniques have been applied to analyze and com-
press disturbance signals [5, 7–22]. The results of the appli-
cation of signal processing techniques in this analysis are so
rich and fruitful that specific hardware for these tasks is being
developed [23].

This work is a tutorial reviewing the principles and ap-
plications of atomic signal modeling of electric disturbance
signals which was first presented in [22]. This atomic decom-
position decomposes/models a signal using a linear combi-
nation of damped sinusoidal components which are closely
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Figure 1: Typical data acquired by a digital fault recorder.

related to the phenomena typically observed at power sys-
tems. That is, the components employed are coherent to
power system phenomena. The signal components, each one
associated to a different phenomenon, are identified through
an atomic decomposition algorithm. The algorithm em-
ployed is based on the matching pursuit (MP) [24–28]. This
strategy identifies the different natural phenomena repre-
sented in the signal that originated during the disturbance.

Paper organization

The damped sinusoids signal model is discussed in Section 2.
Atomic decompositions are discussed in Section 3. The de-
composition algorithm is described in Section 4 along with
some examples and a brief discussion of the improvements
implemented with respect to the work in [22]. In Section 5,
we discuss some applications of the atomic decompositions
obtained using this algorithm. These applications include co-
herent signal modeling, signal denoising, nonlinear filtering
of the so-called “DC component,” and a compression scheme
for disturbance signals. Section 6 closes the paper.

2. DAMPED SINUSOIDALMODELING OF
DISTURBANCE SIGNALS

Regardless of the quantities measured, the aim of power sys-
tem monitoring is to study the evolution in time of dis-
turbance phenomena. These phenomena are represented, in

general, as sinusoidal oscillations of increasing or decreasing
amplitudes, and are highly influenced by circuit switching,
as well as by nonlinear equipments. In order to analyze and
compress signals from power systems, it is important to use
a model that is capable of precisely representing the com-
ponents that may compose those signals. Xu [29] discusses
common phenomena in power systems.

(i) Harmonics are low-frequency phenomena ranging
from the system fundamental frequency (50/60Hz) to
3000Hz. Their main sources are semiconductor appa-
ratuses (power electronic devices), arc furnaces, trans-
formers (due to their nonlinear flux-current charac-
teristics), rotational machines, and aggregate loads (a
group of loads treated as a single component).

(ii) Transients are observed as impulses or high-frequency
oscillations superimposed to the voltages or currents
of fundamental frequency (50/60Hz) and also expo-
nential DC and modulated components. The more
common sources of transients are lightnings, trans-
mission line, and equipment faults, as well as switch-
ing operations, although transients are not restricted
to these sources. Their frequency range may span up to
hundreds of thousands of Hz, although the measure-
ment system (and the power line) usually filters com-
ponents above few thousands of Hz.

(iii) Swells and Sags are increments or decrements, respec-
tively, in the RMS voltage of duration from half cycle
to 1 minute (approximately).
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Figure 2: Signal analysis and synthesis based on atomic signal decompositions using a dictionary D.

When analyzing disturbance signals, it is interesting to be
capable of detecting, modeling, and identifying those phe-
nomena. Some techniques commonly employed for model-
ing and analyzing power disturbance signals are Fourier fil-
tering [9, 10]; Prony analysis [11, 12]; autoregressive mov-
ing average models [7]; state-space tracking methods [7];
wavelets [11, 13–19]. In some cases, these methods are used
along with artificial intelligence strategies [8, 12, 30, 31].

Roughly, one can consider that electric power systems are
basically formed by sources, loads, and transmission lines,
that is, RLC circuits, whose transient behaviors are modeled
by damped sinusoids. In addition, discontinuities may ap-
pear in these signals due to circuit switching. Following these
premises, a disturbance signal x(t) can be approximated by
[22, 32, 33]

x(t) =
M∑

m=1
αme

−ρm(t−tsm) cos
(
2πkmFt + φm

)

×[u(t − tsm
)− u

(
t − tem

)]
,

(1)

where M is the number of expansion elements, F is the fun-
damental frequency (50/60Hz), u(·) corresponds to the unit
step function, and each element is represented by a 6-tuple
(αm, km, ρm,φm, tsm, t

e
m). In this 6-tuple, αm is the amplitude,

km is an integer multiple of the fundamental frequency, ρm
is the decaying factor, φm is the phase, and tsm and tem are,
respectively, the starting and ending times of the mth signal
component.

The well-known Prony method [7, 11, 12] largely em-
ployed for analyzing power system signals obtains a similar
model. However, the Prony method does not consider that
distinct damped sinusoids can start at different time instants
neither that they can have different time supports. Therefore,
the proposed model adds a time localization feature to Prony
analysis.

In the signal processing community, damped sinusoids
are present in several applications. For example, in [34–
36] such components were used for transient detection and
analysis. The large amount of potential applications of such
components is motivated by the fact that damped sinusoids
are solutions for ordinary differential equations that often
appear in physical system models [27, 28, 37, 38]. For a
long time, researchers have been designing systems and algo-
rithms to estimate the parameters of damped sinusoids em-
bedded in several signals [39–46].

In [21, 47], disturbance signals are modeled using a fun-
damental, a set of harmonics, and after subtracting these
components from the signal, the resulting signal is decom-

posed using a wavelet transform. The signal model in (1)
differs from those in [21, 47], since it does not restrict the
fundamental and the harmonics to have constant amplitudes
neither full nor the same time support.

How can one represent a given signal in accordance to the
signal model in (1)? For that purpose, we employ an adap-
tive atomic decomposition algorithm. Before discussing the
algorithm, we address some important concepts of atomic
decompositions.

3. ATOMIC DECOMPOSITIONS

Define a dictionaryD as the set of all possible structures, pre-
defined waveforms, that can be used to represent signals. The
aim of atomic signal decomposition algorithms is to select a
subset of M elements gγ(m) from the dictionary that approx-
imates x using the linear combination given by the M-term
approximation or representation (or simply,M-term)

x ≈ x̂ =
M∑

m=1
αmgγ(m), gγ(m) ∈ D. (2)

The atoms gγ(m) in the M-term are indexed by the map-
ping γ(m) that is defined as γ : Z+ → {1, . . . , #D}; #D is the
dictionary cardinality—the number of elements in D, thus
γ(m) ∈ {1, . . . , #D}. The parameter αm denotes the coeffi-
cient, that is, the weight of gγ(m), and M is the number of
atoms used to approximate x. TheM-term representation of
a signal is the result of an analysis-synthesis procedure which
is illustrated in Figure 2. The analysis of the signal obtains the
coefficients and atom indices while the synthesis of the signal
is accomplished using (2).

Atomic representations differ from classical transform-
based signal representations, because the atoms used in the
M-term may be linearly dependent. In addition, since, in
general, D has more elements than necessary to span the
signal space, the selection of the atoms may be signal-
dependent, leading to an adaptive signal decomposition
(analysis-synthesis).

Atomic representations have been employed for signal fil-
tering and denoising [25, 48], analysis of the physical phe-
nomena behind the observed signal together with pattern
recognition and signal modeling [25, 27, 28, 49–52], time-
frequency analysis [24, 25], and harmonic analysis [52, 53].
Atomic representations can also provide good signal com-
pression tools [53–57]. Recently, atomic representations were
used to discriminate outcomes from different Gaussian pro-
cesses [58].
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The distortion of the M-term approximation of a signal
x is

d(x,M,D) = ‖ x − x̂‖ =
∥∥∥∥∥x −

M∑

m=1
αmgγ(m)

∥∥∥∥∥. (3)

This distortion depends on (i) the number of elements M
used to represent x; (ii) the atoms gγ(m) used to express the
signal; (iii) and the weights αm of the atoms. Since D defines
the atoms that can be used in theM-term, the distortion de-
pends on D. For M-terms that use atoms from a dictionary
D being capable of representing any signal x ∈ X with an
arbitrarily distortion d(x,M,D), D must be complete in X
[25, 59–61]. That is, there will be at least one linear combi-
nation of elements from D that gives x̂ = x, for all x ∈ X,
that is,Dmust span X. WhenD has more elements than nec-
essary to span the signal space, it is said to be overcomplete
or redundant [25, 54, 59, 61].

Ideally, the atoms used in the M-term expansion should
depend on the signal, and in this case the decomposition
is said to be adaptive [24, 25, 27, 51, 59, 60, 62]. Since an
overcomplete dictionary allows expressing the same signal
using different M-terms (the representation is not unique),
an overcomplete or redundant dictionary is a requirement
if adaptive signal decompositions are desired. Ideally, adap-
tive approximations should discriminate the relevant infor-
mation represented in the signal ignoring noise, being the
relevant information defined by the dictionary atoms.

Most signal processing applications deal with outcomes
from physical processes. In these cases, the observed signal
x is a mixture of components pm, representing physical phe-
nomena, given by

x =
∑

m

βmpm + n, (4)

where n is the noise, inherent to the measurement process.
From the perspective of signal modeling, it is interesting for
the atoms gγ(m) used to approximate the signal to be similar
to the phenomena pm that are represented in x. The closer
the selected dictionary elements gγ(m) and weights αm are to
the physical phenomena pm and weights βm, the better is the
signal expansion for modeling and pattern recognition pur-
poses. We say that the representation is coherent to the signal
when it is a meaningful signal model.

The most compact or sparse representation of x is the
one using the smallest number of atoms [25, 61] with null
distortion. However, in practice, a small number of termsM
providing an acceptable distortion may suffice for represent-
ing the signal in a sparse manner.

In essence, atomic decompositions may provide an accu-
rate, sparse, and coherent signal model with low distortion.
A very popular algorithm to obtain atomic decompositions
is the matching pursuit (MP) [24, 25].

3.1. Matching pursuit

The MP [24, 25] approximates signals iteratively finding the
best possible approximation at each iteration. The MP has

emerged more or less at the same time in several scientific
fields, for example, in signal processing in [63], in statistics
in [64, 65], and in control applications [66].

Let D = {gγ} and γ ∈ {1, . . . , #D} such that ‖gγ‖ = 1 for
all k, and let #D be dictionary cardinality, that is, the num-
ber of elements in D. In each decomposition step or itera-
tion m ≥ 1, the MP searches for the atom gγ(m) ∈ D, that
is, γ(m) ∈ {1, . . . , #D}, with largest inner product with the
residual signal rm−1x [24, 25]. The initial residue is set to be
r0x = x. The selected atom gγ(m) is then subtracted from the
residue to obtain a new residue

rmx = rm−1x − αmgγ(m), αm =
〈
rm−1x , gγ(m)

〉
. (5)

The MP obtains the M-term signal representation/approx-
imation of (2) with distortion rMx = x− x̂ (theMth residue).
In practice, the decomposition step (the calculation of αm,
γ(m), and the residue rmx ) is iterated until a prescribed distor-
tion (‖rmx ‖), a maximum number of stepsM, or a minimum
for an approximation metric are reached [22, 24, 25, 60].

Local fitting

Due to its greediness [67, 68], theMP algorithm confuses sig-
nal components [69]. This happens because the MP searches
for the atom that best matches the overall signal, which may
produce a bad local fitting. For example, to solve this draw-
back, the high-resolution pursuits (HRP) [51, 70] use B-
spline windows to locally fit the atom found by the MP to the
residue. The algorithm in Section 4 uses a local fitting strat-
egy for eliminating pre-echo and post-echo artifacts that of-
ten appear in MP-like algorithms, which is accomplished by
windowing the atoms with a rectangular window. In addi-
tion, this algorithm includes a set of heuristics inside the MP
loop to instruct the MP for correct atom selection.

TheMP is capable of obtaining compact and efficient sig-
nal representations. However, an important aspect for that is
the dictionary, since the elements in it should be coherent to
the components represented in the signal.

3.2. Parameterized dictionaries

If the class of components that may be represented in the
signal is previously known, then it would be wise to use a
dictionary containing atoms that resemble these components
[25, 59, 71]. A common strategy is to define the dictionary el-
ements from a set of prototype functions/signals. In such dic-
tionaries, the actual waveforms of the dictionary atoms de-
pend on a set of parameters modifying the prototype signal.
These dictionaries are said to be parameterized since each
dictionary element gγ is defined by a given value of the pa-
rameter set Γ, that is,

γ ∈ Γ = {γ0, γ1, . . . , γ#D−1
}
, (6)

where #D is the number of possible distinct parameter set val-
ues defining different atoms gγ and Γ is the set of all possible
parameters. For example, the popular Gabor dictionary [24–
27, 51, 60, 72–74] is composed by Gaussian shaped atoms in
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Figure 3: Block diagram of the atomic decomposition algorithm. In the first iteration, the switch is in position 1 and in the remaining
iterations, it stays in position 0.

different scales, with varying centers in time and, multiplied
by different complex sinusoids, the so-called time-frequency
atoms [24, 25, 75].

The use of a parameterized dictionary allows for esti-
mating the signal and obtaining coherent decompositions.
For example, parameterized dictionaries were employed for
pattern recognition [51] and signal modeling [49, 76] us-
ing atomic decompositions. The decomposition algorithm in
Section 4 employs a parameterized dictionary of damped si-
nusoids in order to obtain an atomic signal model according
to (1).

Continuous parameters

In some cases, one may have to adapt or fit the structures
used in the signal representation to the actual signal being de-
composed. For that purpose, the parameter set value γ defin-
ing an atom could be any point inside a region of the param-
eter space instead of one chosen from a set of #D values. In
this case, it is said that the parameters of the atoms are con-
tinuous. In general, to obtain continuous parameter atoms,
one uses optimization algorithms to find the values of the pa-
rameter set defining each atom in theM-term. One starts the
optimization using a guess for the atom parameters, which is
obtained from a finite cardinality dictionary. The decompo-
sition algorithm in Section 4 employs this approach.

4. DECOMPOSITION ALGORITHM

This section presents an atomic decomposition algorithm
that obtains the signal representations in accordance with the
signal model in (1). The algorithm is based on the MP and
uses a parameterized dictionary of damped sinusoids with
continuous parameters. The simple use of the MP with a pa-
rameterized dictionary of damped sinusoids does not grant
obtaining a good signal model. To improve the signal mod-
eling, a set of heuristics is introduced in the decomposition

loop in order to guide the atom selection. The procedure de-
scribed here derives from the one in [22].

The elements of the parameterized damped sinusoidal
atom gγ are given by

gγ(n) = Kγg(n) cos(ξn + φ)
[
u
(
n− ns

)− u
(
n− ne

)]
,

n = {0, . . . ,N − 1},

g(n) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if ρ = 0 pure sinusoid (ξ /= 0),

DC or unit impulse (ξ = 0),

e−ρ(n−ns) if ρ > 0 decreasing exponential,

eρ(n
e−n) if ρ < 0 increasing exponential,

(7)

where Kγ is set so that ‖gγ‖ = 1 and N is the signal length.
Furthermore, the atom in (7) is defined by the 5-tuple γ =
(ρ, ξ,φ,ns,ne) in which ρ is the decaying factor, ξ denotes the
frequency, φ denotes the phase, ns and ne are the starting and
ending samples. The phase of the atom is optimized to pro-
vide the maximum inner product between the atom and the
residue in every iteration [22, 26].

Figure 3 shows the block diagram of the decomposition
algorithm. First, the algorithm searches the atom having the
largest correlation with the residue in a finite exponential
dictionary with presampled parameter space. The elements
of this dictionary are given by

gγd (n) = gj
(
n−2p j

)
cos
(
nkπ21− j + φ

)
, n={0, . . . ,N − 1},

gj(n) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

δ( j), j = 0,

Kγde
±n2− j

, j ∈ [1,L),
1√
N
, j = L.

(8)

This dictionary has L = log2(N) scales and the ranges of
the parameters that define the elements are j ∈ [0,L], p ∈
[0,N2− j), and k ∈ [0, 2 j), while the phase φ is optimized.
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Figure 4: Result of the optimization of the atoms parameters.

The discrete parameters found for the atom γd are then opti-
mized to find the γ from a set of continuous parameters max-
imizing the match between the atom and the current residue
using a Newton-like optimization method [22]. Figure 4 il-
lustrates the result of this optimization.

The simple use of the MP with a damped sinusoid dic-
tionary does not guarantee the generation of a coherent de-
composition (a physically interpretable representation with
respect to the phenomena in disturbance signals). Figure 5
shows an example of what occurs when a fault signal is de-
composed by the MP using a damped sinusoid dictionary.
The fault occurs after the 200th sample of the signal. How-
ever, the atom found does not represent the fault.

Aiming at a coherent decomposition, after selecting a
damped sinusoid to approximate the atom, the algorithm
performs inherent phenomena recognition by reducing the
time support of the atom (determined by ns and ne). The re-
gion of support of the atom is reduced sample by sample by
box-windowing the atom in order to verify whether a new
time support produces better fit between the atom and the
current residue.

The next step of the decomposition algorithm is to quan-
tize the atom frequency to a multiple of the fundamental and
repeat the time support search for the new quantized fre-
quency. After that, the algorithm decides if it is worth to use
a pure sinusoid instead of a damped one. This decision re-
lies on a heuristic that is based on a similarity metric. The
heuristic (decision criterion) is basically a tradeoff between
the error per sample of the resulting residue in the region of
support of the atom and the inner product of the atom with
the current residue [22].

Figure 6 shows how the whole decomposition algorithm
behaves in the first four decomposition steps for a natural
disturbance signal from [77]. The first residue is the signal
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Figure 5: Failure of the MP in finding coherent structures.

itself. Note that the components found in each iteration of
the algorithm closely match the correspondent residues.

The decomposition algorithm stops when the approxi-
mation achieved is good enough. Otherwise, it scales and
subtracts the atom from the current residue and produces
a new residue to be approximated in the following iteration.
To decide if the decomposition should or should not con-
tinue, we employ the following criterion: is there any dictio-
nary atom sufficiently coherent to the remaining residue? If
the answer is yes, the decomposition continues; otherwise it
stops. To answer this question, we measure if the dictionary
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atoms are capable of providing a good signal approximation.
For that, we employ the approximation ratio [24, 60]

λ(m) =
∣∣〈rm−1x , gγ(m)

〉∣∣
∥∥rm−1x

∥∥ . (9)

It measures howmuch of the residue rm−1x is approximated at
the step m. Note that the residue norm ‖rm−1x ‖ is a measure
of the approximation error, but it does not measure if the
residue is still highly correlated to any atom in the dictionary.
The coefficient magnitude |〈rm−1x , gγ(m)〉| depends on the
residue energy since the atoms have unit norm. Therefore,
if one employs |〈rm−1x , gγ(m)〉| as halting criterion, the halting
would also be influenced by the residue norm. The use of the
approximation ratio eliminates such influence [22].

At the end of the decomposition algorithm, we obtain
the signal approximation in (1) represented by the sequence
of pairs (αm, γ(m)), m = 0, . . . ,M − 1, where γ(m) =
(ρm, ξm,φm,nsm,n

e
m) (see (1) and (7)). Note that the algorithm

delivers discrete values for the atom parameters nsm, n
e
m, and

ξm, while the remaining parameters of the atom ρm and φm
and the atom amplitude αm are continuous.

5. APPLICATIONS OF THE SIGNALMODEL AND
THE DECOMPOSITION ALGORITHM

5.1. Coherent signal modeling

What happens if the signal to be decomposed is acquired in a
severe noise environment? Ideally, one wants the signal com-
ponents to be identified in spite of the noise that may be
added to the signal. However, if the noise has an energy that
is comparable to the energy of a given component, then it
would be difficult to distinguish between them. We address
now how the decomposition algorithm presented performs

in detecting the signal components when the signal is cor-
rupted by noise.

Define the noisy signal

xnoise = x + n, (10)

where n is any noise signal. From this definition, we can com-
pute

SNRC = 10 log10

(
‖x‖2
‖n‖2

)
= 10 log10

(
‖x‖2

∥∥x − xnoise
∥∥2

)
(dB)

(11)

tomeasure howmuch x is corrupted by noise. Figure 7 shows
the components identified in a given signal corrupted by
noise signals with different levels of SNRC by the decompo-
sition algorithm of the previous section. The original syn-
thetic signal (uncorrupted by noise) is shown at the top of
Figure 7(a) and the components used in its generation are
at the bottom of Figure 7(a). Figure 7(b) shows the signal in
Figure 7(a) corrupted with noise such that SNRC = 30 dB
and the structures found by the decomposition algorithm.
Note that they are very similar to the ones used to generate
the signal. Figures 7(c) and 7(d) show the same signal cor-
rupted by noise such that SNRC = 20 dB and SNRC = 10 dB,
respectively. One notes that in these cases, the three struc-
tures of larger energy are identified, but the fourth is not.
The energy of the fourth structure is indeed smaller than the
one of the noise in these cases. When the noise added to the
signal is such that SNRC =5 dB, see Figure 7(e), just the two
structures with larger energy are identified (although not as
well as in the previous cases). Note that in this case, the noise
has an energy that is larger than the ones of the third and
fourth structures.

5.2. Denoising by synthesis

As we have seen, our decomposition algorithm can reason-
ably identify/obtain the signal components even subject to
high-level noise. Therefore, we can use the decomposition
algorithm to remove the noise that may be present in the
signal. To access the capability of this analysis-synthesis de-
noising strategy, we first generate a set of corrupted signal
versions with different values of SNRC, see (11). Then, we
decompose each corrupted signal version and compute the
reconstruction signal-to-noise ratio

SNRR = 10 log10

(
‖x‖2

‖x− x̂‖2
)
(dB), (12)

where x̂ is the synthesized signal (see (2)) for the different
corrupted versions of x.

Figure 8 shows SNRR in function of SNRC for the signal
in the first row of Figure 6 taken from [77]. One can note
that SNRR is always larger than SNRC, specially at low SNRC,
showing that the analysis-synthesis denoising approach is ef-
fective for signal denoising.
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Figure 7: Generation of coherent signal model subject to several signal-to-noise ratios.
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Figure 8: Performance of the analysis-synthesis denoising.

5.3. Fundamental extraction and transient separation

Several works have proposed analysis methods that start by
extracting the signal’s fundamental and then use the remain-
ing signal (the transient, error or innovation signal) for an-
alyzing the disturbance and classifying it [20, 23, 78]. Since
our decomposition method automatically extracts the signal
fundamental when it has a strong presence in the signal, we
can subtract the fundamental from the signal in order to ob-
tain the transient signal.

Figures 9(a) and 9(b) show examples of the above “tran-
sient separation.” For example, in Figure 9(b), one can ob-
serve that our method detects the presence of a “DC” com-
ponent with a transient (power event) occurring at 0.015 sec-
ond.

5.4. Filtering the “DC component”

We now study the capability of the MP for filtering the “DC
component” that sometimes appears in current quantities af-
ter the disturbance occurs [9]. A signal corrupted by a “DC
component” (exponential decay) can be modeled as

Ae−λt
[
u
(
t − ts

)− u
(
t − te

)]
+ B sin

(
2πFt + φ

)
, (13)

where ts and te are the start and end times of the “DC compo-
nent” phenomenon (for simplicity, the start and end times of
the sinusoidal component are not presented) and λ expresses
the exponential decay constant. Since (13) is a particular case
of (1), the decomposition algorithm presented is capable of
extracting/identifying the “DC component.” Once the signal
is decomposed, the “DC component” can be filtered out at
the signal synthesis. This filtering is achieved by ignoring in
the signal synthesis all the low-pass structures (the ones with
zero frequency) and that are not of impulsive nature (time
support not smaller than 10% of the fundamental frequency
period) obtained by in the signal analysis.

Several analyses of disturbance signals are based on com-
parisons of the values of current and voltage quantities, often
in phasor form. For that, the signal is filtered to obtain just
the fundamental frequency contribution using, for example,
Fourier filters [9, 10]. Therefore, this measurement was used
to evaluate the ability of our method to filter the “DC com-
ponent.” An example of the “DC component” filtering on a
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Figure 9: Fundamental extraction and transient separation for dis-
turbance signals.

synthetic signal that was generated using the model equation
(1) can be seen in Figure 10. The components of the origi-
nal signal are two sinusoids of 60Hz with amplitudes 1 and
2 and phases 0◦ and 90◦ that go from samples 0 to 50, and
50 to 100, respectively. To the signal formed by the sum of
these components, a “DC component” is added starting at
sample 50 and ending at sample 100. Its decay is 0.05 and its
amplitude is 3. In Figure 10, one can see that in the filtered
signal the, “DC component” is almost totally eliminated. In
addition, the voltage and current phasors in the filtered sig-
nal are very close to the ones of the nondisturbed signal. This
filtering has shown to be effective when applied to synthetic
and natural signals as well as signals obtained through ATP-
EMTP [79]. Another example of this filtering process can be
seen in [22].
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Figure 10: Fourier filter applied after “DC component” filtering of a synthetic signal.

5.5. Compression of disturbance signals

For compression, the coefficients and atom parameters need
to be quantized after the decomposition process. The quan-
tizations of the parameters and of the coefficients give rise to
the reconstructed signal

x̃ =
M−1∑

m=0
Qα
{
αm
}
gQi{γ(m)}, (14)

whereQα{·} is the quantizer of the coefficients andQi{·} de-
notes the quantizer of the parameters. Each different quanti-
zation ruleQi{·} corresponds to a distinct dictionaryDi ⊂ D
(D is the original continuous parameter dictionary). That is,
the dictionary Di is defined by the mapping Qi{·} and x̃ cor-
responds to a weighted sum of its elements. The weights of
the atoms in x̃ depend on the quantizer of the coefficients

Qα{·}. Figure 11 illustrates this compression framework. The
optimum rate × distortion solution for this compression
scheme is provided by finding the quantizers Qα{·} and
Qi{·} that lead to the minimum distortion for a given rate.

Signal compression based on theMP usually retains a cer-
tain number of terms M and quantizes just the coefficients
[71]. The compression framework we employ substantially
differs from these. Since we use a dictionary of some contin-
uous parameters, for compression it is necessary to quantize
the parameters of atoms. This is equivalent to using multiple
dictionaries in the decomposition process and selecting one
of them for coding a given signal.

Rate × distortion optimization is employed in compres-
sion systems to achieve the best signal reproduction for a de-
sired compression target [80]. In the framework at hand, one
has to find a compromise between the number of atoms in
the signal representation, the quantization of the coefficients,
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Figure 11: Compression framework by quantizing the parameters of the atoms.

and the choice of the dictionaryDi ∈ D that is defined by the
quantizers of the atom parameters.

Define the number of bits for a given atom as

r = rα + rξ + rρ + rφ + rns + rne , (15)

where rα, rξ , rρ, rφ, rns , and rne denote the amount of bits allo-
cated to α, ξ, ρ, φ, ns, and ne, respectively. The total number
of bits spent for coding a signal, except for side information,
will be r × M, where M is the number of terms in the sig-
nal reconstruction (see (14)). The starting and ending sam-
ples of the atoms nsm and nem are coded using log2(N) bits as
the decomposition algorithm limits them to integers in this
range, meaning that rns = rne = log2(N) (N is the signal
length). In addition, since the decomposition algorithm al-
ready delivers a quantized frequency ξm using multiples of
the fundamental one, the frequency of the atoms are coded
using rξ = log2((Fs/2)/F) bits. Therefore, the total distortion
is expressed just as a function of the number of bits spent on
the coefficients, the decaying factors, and the phases of the
atoms, resulting in

d = f
(
rα, rρ, rφ

)
, MSE = 1

N
‖x− x̃‖2, (16)

where MSE means mean-squared error.
In [81], an efficient rate-distortion optimization strategy

based on a training stage is presented for the decompositions
obtained here. This optimization finds the number of lev-
els of uniform quantizers (restricting the number of levels of
the quantizers to powers of two) for ρ, φ, and α that jointly
lead to the best rate× distortion compromise. The distortion
considered in this approach is the one defined in (16) subject
to the rate (in bits/sample)

Rs = M × r + bitsinfo
N

, (17)

where M is the number of coded atoms, r is given by (15),
bitsinfo is the number of bits spent to send side information
on the quantizers design, and N is the signal length.

Figure 12 shows two examples of compressed signals
for two different signals taken from [77]. The signal in
Figure 12(a) is compressed using a rate of 0.492188 bits/
sample with SNRR = 24.888 dB and the signal in
Figure 12(b) is compressed using 0.542969 bits/sample with
SNRR = 25.387 dB. The rate × distortion performance of
the compression method for the signal in Figure 12(a) is
shown in Figure 13(a), while for the signal in Figure 12(b) it
is shown in Figure 13(b). As one can see from these graphs,
the compression method described obtains high reproduc-
tion quality at low bit rates.

6. CONCLUSION

This paper reviewed an atomic decomposition algorithm
that decomposes disturbance signals by means of a lin-
ear combination of damped sinusoids having frequencies in
multiples of the system fundamental frequency.

The decomposition algorithm discussed obtains a coher-
ent decomposition of the signal. Therefore, it can be ap-
plied for signal denoising, extraction of the fundamental fre-
quency, and separation of the transient signal. The proposed
signal decomposition can also be used to filter out the “DC
component” that often impairs the location of the fault in the
transmission line when phasorial techniques are employed
for that purpose. In addition, the decompositions can be
used for signal compression at low bit rates and high signal-
to-noise ratio, thus keeping the relevant information in the
compressed version of the disturbance signal.

Under current investigation, we show how to use the
disturbance signal modeling by means of damped sinusoid
as input in expert systems for automatic classification of
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Figure 12: Examples of the compression performance for two signals from [77].
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Figure 13: Rate × distortion performance of the compression system presented for two signals from [77].

faults and disturbances. In addition, we are developing a
methodology to evaluate compression systems for distur-
bance signals using the techniques normally employed for
analyzing these signals.
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