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A new geometric approach for nonlinear independent component analysis (ICA) is presented in this paper. Nonlinear environment
is modeled by the popular post nonlinear (PNL) scheme. To eliminate the nonlinearity in the observed signals, a novel linearizing
method named as geometric post nonlinear ICA (gpICA) is introduced. Thereafter, a basic linear ICA is applied on these linearized
signals to estimate the unknown sources. The proposed method is motivated by the fact that in a multidimensional space, a
nonlinear mixture is represented by a nonlinear surface while a linear mixture is represented by a plane, a special form of the
surface. Therefore, by geometrically transforming the surface representing a nonlinear mixture into a plane, the mixture can be
linearized. Through simulations on different data sets, superior performance of gpICA algorithm has been shown with respect to
other algorithms.
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1. INTRODUCTION

Independent component analysis (ICA), a technique of sep-
arating the unknown source signals from their mixtures, has
been extensively studied in the last two decades [1] and suc-
cessfully applied in many fields such as signal processing,
biomedical engineering, medical imaging, speech enhance-
ment, remote sensing, and data mining [2]. With a single hy-
pothesis of the statistical independence of source signals, an
ICA algorithm is able to estimate the unknown sources with-
out any training data or a prior knowledge of these signals.

The simple linear ICA model where original signals are
assumed to be linearly mixed by a mixing matrix was the
first approach to ICA problem. Until now, linear ICA has
become relatively well established with many effective algo-
rithms [3–7]. However, because of its nature, linear model
can perform well in the linear environment only. This draw-
back limits the use of linear ICA in various practical appli-
cations whose environment is naturally a nonlinear mixing
system. Therefore, a general nonlinear ICA model, in which
the mixing matrix is replaced by a nonlinear multidimen-
sional mixing function, was introduced. The early methods
for general model were proposed in [8, 9] with the use of
self-organizing maps to estimate the independent compo-
nents. Another method called LOCOCODE [10, 11] that ap-
plies minimum description length principle to optimize the

number of bits used to encode data can also be considered
as one of the pioneers in nonlinear ICA. The problems of
general nonlinear ICA, however, are the computational com-
plexity and the nonuniqueness of solutions [2, 12]. Without
any constraint to the model, there always exists an infinite
number of solutions [13]. Therefore, researchers in recent
years have focused on the submodels, that is, a variation of
general model with constraints, in order to develop nonlin-
ear ICA algorithms that yield unique solution.

The post nonlinear (PNL) model introduced by Taleb
and Jutten [14] is among the most popular submodels. PNL
model limits the mixing system to a linear mixing stage fol-
lowed by a nonlinear one-dimensional distortion for each
mixture. Therefore, the model is much simpler and pro-
vides a unique solution. It has attracted the interest of var-
ious researchers [12, 14–16] and has found many applica-
tions, for example, sensor array processing [17], digital satel-
lite and microwave communications [18], and biological sys-
tems [19].

In this paper, we propose a novel method called gpICA
(geometric PNL ICA) for the nonlinear ICA problem. The
gpICA method is tailored to the PNL model and employs
a geometric linearizing technique to deal with the nonlin-
earity problem. Our major contribution, the geometric lin-
earizing technique, comes from the following observation: in
a multidimensional space, the graph of a nonlinear mixture
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is a nonlinear surface. In special case, when the mixture is
a linear one, its graph becomes a plane. Hence, the objec-
tive of converting a given nonlinear mixture to a linear one
can be achieved by transforming a nonlinear surface (the ge-
ometric representation of the nonlinear mixture) to a plane
(the geometric representation of the linear mixture). There-
after, any algorithm which is applicable to linear ICA can
be applied on the linearized mixtures to extract the original
signals.

Our geometric approach was first introduced in [20] in
which only midpoint transformation was used. A prelimi-
nary version of the current multiarbitrary point transforma-
tion was proposed in [21]. Compared to the previous mid-
point technique, the utilization ofmultiarbitrary point trans-
formation enhances the ability of gpICA in many hard non-
linear situations. In this paper, more details on theoretical de-
velopment and performance comparison are provided. With
the novel geometric technique, gpICA possesses the follow-
ing advantages.

(1) Linearization can be done without any knowledge or
assumption on the number or distribution of the un-
known sources, themixing system, or the observed sig-
nals.

(2) After completion of the linearizing phase, one can
choose the most suitable linear ICAmethod to accom-
plish the demixing process. It is very useful as each ICA
method works well only on specific type of applica-
tions.

(3) The linearization is carried out geometrically, there-
fore, gpICA does not have any constraint on the non-
linear distortion.

This paper is organized as follows. An overview of ICA
models is shown in Section 2. Principles of the geometric ap-
proach are introduced in Section 3 and the details of gpICA
are presented in Section 4. We provide the computer simu-
lation results in Section 5. Finally, in Section 6, we conclude
and discuss the issues related to the proposed algorithm.

2. OVERVIEWOF ICAMODELS

2.1. Linear ICAmodel

Consider a system with n observations which are mixtures of
n unknown signals. Let si be the unknown sources and let xi
be the observations (i = 1, 2, . . . ,n). Linear ICA model pre-
sumes that the n source signals are statistically independent
and each observed signal is a linear mixture of the n sources.
The mixing system, therefore, is described by

x = As, (1)

where x = [x1, x2, . . . , xn]T and s = [s1, s2, . . . , sn]T are
the vectors representing the observed signals and unknown
source signals, respectively, and A, termed as mixing matrix,
is a full rank matrix of size n × n. The elements of A, ai j
(i, j = 1, 2, . . . ,n), can have any scalar value.

After modeling the system, our objective is to estimate
these unknown signals, si, only from the knowledge of the

observed signals, xi. Let yi (i = 1, 2, . . . ,n) denote n estimates
of the unknown signals. These estimates, yi, can be obtained
by finding an inverse matrix W of A, that is, W ≈ A−1, such
that

y =Wx ≈ A−1As = s, (2)

where y = [y1, y2, . . . , yn]T is a vector of the estimated sig-
nals. ThematrixW of size n×n is termed as demixingmatrix.
The process to find W, called separating process, is accom-
plished by maximizing the statistical independence among
the n estimated outputs, yi. For more details on linear ICA
methods, see [1, 2].

2.2. General nonlinearmodel

General nonlinear ICA model is a natural extension of the
linearmodel in which themixingmatrix is replaced by a non-
linear mixing function. The mixing process (1), therefore, is
reformulated as

x = F (s), (3)

where F is an unknown real-valued n-component mixing
function [12]. This extended model can be applied for the
mixing environment that cannot bemodeled by a linear mix-
ing system. For example, the multiplicative mixtures xj =∏n

i=1 si which are used for modeling the gray level image as a
product of incident light and reflected light [22]. Obviously,
linear ICA is a special case of (3) when F (s) = As.

To find the estimates of the original signals, yi, we have
to build a separating system. That is, to find a mapping G :
Rn → Rn such that

y = G(x) ≈ s. (4)

Some of the early approaches to nonlinear ICA can be found
in [8, 9]. The authors tried to apply self-organizing maps
(SOM) [8] and later, the generative topographic mapping
(GTM) [9] to the model in (3). However, these approaches
to general model do not yield satisfactory result. They need
a lot of computation and do not provide a unique solution.
It is shown that the solutions of the general nonlinear model
always exist, but they are nonunique and without any con-
straint to the model, there are infinite number of solutions
[1, 13].

2.3. Post nonlinear (PNL)model

To overcome the nonuniqueness issue, recent studies on non-
linear ICA are focused on specific subclasses of the general
model. Some constraints are applied on the mixing function
F or the source signals in order to eliminate the nonunique-
ness [12]. One of the important subclasses is the post non-
linear (PNL) model, introduced by Taleb and Jutten [14].

The post nonlinear (PNL) model shown in Figure 1 con-
strains the mixing system to a linear one followed by a
single variate nonlinear distortion for each mixture [14].
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Figure 1: The post nonlinear (PNL) mixing-separating system.

Mathematically, the PNL mixing model can be specified as

v = As, (5)

xi = fi
(
vi
)
, i = 1, . . . ,n, (6)

where v = [v1, v2, . . . , vn]T is a vector of linear mixtures, and
fi are nonlinear functions. Because of its simplicity and plau-
sibility, the PNL approach is the subject of many studies [14–
16] and has found several applications [17–19].

In order to estimate the unknown source signals, a two-
stage PNL separating model is applied. The PNL separating
system can be model as

zi = gi
(
xi
)
, i = 1, . . . ,n,

y =Wz,
(7)

where z = [z1, z2, . . . , zn]T and gi are the single variate
functions. In the first stage, termed as linearizing stage, the
method attempts to transform the observed signals into lin-
ear mixtures. Then in the second stage, a basic linear ICA
algorithm is applied to estimate the unknown sources from
those linearized mixtures.

3. GEOMETRIC APPROACH FOR PNLMODEL

As we can see, linearization of observed signals is the most
important task that all the PNL-tailored methods have to
solve. In the early approach introduced by Taleb and Jutten
[14], independent criteria were used in both stages. There-
fore, the algorithm may not work well with the hard nonlin-
ear distortions. In Howard et al.’s approach [16], the model
required a lot of computation. Recently, Ziehe et al. [15] pro-
posed a simple and effective PNL method but required the
mixtures to have Gaussian or Gaussian-like distributions. In
this paper, we propose a new geometric approach for the lin-
earizing process. The proposed method does not impose any
additional assumption and works effectively with the hard
nonlinear distortions as well.

To begin with, we first represent the PNL problem un-
der geometric viewpoint. The nonlinear and linear mixtures
are represented in terms of nonlinear surfaces and planes in a
multidimensional space. The linearizing process that changes
PNL mixtures into linear ones is presented as a transforma-
tion of nonlinear surfaces into planes. The approach is first
described in the case of two sources and two observed sig-
nals (the 2 × 2 case) so that it can be illustrated in a three-
dimensional (3D) space. A solution for a general PNL case
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Figure 2: Geometric description of a PNL mixing and separating
system in a 3D space.

(more than two sources and observations) will be given later
in Section 4.

Now let us recall the two concepts which will be used ex-
tensively in our method, the definitions of a surface and a
plane.

Definition 1. Given z = f (x, y), a graph of f (x, y) is a set
of all points (x, y, f (x, y)) in a 3D space XYZ and is called
a surface. The function f (x, y) can be any arbitrary function
of x and y.

Definition 2. In a special case, when the function f (x, y) is a
linear one, that is, f (x, y) = ax + by + c, the graph of f (x, y)
in the 3D space is then called a plane.

Let us look at a specific 2 × 2 case of the PNL problem.
The linear mixtures in (5), vi, can be expressed as

vi = ai1s1 + ai2s2 (8)

and the PNL mixtures in (6), xi, can be expressed as

xi = fi
(
vi
) = fi

(
ai1s1 + ai2s2

)
, (9)

where i = 1, 2. Let us consider a 3D space XYZ, where the
values s1 and s2 are shown on X- and Y-axes, respectively.
The values of vi or zi are shown on Z-axis. Let us denote
Svi and Sxi as the graphs of vi and xi, respectively. Since vi
is described as a linear (8), its graph, Svi , in this 3D space is
clearly a plane. The PNL mixture, xi, on the other hand, is
represented by a nonlinear function (9) and its graph, Sxi ,
is in the form of a nonlinear surface. Therefore, PNL mix-
ing model can be viewed as a creation of the planes followed
by a surface-transforming process from these planes. Con-
sequently, PNL separating system, as a reverse process, is to
transform the input surfaces back to the planes and then uses
these planes to estimate the original coordinates. An illustra-
tion of the PNL model is shown and described in Figure 2 in
terms of the transformation from planes to surfaces and vice
versa.

In Figure 2, a plane Sv1 , the set of points having coordi-
nates (s1, s2, v1), is drawn as a graph of the linear function
vi in (8). The plane, Sv1 , is transformed to a nonlinear sur-
face Sx1 when v1 is distorted by a nonlinear function in (9).
Likewise, plane Sv2 and then surface Sx2 are created by the
similar processes. An example of the mixing system is de-
picted in Figure 3. From 10000 samples in the range [−1, 1]
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Figure 3: Example of a PNL mixing system in 3D space. (a) Planes
Sv1 and Sv2 correspond to linear mixtures v1 and v2. (b) Nonlinear
surfaces Sx1 and Sx2 correspond to PNL mixtures x1 and x2.

of random signals s1 and s2, the graphs of two linear mixtures
v1 = 0.1s1+0.3s2 and v2 = 0.2s1−0.7s2 are created and shown
in Figure 3(a). Next, the PNL mixtures x1 = tanh(10v1) and
x2 = v32 are constructed and their graphs, Sx1 and Sx2 , are
shown in Figure 3(b).

Before going into the details of the PNL separating sys-
tem, we need to describe the characteristics of the observed
graphs. Since s1 and s2 are unknown in a PNL problem, the
observed graph Sxi , in fact, is a set of points having coor-
dinates ( , , xi), where the symbol “ ” denotes an unknown
value. In other words, we are given two graphs and the value
of their points on the third coordinate. Our objective is to es-
timate the values on the first two coordinates of these points.

To achieve this objective, we apply a two-stage scheme. In
the first stage, the critical linearizing process is accomplished
by geometric transformation. The surfaces Sxi (i = 1, 2) are
transformed to planes Szi which correspond to the linearized
mixtures zi. In the second stage, a basic ICA algorithm is ap-
plied on zi to estimate the unknown sources. Figure 4 illus-
trates a geometric view of the PNL separating system. Note
that the labels s1 and s2 which appeared in Figure 3 have been
removed from Figure 4 in order to reflect the unavailability of
the knowledge of source signals.

The problem of transforming surface to plane would be
quite easy if the values s1 and s2 were known. The construc-
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Figure 4: Example of the PNL separating system in 3D space. (a)
Nonlinear surface Sx1 and Sx2 correspond to the observations. (b)
Planes Sz1 and Sz2 correspond to linearized mixtures z1 and z2.

tion of Szi can be achieved by letting zi = wi1s1 + wi2s2 and
selecting any nonzero scalar value for wi1 and wi2 (i = 1, 2).
In PNL problem described above, however, this kind of infor-
mation is not available. Thus, to carry out the transformation
Sxi into Szi , the following issues need to be resolved.

(1) To identify whether a given graph Sz is a plane without
prior knowledge of s1 and s2.

(2) To evolve a mechanism to generate Szi from Sxi , also
without knowledge of s1 and s2.

3.1. Identification of a plane

From the nature of plane and surface in 3D space, the follow-
ing property is observed.

Proposition 1. Let p1 and p2 denote two arbitrary points lying
on a surface S in a 3D space and let pc denote an arbitrary
point lying on a straight line joining p1 and p2. S is a plane if
and only if for all p1, p2 ∈ S, pc lies on S.

An illustration of Proposition 1 is shown in Figure 5. In
Figure 5(a), two points p1 and p2 are lying on Sv and pc is an
arbitrary point on p1p2. Since Sv is a plane (v = 0.1s1 + 0.3s2
in the example), we have pc ∈ Sv. Whereas, in Figure 5(b),
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Figure 5: An example showing the difference between a plane and
a nonlinear surface. (a) A plane: arbitrary point pc ∈ p1p2 lies on
Sv . (b) A nonlinear surface: the point pc ∈ p1p2 falls out of Sx.

since Sx is not a plane (z = tanh(10v) = tanh(10(0.1s1 +
0.3s2)) in the example), pc does not lie on Sx.

3.2. Transformation of a nonlinear surface to a plane

In order to construct a plane Sz from a given nonlinear sur-
face Sx, we propose a heuristic method that utilizes proper-
ties of the straight line in a 3D space. Given an XYZ coor-
dinate system, the following definitions and propositions are
observed.

Definition 3. The equation of a line containing a point
p1(x1, y1, z1) can be written as (x − x1)/a = (y − y1)/b =
(z − z1)/c, where a, b, c are the scalars and are not all
zeros.

Definition 4. Let p1(x1, y1, z1) and p2(x2, y2, z2) be two arbi-
trary points. The pair {p1, p2} is called a companion pair,
Cp1,p2 , if and only if x1 = x2 and y1 = y2. The point p1 is
then called a companion of p2 and vice versa.

Proposition 2. Given an arbitrary point, p1( , , zp1), and its
companion point, q1( , , zq1), let p2( , , zp2) be another ar-
bitrary point and let q2( , , zq2) be its companion point. Let

pc( , , zpc) and qc( , , zqc) be the two arbitrary points lying on
p1p2 and q1q2, respectively. If pc is the companion of qc, then
the following expression holds true:

zpc − zp1
zp2 − zp1

= zqc − zq1
zq2 − zq1

. (10)

The proposition is a direct consequence of Thales’ theo-
rem. Its proof is provided in the appendix.

Proposition 2 is the key of our technique. Given five
points p1, p2, q1, q2, and pc, we can locate the position of the
sixth point, qc, by using (10). Now assume that a reference
plane Sv is known, and our task is to transform a nonlin-
ear surface Sx into a plane Sz. The following transformation
scheme will detail our technique to transform Sx into Sz with
the help of the reference plane Sv.

Transformation scheme

(1) Pick up any two arbitrary points p1 and p2 on the
reference plane Sv. Locate their respective companion
points q1 and q2 on Sx.

(2) Select an arbitrary point pc on p1p2. Find a companion
point, qc ∈ q1q2, of pc by using (10).

(3) Locate qx on Sx such that {pc, qx} is a companion pair.
(4) Pull qx toward qc.
(5) Use Proposition 1 to check whether Sx is a plane.
(6) Repeat steps (1) to (5) if it is not a plane, otherwise

stop.

Figure 6 illustrates a change of point qx in one iteration.
The old location of qx is shown in Figure 6(a). After a trans-
formation iteration, qx is changed to qc (Figure 6(b)) which
lies on the same straight line joining q1 and q2. The transfor-
mation is repeated for every point qx ∈ Sx and at the end,
the surface Sx is transformed to a plane Sz.

4. gpICA ALGORITHM

In this section, the above transformation scheme will be ap-
plied to create our geometric linearizing technique. However,
the following issues have to be solved due to the unavailabil-
ity of s1 and s2.

(1) Since the values of s1 and s2 are not known, the first
two coordinates of a point are not available. Therefore,
we cannot apply Definition 4 directly to identify the
companion of a given point.

(2) In PNL problem, a reference plane is also not available.
(3) The ambiguity of the point qc ∈ q1q2. Since the

first two coordinates are unknown, we cannot en-
sure whether pc ∈ p1p2. Therefore, the reverse of
Proposition 2 does not always hold, that is, there may
bemore than one point that satisfy (10) but are not the
companion of pc.

Here we intend to use the time index of a mixture to
identify a companion point. Let v1(t1) denote a sample of
linear mixture vi at time t = t1. Then the point on the
surface Sv1 representing this sample is given by the coordi-
nates (s1(t1), s2(t1), v1(t1)). Similarly, at the sampling time
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Figure 6: An illustrative example of linearizing Sx using reference
plane Sv . (a) The point qx ∈ Sx before transformation. (b) After the
transformation, qx was pulled to qc ∈ q1q2.

t = t1, the coordinates of the corresponding points on the
surfaces Sv2 , Sx1 , and Sx2 are given by (s1(t1), s2(t1), v2(t1)),
(s1(t1), s2(t1), x1(t1)), and (s1(t1), s2(t1), x2(t1)), respectively.
Considering PNL problem modeled by (8) and (9), the fol-
lowing proposition is observed.

Proposition 3. Given the time instant t= t1, then all the points
p1v ( , , v1(t1)) ∈ Sv1 , q1v ( , , v2(t1)) ∈ Sv2 , p1( , , x1(t1)) ∈
Sx1 , and q1( , , x2(t1)) ∈ Sx2 are the companions.

An example of Proposition 3 is shown in Figure 7. In 3D
space, p1 and its companion q1 are shown in Figure 7(a) as
the two points having the same values on the first two co-
ordinates. Meanwhile, this companion property is shown in
the time series plots in Figure 7(b) as the two signal samples
having the same time instant t = t1. Thus with Proposition 3,
companion points can be identified without knowing the co-
ordinates s1 and s2.

For the second issue of finding a reference plane, a pro-
posed solution is to employ a “fake plane,” that is, to as-
sume one surface as reference plane and use it to trans-
form the other surface. The role of “fake plane” will be
alternatively changed from one surface to another during
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Figure 7: Example of a companion pair Cp1,q1 . (a) In a 3D space,
p1 and q1 have the same values on the coordinates s1 and s2. (b) In
time series plots, p1 and q1 are at the same time instant.

the transformation process. For this reason, the transforma-
tion process mentioned in Section 3 is modified to adapt
with the fake plane. Let us choose Sx2 as the fake plane and
Sx1 as the surface that needs to be transformed. Given two
points p1( , , x2(t1)) and p2( , , x2(t2)) lying on Sx2 and the
other two points q1( , , x1(t1)) and q2( , , x1(t2)) lying on
Sx1 , let pc be a point being located at ( , , x2(tc)). Then the
value on the third coordinate of the companion point of pc,
qc( , , z1(tc)), can be computed from (10) as

z1
(
tc
) = x2

(
tc
)− x2

(
t1
)

x2
(
t2
)− x2

(
t1
)
(
x1
(
t2
)− x1

(
t1
))

+ x1
(
t1
)
. (11)

The last issue is the ambiguity of the point qc ∈ q1q2.
Proposition 2 implies that if pc ∈ p1p2 and pc and qc are the
companion points, then (10) holds true, but the reverse is not
always true. There may be more than one point qc that satisfy
(10) but are not a companion of pc. Also, we cannot ensure
that pc will lie on p1p2. An incorrect selection of qc or pc will
make qx, the point that is supposed to be changed, move to
a wrong position. Currently in this paper, there is no com-
plete solution to eliminate this ambiguity. Nevertheless, to
lessen the inaccuracy, we apply a local transformation, that is,
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Figure 8: An example of gpICA method. The surface Sx1 is trans-
formed using the fake plane Sx2 . Position of qx (a) before and (b)
after the transformation. Because μ < 1, qx is pulled to a new posi-
tion near qc.

the surface is divided into small cells and the transformation
process is carried out within these cells. In addition, instead
of pulling qx right to qc, we apply a learning rate μ < 1 to up-
date qx position. By doing this way, the transformation will
take a longer time but will steadily converge to a plane. The
updating function is formulated as

xnew1

(
tc
) = μz1

(
tc
)
+ (1− μ)xold1

(
tc
)
. (12)

Figure 8 shows an example of our proposed method in
an iteration. The two surfaces Sx1 and Sx2 represent two non-
linear mixtures x1 and x2, respectively. The surface Sx2 is as-
sumed to be a “fake plane” and is used to transform Sx1 into
a plane. The position of the selected point, qx, before the
change is illustrated in Figure 8(a). The new location of qx
after the change is shown in Figure 8(b). With the learning
rate μ < 1, qx does not move right to qc but to a location near
qc.

After the proposed linearizing process, we obtained two
planes, Sz1 and Sz2 , which represent the linearized signals
z1 and z2, respectively. To improve the smoothness of these
surfaces, a smoothing function is applied. In this work, we
use an averaging function to smooth the signals. The signal
is sorted in an ascending order, and the sorted signal, zs, is

smoothed using the function

z̃i(t) = 1
L

(L−1)/2∑

j=−(L−1)/2
zsi (t + j). (13)

Then z̃i is restored to the original order to produce signals
zi. These smoothed signals, zi, are used as the inputs for the
linear ICA algorithm applied in the demixing stage.

Finally, the algorithm is extended for the case of n > 2
observations. Each signal xi (i = 1, 2, . . . ,n) is represented by
a surface Sxi . In an iteration, a surface Sxk is randomly chosen
and used as the “fake plane” to transform the other surfaces.
Equation (11), therefore, is updated to

zi
(
tc
) = xk

(
tc
)− xk

(
t1
)

xk
(
t2
)− xk

(
t1
)
(
xi
(
t2
)− xi

(
t1
))

+ xi
(
t1
)
. (14)

Likewise, the updating equation (12) is modified as

xnewi

(
tc
) = μzi

(
tc
)
+ (1− μ)xoldi

(
tc
)
. (15)

The stopping criteria “Sx is a plane” of the transformation
scheme in Section 3 also need to be realized into a precise
condition in order to complete the gpICA algorithm. In this
work, we measure the difference (error) between the values
of the signal after and before the change in one iteration. In
each iteration, these errors are accumulated and compared to
a threshold ξ. The accumulated error, ε, is computed by

ε = 1
nNk

n∑

i=1

Nk∑

j=1

(
xnewi ( j)− xoldi ( j)

)2
, (16)

where xnewi ( j) and xoldi ( j) are the signal values after and be-
fore the change, respectively, and Nk is the number of up-
dated samples in each iteration. The linearizing process is
stopped when ε goes below a threshold ξ. After that a ba-
sic linear ICA algorithm is applied on the linearized signals,
zi (i = 1, 2, . . . ,n), to produce the estimates of source signals,
yi. A framework of gpICA is described by the following pseu-
docode.

5. SIMULATION RESULTS

To evaluate the performance of gpICA, several computer
simulations have been carried out on different data sets. The
first test was done on a simple case of two sinusoidal sources.
The sources, mixtures, and estimated signals, therefore, can
be visualized in a 3D space. To assess the performance of the
gpICA in a multiple-source PNL problem, we carried out the
second simulation with four speech signals.

We have applied several typical linear ICA methods for
the linear demixing stage (step (5)), such as SOBI (second-
order blind identification) [5], JADETD (joint approximate
diagonalization of eigen matrices with time delays) [23], and
FPICA (fixed-point ICA) [6]. As results of these methods
were almost identical, we only provide the outcomes that
were carried out with SOBI during the simulation.

To give a perspective comparison of the algorithm’s per-
formance, we compare our method with a linear ICA algo-
rithm and a competitive PNL method. For linear one, we
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Input
x1, x2, . . . , xn: n observed signals with N samples each.
Parameter
μ: learning rate.
ξ: threshold to stop the linearization.
Nk : number of points to be updated in each iteration.

Output
z1, z2, . . . , zn: n linearized signals.
y1, y2, . . . , yn: n estimated signals.

function gpICA()
{
Repeat {
Randomly select fake plane xk .
For i = 1 to n {
For j = 1 to Nk {
Randomly generate time indices t1, t2, and tc.
Compute zi(tc) using (14).
Update xi(tc) using (15).

} /∗ end of j loop ∗/
} /∗ end of i loop ∗/
Compute ε using (16).

} Until (ε < ξ)
For i = 1 to n assign zi = xi.
For i = 1 to n smooth zi using (13).
Apply a linear ICA algorithm on zi to extract yi.
} /∗ end of gpICA ∗/

Algorithm 1: The Geometric PNL Algorithm: gpICA

choose SOBI, and for the PNL one, we choose Gauss-TD
[15], one of the effective reported PNL methods. The perfor-
mance was measured by the correlation coefficient between
an original source, s, and an output signal, y. The correlation
coefficient between s and y, r(x,y), is computed by

r(s,y) =
∑N

t=1
(
s(t)− s

)(
y(t)− y

)

√∑N
t=1
(
s(t)− s

)2∑N
t=1
(
y(t)− y

)2
, (17)

where s = (1/N)
∑N

t=1 s(t), y = (1/N)
∑N

t=1 y(t), with N as
the number of samples.

5.1. Experiment 1: mixture of two sinusoidal signals

Using two sinusoidal signals in (18), two linear mixtures v1
and v2 were generated by a mixing matrix A whose entries
were the random numbers in the range of [−1, 1]. The linear
mixtures were then distorted by two nonlinear functions in
(20) to produce the observations x1 and x2. The source sig-
nals, mixing matrix, and nonlinear functions are given be-
low:

s1(t) = sin(0.22t),

s2(t) = sin
(
2π(0.1t) + 6 cos

(
2π(0.02t)

))
,

(18)

A =
[−0.605 0.152

0.625 0.056

]

, (19)

x1(t) =
(
3v1(t)

)3
,

x2(t) = tanh
(
10v2(t)

)
.

(20)

At first, the linearizing process was run on 3000 sam-
ples (N = 3000) with the window size of the smoothing
function L = 151, the learning rate μ = 0.2, and the er-
ror threshold ξ = 0.002. The 3D plots of the linearized sig-
nals, zi, are shown in Figure 9(c) and are compared with the
plots of linear mixtures, vi, (Figure 9(a)) and PNL mixtures,
xi, (Figure 9(b)). As it is expected, the graphs of gpICA’s re-
sult, zi, are similar to the graphs of unknown linear mix-
tures, vi. Clearly, the nonlinearity in xi has been eliminated
in zi. Whereas, some nonlinearity is still visible in the graphs
(Figure 9(d)) of the competitive Gauss-TD algorithm.

In the next stage, a linear ICAmethod, SOBI, was applied
on zi to extract the estimates of original signals, yi. The plots
of these estimates, yi, are illustrated in Figure 10, together
with plots of source signals, linear mixtures, PNL mixtures,
and Gauss-TD and SOBI estimates. Compared with those of
SOBI and Gauss-TD, gpICA’s results resemble much more
to the original source signals. The linear ICA algorithm pro-
vided the worst performance (Figure 10(d)). A quantitative
performance was measured in terms of the correlation co-
efficient between a source signal and its estimate ŝi, r(si ,ŝi).
The estimate of the ith source signal, ŝi, is one of the out-
puts yj ( j = 1, 2, . . . ,n) whose absolute correlation coef-
ficient, |r(yj ,si)|, is the highest one. Using this index, r(si ,ŝi),
comparisons between gpICA and SOBI, and Gauss-TD were
carried out and are reported in Table 1. As it is shown in
the table, the result obtained by gpICA is better than both
SOBI and Gauss-TD results, providing high correlation coef-
ficients, |r(ŝi,si)| ≈ 1.

5.2. Experiment 2: mixture of four speech signals

In this simulation, 5000 samples of four speeches (taken from
[24]) were chosen as the original sources. Their linear and
nonlinear mixtures are given by

A =

⎡

⎢
⎢
⎢
⎣

−0.087 0.714 −0.835 0.448
0.283 −0.560 −0.842 −0.130
−0.086 0.093 −0.061 0.522
−0.483 −0.751 0.531 0.202

⎤

⎥
⎥
⎥
⎦
,

x1(t) = tanh
(
10v1(t)

)
,

x2(t) = 0.1v2(t) + v2(t)3,

x3(t) = tanh
(
2v3(t)

)
+ v3(t)3,

x4(t) = v4(t) + tanh
(
7v4(t)

)
.

(21)

The plots of the original speeches, linear mixtures, and PNL
mixtures are shown in Figure 11. Our proposed algorithm,
gpICA, was executed on these PNL mixtures with parame-
ters L = 151, μ = 0.5, and ξ = 0.01. The final outputs, yi,
are plotted in Figure 11(f), next to the outputs of SOBI and
Gauss-TD. The correlation coefficients between the estimates
ŝi and their original signals si of gpICA, SOBI, and Gauss-TD
are provided in Table 2.

In Figure 11, we can observe a good performance of
gpICA. The linear ICA method (SOBI) was not able to sepa-
rate the nonlinear mixtures. It could manage to estimate only
one speech signal with adequate quality (with r(s2,ŝ2) ≈ 0.8).
Whereas, the gpICA was capable of estimating all the four
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Figure 9: Geometric representation of signals in a 3D space. (a) Linear mixtures v1 and v2. (b) PNLmixtures x1 and x2. (c) gpICA’s linearized
signals z1 and z2. (d) Linearized signals using Gauss-TD.

Table 1: Experiment 1: mixture of two sinusoidal signals—
correlation coefficient between the original sources and their esti-
mates.

Method r(s1,ŝ1) r(s2,ŝ2)

SOBI 0.887 0.582
Gauss-TD −0.982 0.888
gpICA −0.999 −0.966

Table 2: Experiment 3: mixture of four speech signals—correlation
coefficient between the original sources and their estimates.

Method r(s1,ŝ1) r(s2,ŝ2) r(s3,ŝ3) r(s4,ŝ4)

SOBI −0.404 0.816 0.590 0.695
Gauss-TD −0.770 0.984 −0.956 0.611
gpICA −0.724 0.946 −0.875 -0.926

speech signals effectively. Our proposed algorithm continued
to provide good performance with high-quality estimated
signals; even the poorest output of gpICA still has correla-
tion coefficient of over 0.72. Compared with the Gauss-TD

algorithm which uses additional assumption of the Gaus-
sianity of the mixtures, gpICA provided a similar perfor-
mance.

6. CONCLUSION

A geometric approach called gpICA for the post nonlin-
ear independent component analysis has been presented in
this paper. By considering the characteristics of a plane and
a nonlinear surface in a multidimensional space, a sim-
ple linearizing process has been developed to transform
the post nonlinear mixtures into linear mixtures without
any additional assumption. From the linearized signals, the
unknown sources can be estimated by any linear ICA algo-
rithm. Throughout extensive experiments, gpICA was able
to perform well in all the simulations without changing the
algorithm configuration and parameters. With the two-stage
separating model and a novel geometric linearizing tech-
nique, gpICA possesses the following several advantages.

(1) Besides the PNL mixture assumption, gpICA does
not use any additional assumption about the origi-
nal sources as well as the mixing models. For example,
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Figure 10: Plots of 200 signal samples. (a) Unknown sources. (b) Linear mixtures. (c) PNL mixtures. (d) SOBI estimates. (e) Gauss-TD
estimates. (f) gpICA estimates.

unlike Gauss-TD, gpICA does not use the Gaussianity
assumption about the linear mixtures.

(2) The linearization and demixing processes are indepen-
dent. The users can choose any suitable linear ICA
algorithm for demixing stage. Thus, it increases the
performance and adaptation of gpICA in a specific en-
vironment.

(3) With a single fixed configuration, gpICA can perform
the extraction effectively in various simulations with
different data sets.

However, several issues still exist and require further investi-
gations to improve the algorithm. The first issue comes from
the heuristic criterion in (10). A possible solution could be
another version with multiple updating points or multiple
“fake planes.” The convergence conditions and the criteria for
selecting the algorithm’s parameters are also other issues that
need more study. Geometric approach to nonlinear ICA is
not constrained to PNLmodel, an extended version of gpICA

for a broader nonlinear ICA submodel is being carried out.
Finally, the question of whether gpICA can be applied for
optimizing the data encoding (like the LOCOCODEmethod
[10]) is an interesting issue for the future study.

APPENDIX

PROOF OF PROPOSITION 2

Since p1 and q1 are the companion points, their coor-
dinates are specified as (x1, y1, zp1) and (x1, y1, zq1), re-
spectively. Similarly, p2 and q2 are located at (x2, y2, zp2)
and (x2, y2, zq2), pc and qc are located at (xc, yc, zpc) and
(xc, yc, zqc).

From Definition 3, as pc lies on p1p2, we derive the fol-
lowing equation:

xc − x1
x2 − x1

= yc − y1
y2 − y1

= zpc − zp1
zp2 − zp1

. (.22)
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Figure 11: Plots of the speech signals. (a) Unknown sources. (b) Linear mixtures. (c) PNL mixtures. (d) SOBI estimates. (e) Gauss-TD
estimates. (f) gpICA estimates.

Similarly, since qc lies on q1q2, we have the following equa-
tion:

xc − x1
x2 − x1

= yc − y1
y2 − y1

= zqc − zq1
zq2 − zq1

. (.23)

Combining (.22) and (.23) yields

zpc − zp1
zp2 − zp1

= zqc − zq1
zq2 − zq1

. (.24)
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