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We present a technique called corrected integral shape averaging (CISA) for quantifying shape and shape differences in a set
of signals. CISA can be used to account for signal differences which are purely due to affine time warping (jitter and dila-
tion/compression), and hence provide access to intrinsic shape fluctuations. CISA can also be used to define a distance between
shapes which has useful mathematical properties; a mean shape signal for a set of signals can be defined, which minimizes the
sum of squared shape distances of the set from the mean. The CISA procedure also allows joint estimation of the affine time
parameters. Numerical simulations are presented to support the algorithm for obtaining the CISA mean and parameters. Since
CISA provides a well-defined shape distance, it can be used in shape clustering applications based on distance measures such as
k-means. We present an application in which CISA shape clustering is applied to P-waves extracted from the electrocardiogram of
subjects suffering from sleep apnea. The resulting shape clustering distinguishes ECG segments recorded during apnea from those
recorded during normal breathing with a sensitivity of 81% and specificity of 84%.
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1. INTRODUCTION

In the field of electrocardiogram (ECG) analysis, signal shape
(or morphology) analysis is often used intuitively by clin-
icians for tasks such as beat typing and ischemia detec-
tion. However, there are relatively few well-defined analytical
tools for automatically quantifying shape and shape differ-
ences, which can be used to capture the intuition of clinical
practitioners, or to systematically uncover subtle but clini-
cally significant changes in shape. One approach to signal
shape quantification assumes a common underlying shape
or template which is only subject to time warping [1, 2],
and attempts to calculate both the time-warping function
and a common template under a restrictive shape hypothesis.
However, in practice, variations in shape from an underlying
common shape are often the main objective of interest, and
quantifying such shape variability is a goal of this work. In or-
der to assess deviation from an underlying “template” shape,
we first need to define the concept of an “averaged shape” ref-
erence signal. This signal should possess the necessary prop-
erty of being a “shape gravity center” according to a specific
shape distance (which we shall more precisely define in this
paper). An implicit property of a well-defined shape distance

will be to preserve shape equality under affine amplitude and
time transformations of the reference signal. Given a shape
distance and shape gravity center, it is then possible to clearly
describe the shape statistics of a set of signals [3]. We note
that a “shape center” defined by the simple classical mean,
coupled with Euclidean distance will provide poor descrip-
tors of shape variability, since both themean and the distance
measure are sensitive to time fluctuations [2, 4].

In order to provide a more robust technique for quanti-
fying shape variability, we recently proposed a method called
integral shape averaging (ISA) which has several useful prop-
erties [2, 4]. For example, the ISA method applied to signals
generated from a single shape reference signal, but with affine
time and amplitude variations, will yield a shape reference
signal which is equal to the original on an averaged time sup-
port. Furthermore, if the signals are different in shape, the
ISA method will still provide a single shape reference signal,
which can be used to form a similarity criterion between a
single signal and the reference signal. This criterion is called
the distribution functions method (DFM) criterion [5], and
has been used to measure shape differences. Biomedical clus-
tering applications have been carried out using a modified
k-means clustering algorithm coupled with ISA signals and
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the DFM criterion [6, 7]. While the results of this classifica-
tion were in line with visual inspection, the theoretical basis
of the method is somewhat uncertain due to the fact that the
ISA signal does not possess the properties of a “shape gravity
center”. One of the reasons is because it is not invariant to
affine time transforms. In addition, the DFM criterion is not
a true distance measure.

A first attempt to remedy these shortcomings of the
ISA method was proposed in [3] and applied in [8]. While
providing practically useful clustering results, the proposed
method did not fully correct the underlying theoretical prob-
lems. However, in this paper we provide a new approach, the
corrected integral shape averaging (CISA), which addresses
these issues. We specifically demonstrate that the CISA sig-
nal obtained by the method is a “shape gravity center” ac-
cording to a CISA shape distance. We also provide an esti-
mation procedure for the CISA model which obeys condi-
tions for model identifiability. The proposedmethod permits
modelling and estimation of both intrinsic shape fluctuation
functions and affine time transforms. In Section 2, the ana-
lytical properties of the method are illustrated by numerical
simulation.

As a specific example of how shape variability can be use-
ful in a practical ECG classification problem, we use the CISA
method for the task of recognizing obstructive sleep apnea
(OSA) episodes based solely on analysis of the ECG.Obstruc-
tive sleep apnea is a common sleep disorder in which respi-
ration is disordered during sleep due to partial or complete
collapse of the upper airway. Its prevalence in the adult popu-
lation is estimated at between 2–4% [9], and it is linked with
a number of unfavorable outcomes, such as increased risk of
cardiovascular disease, hypertension, and excessive daytime
sleepiness [10].

Sleep apnea is commonly defined as the cessation of
breathing during sleep [11]. If breathing does not stop but
the volume of air entering the lungs with each breath is sig-
nificantly reduced, then the respiratory event is called a hy-
popnoea. Clinicians usually divide sleep apnea into threema-
jor categories: obstructive, central, and mixed apnea. Ob-
structive sleep apnea is characterized by intermittent pauses
in breathing during sleep caused by the obstruction of the
upper airway. The airway is blocked at the level of the tongue
or soft palate, so that air cannot enter the lungs in spite
of continued efforts to breathe. This is typically accompa-
nied by a reduction in blood oxygen saturation and leads
to wakening from sleep in order to breathe. Central sleep
apnea (CSA) is a neurological condition which causes the
loss of all respiratory effort during sleep and is also usu-
ally marked by decreases in blood oxygen saturation. With
CSA, the airway is not necessarily obstructed. Mixed sleep
apnea combines components of both CSA and OSA, where
an initial failure in breathing efforts allows the upper airway
to collapse. Currently, a definitive diagnosis of sleep apnea
is made by counting the number of apnea and hypopnoea
events over a given period of time (e.g., a night’s sleep). Aver-
aging these counts on a per-hour basis leads to commonly
used standards such as the apnea/hypopnoea index (AHI)
or the respiratory disturbance index (RDI). Polysomnog-

raphy is used to measure these indices in clinical practice.
The polysomnogram requires the recording of electroen-
cephalogram, electrooculogram, and electromyogram to de-
termine sleep stages, oronasal airflow, and chest-wall abdom-
inal wall movements for respiratory effort, and oxygen satu-
ration to monitor the effect of respiration and the electro-
cardiogram (ECG) for heart rate monitoring and arrhyth-
mia screening. Typically, a full night’s sleep is observed be-
fore a diagnosis is reached and in some subjects a second
night’s recording is required. Polysomnograms are expen-
sive because they require overnight evaluation in sleep lab-
oratories with dedicated systems and attending personnel.
Due to the cost and relative scarcity of diagnostic sleep lab-
oratories, it is estimated that sleep apnea is widely under-
diagnosed [9]. Hence, techniques which provide a reliable
diagnosis of sleep apnea with fewer and simpler measure-
ments and without the need for a specialized sleep laboratory
may be of benefit. Overnight unattended oximetry and air-
flow measurements have been investigated for this purpose,
but there has also been an interest in using overnight ECG
recordings from Holter monitors to screen for osbtructive
sleep apnea [12]. The possibility of screening for OSA using
ECG is based on (a) the known changes in RR intervals as the
heart speeds up and slows down in response to apnea, and
(b) QRS amplitude changes due to respiratory modulation of
the ECG.

While results based solely on RR interval variability and
the ECG-derived respiratory (EDR) signals are encourag-
ing, we believe that sensitivity and specificity can be further
improved by considering the fine structural changes in the
ECG induced by apnea. Accordingly, we present a method
to identify ECG segments associated with obstructive events
by shape clustering of P-waves. Specifically, we extract the
CISA average of P-waves from apneic and nonapneic seg-
ments from ECG and demonstrate repeatable shape differ-
ences.

The main objective of this study is to confirm, in a more
rigorous manner and using the proposed CISA formalism,
the correlation between the P-wave shape and OSA occur-
rence.

2. THE CISAMETHOD

2.1. Themodel

This paper provides a further theoretical development of the
work first presented in [3]. The novel contribution is that
rather than using the ISA signal as the shape reference signal,
we now jointly estimate a shape reference signal, shape fluc-
tuations, and affine parameters (scale and jitter) for a given
model.

We first define the shape averaging problem, in the same
manner as for our earlier development of the ISA method
[2, 4]. Assume that there are N strictly positive signals xi(t),
each being strictly positive on its support [ai, bi]. The case of
nonpositive definite signals can also be practically dealt with
by the addition of a suitable constant [4]. We assume that the
signals are noise-free. The normalized integral (distribution
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function) can be defined as

Xi(t) =
∫ t
ai xi(u)du
∫ bi
ai xi(u)du

, ∀i = 1, 2, . . . ,N , (1)

which is a monotonically increasing function of t. The dis-
tribution function Xi can typically be linked to a shape refer-
ence signal S̃ through a time-warping function expressed as
ϕ or ψ. Specifically, we can write

Xi = S̃ ◦ ϕi, S̃ = Xi ◦ ψi, ∀i = 1, 2, . . . , N , (2)

where the notation Xi = S̃ ◦ ϕi is shorthand for Xi(t) =
S̃(ϕ(t)). The time-warping (which appears to be a monoton-
ically increasing function) ψi = ϕ−1i links the shape reference
signal and the target signalXi, and represents the fluctuations
(in time and in shape or amplitude) [2]. A useful goal is to
separate intrinsic shape variation from the variations caused
by scale variation and jitter. To reach this objective, we pro-
pose a representation of ϕi as

ϕi = υi ◦ Ai, ψi = A−1i ◦ ωi, ∀i = 1, 2, . . . , N ,

υi(t) = t +mi(t), υ−1i (t) = ωi(t) = t + ni(t), ∀t,
(3)

where Ai(t) = αit + βi, αi ∈ R+, βi ∈ R is an affine func-
tion that accounts for variability in the time dimension (scale
and jitter). The second element υi is a monotonically increas-
ing nonlinear function that represents shape fluctuations on
a constant time support. Its inverse function can be decom-
posed into the identity, and a function ni that represents non-
linear behavior. Both time and shape elements can be con-
sidered as a time-warping function linking two distribution
functions. Therefore, we can rewrite (2) as follows :

Xi = S̃ ◦ υi ◦Ai, S̃ = Xi ◦ A−1i ◦ ωi, ∀i = 1, 2, . . . , N.

(4)

We define the proposed model relating a sample Xi and
the shape reference signal as the corrected integral shape
averaging (CISA) model and the signal shape reference S̃
as the CISA signal in F. To ensure unique existence and
parametrization of the CISA model shape reference, we im-
pose the following conditions (see the appendix for details):

1
N

N∑

i=1

1
αi
= 1, αi ∈ R+,

1
N

N∑

i=1

βi
αi
= 0, ∀i = 1,N ,

ni
(
tinf
) = 0, ni

(
tsup
) = 0,

1
N

N∑

i=1
ni(t) = 0, ∀t, ∀i,

(5)

where tinf and tsup are the limits of the CISA signal time sup-
port. The conditions on the function ni ensure the absence
of compensatory effects between the shape fluctuation term
and the affine term and also the shape averaging property of
the CISA signal. In other words, the shape fluctuation term

cannot change the signal time support when applied. The
condition on the affine parameters permits the mean-time
support recovery. The composition of the two elements of ϕi

can then be interpreted as a shape fluctuation warped with
the affine time function Ai applied on the distribution func-
tion Xi. This modeling is coherent with the reality where am-
plitude and phase variations are mixed in signal generation
processes. Thanks to the integration operation, it is possible
to regroup the two effects into one time function ϕi. To view
the effect of the two components in the signal domain, we
have to perform a time derivation (denoted by ′) on Xi to
obtain

X ′i = αi
(
υ′i ◦ Ai

)(
S̃′ ◦ υi ◦ Ai

)
, ∀i = 1, 2, . . . , N. (6)

Equation (6) shows how shape and time fluctuations of the
original reference shape combine to give overall shape varia-
tion in a resulting signal. We note that the affine time trans-
form acts on both the signal xi and its distribution function
in the same manner. If we express (4) in the inverse domain
F−1, we obtain:

X−1i = ψi ◦ S̃−1 = A−1i ◦ ωi ◦ S̃−1, ∀i = 1, 2, . . . , N. (7)

Replacing in (7) A−1i and ωi with their expression in y ∈
[0, 1], we obtain

X−1i (y) =
{
S̃−1(y) + ni

{
S̃−1(y)

}− βi
}

αi
, ∀i = 1, N. (8)

We can rewrite this last equation in the form

S̃−1(y) = αiX
−1
i (y) + βi − ni

{
S̃−1(y)

}
, ∀i = 1, N. (9)

In the following work, we will use (9) to model the unknown
quantities. In fact, the time parameters, αi and βi, provide
a linear regression between the reference shape signal and
an arbitrary X−1i , with the additional nonparametric term
ni{S̃−1(y)} representing the shape fluctuation. In the next
section, we present an estimationmethod that uses this equa-
tion to jointly model all the unknowns. Theoretical presen-
tation of the CISA model dealt with continuous supported
signals but in applications the mathematical expressions will
be transferred to discrete domain, in the following sections,
without any particular restrictions.

2.2. Joint estimation of CISAmodel parameters
and functions

We use (9) for estimating the model parameters and func-
tions. For this purpose, we rewrite it including an additional
noise term εi(y) of the form

μ(y) = αizi(y) + βi +wi(y) + εi(y),

∀i = 1, 2, . . . ,N , y ∈ [0, 1],
(10)

where μ = S̃−1 is defined as a CISA signal in F−1, zi = X−1i ,
and wi = −ni ◦ S̃−1. We assume that the noise sequence is a
zero-mean i.i.d process with Gaussian distribution. We pro-
pose to estimate the model unknowns by using the “Pro-
crustes” method adapted to the signal registration problem
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[1, 13, 14]. This consists of forcing a sample of signals to fit
a signal reference while minimizing a specific cost function.
The method is iterative and generally uses the conventional
mean signal as a reference in the initialization step. There-
after, the reference signal is updated until convergence. This
procedure is adapted to our case where the warping opera-
tion is done by amplitude correction since it is performed in
the inverse domain F−1. Indeed, the principal advantage of
working with (10) rather than (4) is the fact that the model
unknowns (αi,βi,wi,μ) appear linearly. Using (10), we pro-
pose to estimate the CISA signal and the other terms by min-
imizing the following cost function defined as the average in-
tegrated square error (AISE):

min
μ,(αi,βi),wi

AISEN

= min

{
1
N

N∑

i=1

∫ 1

0

{
μ(y)−[αizi(y)+βi+wi(y)

]}2
dy

}

,

(11)

where the term αizi(y) + βi corresponds to the registered sig-
nals under an affine transform only and wi(y) is the shape
difference term that remains to ensure the strict equality to
the CISA signal. From an implementation point of view, we
will often be dealing with discretely sampled sequences rather
than functions, in which case, we can assume that the model
functions are sampled uniformly on a linear grid defined
in [1,M] (corresponding to [0, 1]). In such a case, we can
rewrite the cost function as

AISEN ,M = 1
N

N∑

i=1

M∑

j=1

{
μ( j)− [αizi( j) + βi +wi( j)

]}2
.

(12)

In general, this is a complex nonlinear optimization prob-
lem, with a large number of free parameters and functions
to optimize over. For example, in (12) there are a total of
M + 2N + MN free parameters. To reduce this high degree
of freedom, we will impose several constraints on the model
unknowns. We propose to minimize the proposed cost func-
tion iteratively following a multistage algorithm which will
include estimation of the time parameters, shape fluctuation
functions, and the CISA signal. For the sake of clarity, the
iteration index is omitted. The algorithm steps are

Step 1 (initialization).

– μ̂ = zi (initialization with the ISA signal).
– ŵi( j) = 0, i = 1, 2, . . . ,N , j = 1, 2, . . . ,M.

Step 2 (time parameters estimation). The time parameters αi
and βi are estimated for each value of i by least-square min-
imisation of a linear regression. The resulting expressions are

α̂i = N
(∑

μ̂zi −
∑
ŵizi

)
+
∑
zi
(∑

ŵi −
∑
μ̂
)

N
∑
z2i −

(∑
zi
)2 ,

β̂i =
∑
z2i
(∑

μ̂−∑ ŵi
)−∑ zi

(∑
ŵizi −

∑
μ̂zi
)

N
∑
z2i −

(∑
zi
)2 ,

(13)

where the sums are taken over j = 1 to M and μ̂ and ŵi are
the estimated signal shape reference and shape fluctuation
function in the preceding iteration, respectively.We apply the
constraint on the affine functions ((1/N)

∑
A−1i (t) = t) by

the following procedure:

Ã−1i = Â−1i − Â−1i + I, (14)

where the function I is the identity function, Â−1i =
1/N

∑N
i=1 Â

−1
i , and Â−1i (t) = (t − β̂i)/α̂i is the estimated in-

verse affine function. Following this step, we can define the
affine-registered versions gi of the functions zi with the ex-
pression ĝi = Ãi ◦ zi computed by linear interpolation.

Step 3 (shape fluctuation functions estimation). In order to
estimate the shape fluctuation functions wi, we propose to
use the following expression:

w̃i = μ̂− ĝi. (15)

To ensure uniqueness of the model, it is necessary to impose
some restrictions on w̃i. The first one ensures that w̃i begins
and finishes at zero. Practically, this is done by removing the
baseline ûi estimated using the two points [y1, yM]. We sum-
marize the operation with the following equation:

˜̃wi = w̃i − ûi ◦ zi. (16)

The second one is the equivalent condition in F−1 of the con-
straint on ni defined in (4) which forces the shape fluctuation
functions to be averaged on the CISA signal

ŵi = ˜̃wi − ˜̃wi, (17)

where the term ˜̃wi is the mean of the estimated functions ˜̃wi.

Step 4 (CISA signal estimation). In order to estimate μ, we
rewrite (12) in the following matrix form:

˘AISEN ,M = 1
N

N∑

i=1

[
μ− ĝi − ŵi

]T[
μ− ĝi − ŵi

]
, (18)

where μ = [μ1μ2 · · ·μM]T , ĝi = [ĝi,1ĝi,2 · · · ĝi,M]T and ŵi =
[ŵi,1ŵi,2 · · · ŵi,M]T for convenience. After partial differentia-
tion with respect to μ and setting equal to zero, (∂ ˘AISEN ,M \
∂μ = 0), we obtain the following estimate for the value of μ
which minimizes the cost function (it is a minimum by in-
spection):

μ̂ = 1
N

N∑

i=1
ĝi +

1
N

N∑

i=1
ŵi. (19)

We know that the last term of the equation is equal to zero
(17), since this is one of the imposed constraints for model
uniqueness. Hence we obtain the equation

μ̂ = 1
N

N∑

i=1
ĝi. (20)
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For each iteration, the estimator of μ is the mean of the esti-
mated registered signals ĝi.

Step 5 (algorithm convergence testing). We compute the cost
function defined in (18) for each iteration. If the function
converges to a stable minimum (subject to some numerical
assessment), we stop iterating, otherwise we return to Step 2.

Following convergence, we obtain the CISA signal ex-
pression in R+ by

̂̃s = [μ̂−1]′, (21)

where the [·]′ operator expresses differentiation with respect
to time. For each i, we can also obtain the estimated shape
fluctuation function n̂i in the time domain using the follow-
ing expression:

n̂i = −ŵi ◦ μ̂−1. (22)

We can also compute the registered signals inR+ by inversion
and differentiation of ĝi:

x̌i =
[
ĝ −1i

]′
, (23)

where we note that the obtained signals are normalized in
area.

2.3. Simulation

In order to demonstrate that the proposed algorithm obtains
good estimates of the time and shape fluctuation and the
CISA signal, we conduct numerical simulations in which all
these quantities are known in generating the set of model sig-
nals. We simulated N = 10 strictly positive signals that em-
ulate ECG P-waves in shape, and are noiseless. The signals
are defined in the interval T ∈ [0, 9] on M = 450 points.
We generate two families of shape fluctuation functions mi

corresponding to positive and negative Gaussian functions
respectively. The scale and jitter parameters follow a linear
progression. The simulated data obey the CISA model pre-
sented in Section 3.1. In Figure 1, we provide the simulated
signals, the CISA signal, affine functions Ai, and shape fluc-
tuation functions ni. The jitter variation is generated accord-
ing to βi = 0.1(i− (N − 1)/2) and the scale variation is given
by αi = 0.03(i− (N − 1)/2) + 1.

We estimate the CISA model parameters and functions
from the simulated signals by applying the procedure de-
fined in Section 2.2 after the integration and inversion op-
erations to obtain the X−1i = zi. The convergence criterion is
fixed to Δ ˘AISE = 10−5. The M values of y are equally sam-
pled in the interval [0.005, 0.995]. To apply the constraint of
(16), we use the two points [y2, yM−1] corresponding, re-
spectively, to the beginning and the end of the X−1i = zi
signals. The algorithm converges after 8 iterations giving
the results presented in Figure 2. We observe good estima-
tion of the CISA model with a final registration cost equal
to ˘AISE = 3.22 × 10−7. We also compute the RMS error
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Figure 1: Simulation of signals using the CISA model.

between the CISA signal and its estimate and the ISA sig-
nal in F−1, respectively, as eRMS,μ̂ = 3.2× 10−4 and eRMS,ISA =
5.77 × 10−2. In addition, we calculated the normalized RMS
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error for the time parameter estimation computed as fol-

lows: eRMS,α̂i =
√
(1/N)

∑N
i=1(α̂i − αi)2/α2i = 8.59 × 10−4 and

eRMS,β̂i
=
√
(1/N)

∑N
i=1(β̂i − βi)2/β2i = 2.27 × 10−2. We can

observe in Figure 2 the difference between the ISA and CISA
signals. Although there are differences between the CISA and
ISA methods, the ISA remains a good choice for the initial-
ization procedure, and appears heuristically to place us close
to the minimum of the cost function.

Moreover, the difference between signal reference shapes
obtained using CISA and ISA methods can be explained the-
oretically. The expression for the ISA signal in F−1 is given by
[2]

X̃−1 = 1
N

N∑

i=1
X−1i . (24)

If we replace X−1i by its expression in function of the CISA
signal, we obtain

X̃−1 = 1
N

N∑

i=1

(
A−1i ◦ ωi

) ◦ S̃−1. (25)

We replace also A−1i and ωi by their expression and apply the
conditions 1/N

∑N
i=1 βi/αi = 0 and 1/N

∑N
i=1 1/αi = 1 to fi-

nally obtain

X̃−1(y) = S̃−1(y) +
1
N

N∑

i=1

(
ni
{
S̃−1(y)

}

αi

)

, y ∈ [0, 1].

(26)

From the equation, we explain the difference between ISA
and CISA signals by the bias introduced by the last term of
(26). In fact, the shape fluctuation functions are weighted by
the scale parameters. Two important remarks can be made in
relation to this point. First, if there is no shape fluctuation
among signals, ISA and CISA signals are superimposed. Sec-
ond, if there is only a jitter fluctuation, the two signals are
also superimposed. Otherwise, the two signals are different
and the CISA signal is the one that really averages the shapes
on an average time support without additional time fluctua-
tion contamination.

2.4. Shape clustering using CISA

Shape clustering provides a classification of signals based on
their shape. In order to provide a useful classification, we
need first to define the concept of shape equality. According
to [15], the signals x and y are said to be “equal in shape” if
and only if

y(t) = ax
(
(t − β)

α

)
+ b. (27)

Since the proposed method is based on signal area registra-
tion, we assume that b = 0 for all signals or in other words,
the offset term is removed before CISA calculation. Further-
more, to describe the shape statistics of a sample of signals
while respecting the shape equality condition, one needs to
define [3]:

(i) a distance d between signals which is in fact a distance
between the signal shapes. A natural consequence of
this is that if we take two signals x and y, then d(x, y) =
0 ⇔ x and y are “the same shape.” Thus, this shape
distance is invariant to affine transforms,

(ii) a sample mean that is intrinsically invariant in shape
to the affine transforms described in (27), and hence
a mean which provides a realistic average shape signal
[3]. In addition, this mean shape signal must have the
property of being a “shape gravity center” with respect
to the shape distance d. We can easily demonstrate that
the CISA signal coupled with the CISA distance has
such properties. In fact, if we define the CISA distance
between two signals x1 and x2 that belong to a sample
of N signals as

dCISA
(
x1, x2

) =
√∫ 1

0

(
A1
{
X−11 (y)

}− A2
{
X−12 (y)

})2
dy,

(28)

then the CISA distance can be interpreted as the
L2[0, 1] norm in F−1 between the two registered and
area-normalized signals. It can also be expressed as

dCISA
(
x1, x2

) =
√∫ 1

0

(
n1
{
S̃−1(y)

}− n2
{
S̃−1(y)

})2
dy.

(29)

In this last expression, the CISA distance is expressed as a
function of the shape fluctuation referred to the CISA signal.
This quantity does represent a true shape distance, as demon-
strated by the following. Since the CISA signal is the mean of
the registered signals Ai ◦ X−1i in F−1, we can write

S̃−1 = argmin
u∈R

N∑

i=1
d2
(
u,Ai ◦ X−1i

) = 1
N

N∑

i=1
Ai ◦ X−1i . (30)

This last equation expresses the shape variance minimiza-
tion property of the CISA signal. Indeed, the CISA sig-
nal is a “shape gravity center.” As shown above, both the
CISA signal and distance by definition are invariant to affine
transforms.

To perform shape clustering, we can use the well-known
k-means approach [16]. The method consists of separating
signals into classes (clusters) that maximize interclass vari-
ance and minimize intraclass variance. It can alternatively
be expressed as a global minimization problem in which the
quantity to minimize is the sum of distances to the nearest
neighbor. Classically, the method employs the conventional
mean and the L2 distance in R as class center and clustering
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Figure 2: Estimation of the CISA model from the simulated data.
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Figure 3: The final CISA class centers from the simulated data.

distance, respectively. In the presence of time fluctuations,
these tools give bad clustering performances. To deal with the
time fluctuations, we propose to use the k-means algorithm
to cluster signal shapes in F−1, by using the CISA signal and
distance as class center and distance, respectively. This has al-
ready been done for a biomedical application using the ISA
approach [6, 7] using a similarity criterion rather than a dis-
tance. However, as mentioned previously, the ISA center does
not necessarily possess a gravity center property.

To illustrate the utility of the CISA method, we first pro-
pose to apply it for clustering the signals of the preceding
simulation example into two classes. Firstly, all the signals
are registered to eliminate affine fluctuation. Then, the k-
means algorithm is launched with random class center ini-
tialization chosen from among the x̌i signals. The CISA sig-
nal is then computed until convergence for each class and
a discrete version of CISA distance is used. The procedure
is repeated L times. The final clustering solution is selected
based on class separation criterion maximization and solu-
tion redundancy. The separation criterion represents the ra-
tio between the final interclass center distance and the sum of
both intraclass distance standard deviations. A ratio greater
than 1 indicates good class separation. For our example, the
10 signals are well classified and the final class centers can be
seen in Figure 3. The clustering criterion obtained is equal
to R = 5.51, indicating a high shape separation between the
two classes. This validates that the CISA methodology can be
used to provide accurate classification of signals based solely
on shape differences. Indeed, the use of this parameter re-
spects the unsupervised nature of the classification (no use
of a priori information). Other criteria should be designed
to measure classification performances of a particular appli-
cation. Practically, affiliation of the obtained classes to the
healthy and pathological ones should be done using some
a priori information or specific characteristics of the class
(shape dispersion). In our case study, we will assume that the
classification done by the expert is perfect. So, the class af-
filiation will be done according to signals which lie mostly
within their correct class.

3. OBSTRUCTIVE SLEEP APNEA DETECTION

As discussed in the introduction, obstructive sleep apnea
(OSA) is a common sleep disorder with many physiological
consequences, such as increased risk of cardiovascular dis-
ease, hypertension, and daytime sleepiness. Previously tech-
niques have been developed to recognize periods of sleep
apnea from the ECG by using RR interval variability, and
an ECG-derived respiratory signal. However, no previous
approaches have considered morphological changes of the
ECG due to OSA. Such changes, especially for the P-wave
or T-wave, could have an underlying physiological plausibil-
ity as ischemia due to oxygen desaturation could alter the
electrical activation of the atria and ventricles [17, 18]. In
a recent study, we showed a strong correlation between P-
wave shape changes and the occurrence of OSA events. How-
ever, this initial approach used an improvement of the ISA
method (with consequent incomplete theoretical foundation
as a shape clustering technique) and presented analysis on a
small subset of signals. In this current work, we use the CISA
methodology on a larger set of signals to provide a robust
classification of ECG segments.

3.1. P-wave shape clustering

In this section, we discuss results on the use of the CISA sig-
nal and distance coupled with a k-means algorithm for de-
veloping an unsupervised shape classifier. The method is ap-
plied to perform a clustering [8] on P-wave shapes extracted
from 163 ECG segments sampled at 128Hz. These segments
are each 2 minutes in length and were acquired from 7 sub-
jects who suffer from OSA. For these segments, 95 are con-
sidered as normal and 68 are centered on a discrete episode
of OSA of 10 second duration or longer. The ECG segments
were extracted from complete polysomnogram recordings
carried out at St. Vincent’s University Hospital, Dublin, using
the Jaeger-Toennies polysomnogram system.

The epoch labeling was obtained from the polysomno-
gram analysis by an expert. For each segment, the P-waves
were segmented according to the QRS complex, baseline cor-
rected after upsampling (by a factor of five) and spline fil-
tering. The artifacts were also removed by amplitude thresh-
old selection as follows: for each segment, a shape homo-
geneous P-wave set was detected by shape analysis. In fact,
the CISA procedure was performed for one iteration for each
segment. For this purpose, discrete versions of both the CISA
signal and distance expressions were used. After that, sig-
nals within one standard deviation of CISA distance from the
CISAmeanwere selected. These signals were averaged to pro-
vide us with the overall segment shape prototype. This proce-
dure avoids shape contamination of the segment representa-
tive signal by noisy signals (e.g., the P-wave corresponding to
a premature atrial contraction or normal P-waves inside an
apneic segment). For each subject, the segment prototypes
were then registered following the CISA procedure after ade-
quate windowing procedure. The convergence criterion was
fixed to Δ ˘AISE = 10−5 and the inverse distribution inter-
val was set to y = [0.02, 0.96]. Then, a two-class (normal,
apnea) clustering was done on the segment prototypes for
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Table 1: CISA shape clustering results.

Subject No. of normal segments No. of apnea segments Sens. (%) Spec. (%) R

1 15 11 91 93 1.95

2 10 8 87 80 1.94

3 15 10 70 73 0.74

4 10 10 60 100 2.83

5 15 10 90 80 1.34

6 15 10 80 86 1.35

7 15 9 88 73 1.31

Average — — 80.9 83.6 —

L = 15 trials following the procedure described in Section 2.3
for each subjects So ideally for a single subject represented
(e.g.) with ten “normal” segments and twelve “apnea” seg-
ments we hope to achieve a clustering into two classes which
have 10 and 12 members, respectively, each belonging cor-
rectly to the classes “normal” and “apnea.” For the 7 sub-
jects studied in this paper, the results are shown in Table 1.
For each subject, the number of normal and apneic segments
and the class separation criterion R value are indicated. These
segment numbers correspond to the classification done by
the expert and assumed to be perfect. In Figure 4, we show
the original and registered P-wave prototypes using the es-
timated affine parameters for the recordings from Subject 2.
We can also observe the final CISA class centers obtained by
the approach. We can observe a significant shape difference
between the two signals. For most subjects, the class separa-
tion is good according to the R value. As can be observed,
the proposed method reached an overall sensitivity of 80.9 %
and specificity of 83.6 % and maximum sensitivity of 91 %
and maximum specificity of 93 %. This result confirms the
earlier results obtained on a smaller database in [8], the exis-
tence of a strong correlation between P-wave shape variation
and the occurrence of OSA.

3.2. Relation between time variations of
the P-wave and apnea

In addition to shape fluctuation estimation, the CISA
method also simultaneously permits an estimation of the
affine time parameters (scale and jitter) used in the realign-
ment procedure (see Section 2.2). It is plausible that changes
in these parameters can be linked to OSA occurrence and
also be used to recognize apnea episodes. Both scale and jitter
were estimated from the segment prototypes of each subject
following the estimation procedure described in Section 2.2.
We then tried to find some correlation (by true classification)
between the variation of these parameters and the labeling
of the corresponding segments (normal or apneic) for each
subject done by the expert. For two subjects, the scale param-
eter variation dominated and showed a clear increase in the
P-wave duration during OSA. A scale threshold αthr = 1 was
used which maximizes the classification performance (based
on maximizing of the sum of specificity and sensitivity) for
the two classes (normal and apnea) of the concerned seg-
ment prototypes based solely on the scale estimated parame-

ter. This value corresponds to the reference scale of the CISA
signal. Indeed, scale and jitter parameters are relative values
referring to the CISA signal. The classification was based on
a simple threshold decision rule. If the scale parameter αi is
greater than one (signal dilation), this means that the corre-
sponding segment is apneic; otherwise it is classified as nor-
mal. The results for this analysis are shown in Table 2. In ad-
dition, for two other subjects, the effects of apnea were to
provide combined jitter and scale variation. For the classifi-
cation task, therefore, we used a parameter that mixes both
scale and jitter γi = βi/αi. For these two subjects, we tried to
find a threshold γthr that maximizes the classification perfor-
mance. For a subject, if the parameter γi is greater than γthr,
the signal is considered as apneic, otherwise it is normal. The
results obtained are shown on Table 3. In the three remain-
ing subjects, time parameters variation was not significantly
correlated to OSA occurrence. We conclude, therefore, that
apnea episodes can affect both the time duration and timing
of the P-wave (PR interval) but in a subject-specific fashion.

4. CONCLUSIONS

In this paper, we have presented a novel method, corrected
integral shape averaging (CISA), for signal realignment and
shape fluctuation estimation. The method is based on a sig-
nal model that includes both shape and time support varia-
tion of the signal distribution functions. The CISA approach
provides us with a new mean shape signal, the CISA signal,
that possesses interesting mathematical properties for signal
shape characterization. In fact, coupled to the CISA distance,
the CISA signal minimizes shape fluctuation variance over a
set of signals to be averaged. In addition, it is not contami-
nated by affine time fluctuations as for a related method us-
ing integral shape averaging. These useful properties make
the CISA signal a good candidate for shape clustering appli-
cations. The CISAmodel contains a number of unknown pa-
rameters relating to time and shape variation, and we have
described an iterative estimation procedure for obtaining the
values of these parameters. The performance of the CISA
procedure is illustrated using a controlled numerical simu-
lation, and it can be shown that it clearly classified synthetic
signals into their correct classes despite the presence of time
fluctuations. The method was then applied to evaluate the
benefits of using P-wave shape to recognize obstructive sleep
apnea in ECG recordings. Using the k-means algorithm, the
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(c) The final CISA class centers (normal –, apneic – –)

Figure 4: Results of CISA averaging technique applied to the P-wave
segments measured in Subject 2.

method performed a clustering operation on a database of
163 signals. The classification results confirmed, in a more

rigorous fashion, the important correlation linking P-wave
shape and OSA episodes occurrence described in a previous
work. A true classification procedure (based on the knowl-
edge of the perfect classification) using the time parameters
(scale and jitter) estimated by the CISAmethod was also pro-
posed and applied on some subjects. The obtained results
showed also a time alteration of the P-wave induced by OSA
occurrence in a patient-specific manner.

A limitation of the study was the relatively low sam-
pling rate for ECG, and we expect that future studies using
ECG measurements with higher sampling rate would im-
prove the shape analysis performances. Since the objective
of the paper was the rigorous confirmation of the correlation
between shape changes and apnea occurrence, the following
step would be the design of an apnea “detector” using shape
information. This device should use the P-wave shape varia-
tion also combined with the existing RR interval variability
and EDR techniques to improve overall classification perfor-
mance. However, the proposed CISA approach could also be
used to analyze other bioelectrical signals such as other ECG
components or brain-evoked potentials.

In conclusion, the CISAmethod and its application high-
light the potential of signal shape analysis by time-warping
estimation for signal description. In fact, both minimizing
the signal parametrization and functional modeling permit
a direct access to signal shape information and implicitly
to generation process properties. In biomedical applications,
dealing with shape and time warping may assist in providing
plausible physiological models for signal generation.

APPENDIX

CISAMODEL IDENTIFIABILITY

In this section, we prove the identifiability of the proposed
CISA model. For this purpose, we suppose that there exists
two different solutions μ and μ′, that is, zi signals are linked to
μ and μ′, respectively, by the following CISAmodel equations
without noise in F−1 :

μ(y) = αizi(y) + βi +wi(y), ∀i = 1 : N , y ∈ [0, 1],

μ′(y) = α′i zi(y) + β′i +w′i (y), ∀i = 1 : N , y ∈ [0, 1].
(A.1)

If we replace zi expression from the first equation in the sec-
ond one

μ′(y) = α′i
αi
μ(y) +

[
β′i −

βiα
′
i

αi

]
+
[
w′i (y)−

α′i
αi
wi(y)

]
.

(A.2)

We rewrite the equation to the form

μ′(y) = Aiμ(y) + Bi + gi(y), ∀i = 1 : N. (A.3)

The first term of the equation being independent of i, we can
write for i = k and i = l

μ′(y) = Akμ(y) + Bk + gk(y), y ∈ [0, 1]

μ′(y) = Alμ(y) + Bl + gl(y), y ∈ [0, 1].
(A.4)
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Table 2: Classification based on scale parameter.

Subject No. of normal segments No. of apnea segments Sens. (%) Spec. (%) αthr

1 15 11 82 73 1

2 10 8 87 80 1

Average — — 84.5 76.5 —

Table 3: Classification based on both jitter and scale parameters.

Subject No. of normal segments No. of apnea segments Sens. (%) Spec. (%) γthr (ms)

4 10 10 80 80 0

7 15 9 88 73 0.8

Average — — 84 76.5 —

We substract the second equation from the first

(
Ak − Al

)
μ(y) +

(
Bk − Bl

)
,

+
(
gk(y)− gl(y)

) = 0, ∀y ∈ [0, 1].
(A.5)

Then we apply the conditions gi(0) = 0 and gi(1) = 0 (from
conditions on wi and w′i ) for the two values y = 0 and y = 1
where μ(0) = tinf and μ(1) = tsup and obtain

(
Ak − Al

)
tinf +

(
Bk − Bl

) = 0
(
Ak − Al

)
tsup +

(
Bk − Bl

) = 0.
(A.6)

From these two equations, we can deduce that Ak = Al = A
and Bk = Bl = B since tinf �= tsup. In addition, we can add
after replacing these last parameters in (A.5) that gk = gl = g
for all y. Finally, we rewrite (A.3) in the form

μ′(y) = Aμ(y) + B + g(y), (A.7)

where A = α′i /αi, B = β′i − βiα
′
i /αi, and g(y) = w′i (y) −

(α′i /αi)wi(y) are quantities independent of indexed i.
Computing the mean of A/α′i and applying the condi-

tions on the scale parameters in (5) giveA = (1/N
∑N

i=1 1/αi)/
(1/N

∑N
i=1 1/α

′
i ) = 1. This means that αi = α′i for all i.

Computing the mean of B/α′i and applying the con-
ditions on both scale and jitter parameters in (5) give
B/N

∑N
i=1 1/α

′
i = [1/N

∑N
i=1 β

′
i /α

′
i−1/N

∑N
i=1 βi/αi] = 0. Since

A = 1 and B = 0, we obtain βi = β′i from the expression of B
for all i.

Computing the mean of g and applying the conditions
on ni in (5) (which are the same for wi and w′i ) give g(y) =
[1/N

∑N
i=1w

′
i (y) − A/N

∑N
i=1wi(y)] = 0 for all y ∈ [0, 1].

This means that wi(y) = w′i (y) for all y ∈ [0, 1] and i.
Finally, if we replace A, B, and g by their value, respec-

tively, we obtain μ(y) = μ′(y) for all y ∈ [0, 1] which com-
pletes the proof. In fact, the CISA model is identifiable.
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