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The possibility of improving the spatial resolution of diffuse optical tomograms reconstructed by the photon average trajectories
(PAT) method is substantiated. The PAT method recently presented by us is based on a concept of an average statistical tra-
jectory for transfer of light energy, the photon average trajectory (PAT). The inverse problem of diffuse optical tomography is
reduced to a solution of an integral equation with integration along a conditional PAT. As a result, the conventional algorithms
of projection computed tomography can be used for fast reconstruction of diffuse optical images. The shortcoming of the PAT
method is that it reconstructs the images blurred due to averaging over spatial distributions of photons which form the signal
measured by the receiver. To improve the resolution, we apply a spatially variant blur model based on an interpolation of the spa-
tially invariant point spread functions simulated for the different small subregions of the image domain. Two iterative algorithms
for solving a system of linear algebraic equations, the conjugate gradient algorithm for least squares problem and the modi-
fied residual norm steepest descent algorithm, are used for deblurring. It is shown that a 27% gain in spatial resolution can be
obtained.
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1. INTRODUCTION

The main problem of medical diffuse optical tomography
(DOT) is the low spatial resolution due tomultiple light scat-
tering, which causes photons to propagate diffusely in a tis-
sue. To reconstruct diffuse optical tomograms with best res-
olution, “well-designed” methods such as Newton-like and
gradient-like ones [1–3], which use exact forward models,
are generally applied. These methods belong to a class of
a so-called “multistep” techniques, as the weighting matrix
of equation system is updated on each iteration of the so-
lution approximation. They require computation time not
less than a few minutes for 2D image reconstruction and
consequently are inapplicable for real-time medical explo-
rations. Over the past few years, we have presented a new
DOT method [4–16] based on a concept of an average sta-
tistical trajectory for transfer of light energy, the photon av-
erage trajectory (PAT). The essence of this concept is in rep-

resenting the process of the photon energy transport from a
source to a receiver in a form admitting probabilistic inter-
pretation. By this method, the inverse problem of DOT is re-
duced to a solution of an integral equation with integration
along a conditional PAT that is curvilinear in the common
case. As a result, the PAT method can be implemented as a
“one-step” technique with the use of fast algorithms of pro-
jection computed tomography and can considerably save the
computation time. Our experience shows that not only the
algebraic techniques [11, 16] but also the real-time filtered
backprojection algorithm (FBP) [12–15] can be successfully
applied to reconstruct the internal region of the object, where
the PATs tend to the straight line. The shortcoming of the PAT
method is that it reconstructs the tomograms blurred due to
averaging over spatial distributions of photons which form
the signal measured by the receiver. To improve the spatial
resolution, we have tried to use FBP with special filtration of
shadows (Vainberg [12–15] or hybrid Vainberg-Butterworth
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filtration [15]). This algorithm gives a 20%-gain in resolu-
tion but does not correctly restore the inhomogeneity profile
as the averaging kernel is not taken into account. A profile
is reconstructed with a typical incline distinctly visible for
any inhomogeneity remote well away from the object center.
In present paper, we consider an alternative way of enhanc-
ing the resolution, based on the post-reconstruction restora-
tion of the diffuse optical tomograms. We show that the blur
due to averaging over distributions of diffusive photons is de-
scribed with the point spread function (PSF) strongly variant
against spatial shift. Therefore, a spatially variant blur model
should be applied for PAT image restoration. We assume the
blur model recently developed by Professor Nagy and his col-
leagues [17–19]. It is described by a system of linear algebraic
equations and based on the assumption that in small sub-
regions of the image domain, the PSF is essentially spatially
invariant. To form the matrix modeling the blurring oper-
ation, the invariant PSFs corresponding to subregions are
sewn together with an interpolation approach. Then stan-
dard iterative algorithms for solving a system of linear alge-
braic equations are used to calculate the true image. To study
the efficiency of the blur model assumed, a numerical exper-
iment on reconstruction of circular scattering objects with
absorbing inhomogeneities is conducted, the individual PSFs
are simulated for different subregions of the image domain,
the weighting matrix that models the blurring operation is
formed, and two well-known iterative algorithms for solving
a system of linear algebraic equations are applied to restore
the reconstructed blurred tomograms. These algorithms are
the conjugate gradient algorithm for least squares problem
(CGLS) [20] and the modified residual norm steepest de-
scent algorithm (MRNSD) [21, 22].We show below that both
of them allow a good gain in spatial resolution to be achieved
without visible distortions of the image profile. In number,
this gain is estimated by means of the modulation transfer
function (MTF) and seems to be greater than that obtained
by using FBP with Vainberg filtration.

2. RECONSTRUCTIONOF BLURRED TOMOGRAMS

2.1. Fundamental equation of the PATmethod

The PAT method is based on a probabilistic interpretation
of the photon migration process with description by means
of statistical characteristics. The introduction of such char-
acteristics as the PAT and the average velocity of the pho-
ton movement allows a relative shadow caused by optical in-
homogeneities to be connected with a function of the ob-
ject inhomogeneity distribution through a curvilinear inte-
gral along the PAT, analogue of the Radon transform.

Let the photons migrate in a strongly scattering media
from a source space-time point (0, 0) to a receiver space-time
point (r, t). A relative contribution of photons located at an
intermediate space-time point (r1, τ) to the value of photon
density at (r, t) can be characterized by a conditional proba-
bility density [4–8]:
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) = P
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r1, τ

)
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r− r1, t − τ

)

P(r, t)
, (1)

where P(r, t) is a probability density of the photon migra-
tion from (0, 0) to (r, t). If the photon density ϕ(r, t) satisfies
the time-dependent diffusion equation for a volume V with
a limited piecewise-closed smooth surface for an instanta-
neous point source and the Robin boundary condition [23],
the probability density P(r1, τ; r, t) is expressed as [11]
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where G(r, t) is the Green function. The first statistical mo-
ment

R(r, t, τ) =
∫

V
r1P
(
r1, τ; r, t

)
d3r1, (3)

as a function of time τ, describes the trajectory of the mass
center of the photon distribution, namely, the PAT. Corre-
spondingly, the velocity of the mass center is given by the
expression

v(τ) =
∣
∣
∣∣
dR(τ)
dτ

∣
∣
∣∣. (4)

It is seen from (2)–(4) that characteristics (3) and (4) can
be analytically calculated only for objects of quite simple
forms. For complex geometries, some approximations must
be made.

Let us define a relative shadow g as a logarithm of the
relation between the value of the signal intensity I , caused
by presence of the inhomogeneities and the value of unper-
turbed signal intensity I0, measured at the object surface at
the time moment t. Lyubimov et al. [8, 10, 11] have shown
that for I0 − I � I0, when the perturbation theory may be
used, the relative shadow can be expressed in the form of the
fundamental equation of the PAT method for the case of the
time-domain measurement technique as follows:

g(L, t) =
∫

L

c

n0ν(l)

(∫

V
S
(
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)
P
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)
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)
dl, (5)

where c is a light velocity in vacuum, n0 is a refraction index
of a homogeneous media, L is a full PAT from a source to a
receiver, l is a path traversed by the mass center of the photon
distribution along a PAT over the time τ, ν(l) is a velocity of
the mass center as a function of path l, and S(r, t) is an inho-
mogeneity distribution function. In the general case, func-
tion S(r, t) describes local disturbances δD(r), δμa(r), and
δn(r) of the diffusion coefficient D(r), the absorption coef-
ficient μa(r), and the refraction index n(r), correspondingly,
and is defined by the expression [4, 5]

S(r, t) = μa0δD(r)
D0

− δμa(r)

+
(
n0δD(r)
cD0

− δn(r)
c

)
∂

∂t
lnϕ0(r, t).

(6)

Here, the subscript “0” corresponds to a homogeneous me-
dia. The principal possibility to separate the distributions of
optical parameters is substantiated in [16]. It is based on a
simplification of (6) and shadow measurements for different
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values of time-gating delay t. In the present paper, without
loss of generality, we consider a practically important case of
absorbing inhomogeneity given by the absorption coefficient
μa(r) = μa0 + δμa(r), when δD(r) = 0 and δn(r) = 0.

2.2. Implementation of backprojection algorithm

Using the approaches of projection tomography, the funda-
mental equation of the PAT method may be directly inverted
in relation to the function

〈
S(r, t)

〉 =
∫

V
S
(
r1, τ

)
P
(
r1, τ; r, t

)
d3r1, (7)

namely, the function blurred due to averaging over the spatial
distribution of photons, which form the signal measured by
the receiver at the moment t. The FBP implementation used
by us for reconstruction of function (7) is based on a sim-
ple approximation of a curvilinear PAT and a velocity of the
mass center of the photon distribution. In [8, 9], Lyubimov
et al. have shown that for most object geometries, wherein
a source and a receiver, lie on the boundary of the object,
a three-segment polygonal line can be used to approximate a
curvilinear PAT. The first and the end segments of this broken
line are normal to the object boundary and equal in length,
and the middle segment connects their ends.

The velocity of the photon distribution mass center is in-
versely proportional to the distance from the object bound-
ary when moving the center along the outer segments of
the broken PAT, and takes the stationary value when mov-
ing along the middle segment. Let us consider a common 2D
geometry for DOT, when sources and receivers lie around the
boundary of a circular object at equal step angles. Our inves-
tigations [11–15] show that by choosing the optimal values
of the time-gating delay of receivers, the length of the mid-
dle segment of the broken PAT may be greatly longer than
the first and the end ones. Moreover, the time-gating delays
for different source-receiver pairs can be chosen so that the
lengths of the outer segments for all broken-line approxi-
mations of the PATs are equal. Thus, we can put an exten-
sive internal region of the object, corresponding to the mid-
dle segments of the broken PATs. Such region is denoted in
Figure 1 by an internal circle. For geometry chosen, each PAT
is defined in the space by the angular locations γs and γd
of source S and receiver D, correspondingly (Figure 1). As
initial conditions for the inverse problem, the relative shad-
ows g(γs, γd) induced by inhomogeneities are known for each
source-receiver pair. Let the inhomogeneities be localized in
the region corresponding to the middle segments of the bro-
ken PATs. In this case the measurement results g(γs, γd) in
the first-order approximation can be defined by line integrals
along the middle segments of the PATs (Figure 1). The rela-
tive shadows g(γs, γd) may be approximately considered as
the fan beam projections of straight rays transmitted from
point sources to point receivers, each extrapolated to the in-
ternal circle (Figure 1). As it is clear from (6), in the case of
absorbing inhomogeneity, the function S(r, t) can be defined
as

S(r, t) = −δμa(r). (8)
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Figure 1: The geometry of the image reconstruction problem.

Taking into account that inside the object the velocity v(l)
is approximated by a constant, we can modify the fan beam
projection data g(γs, γd) so that only the function 〈δμa(r)〉
remains under integral sign in (5). Thus, in the case of the
absorbing inhomogeneity, the inverse problem of DOT re-
duces to solution of the following integral equation:

g′
(
γs, γd

) =
∫

Lav

〈
δμa(r)

〉
dl, (9)

where g′(γs, γd) is the modified projection data g(γs, γd), Lav

is the middle segment of the broken approximation of L.
Equation (9) is a full analogue of the Radon transform and
may be solved by using FBP with standard convolution fil-
tration. We implement it using the sequence of two steps as
follows.

(1) Convert the fan beam projections g′(γs, γd) to the par-
allel ones ĝ(p, ϑ) by a 2D spline interpolation [24]. The
first argument p of function ĝ(p, ϑ) denotes a count
along the parallel projection, and the second one ϑ is
an angular aspect for which this projection is registered
(Figure 1).

(2) Apply the standard FBP realization for the parallel
beam geometry with filtration in frequency domain
[25] to the converted projections ĝ(p, ϑ).

We develop the Matlab code, wherein steps 1 and 2 are re-
alized with the use of the basic functions “griddata(·)” and
“iradon(·),” correspondingly [26]. The detailed description
of the algorithm implemented is given in [14] and is not a
main subject of this paper.

3. POST-RECONSTRUCTION RESTORATION
OF TOMOGRAMS

3.1. Validation of linear spatially variant blurmodel

The PSF of a visualization system is defined as the image
of an infinitesimally small point object and specifies how
points in the image are distorted. But the PSF may be used
for system description if a model of a linear filter [27] is
available. Such a model is ordinarily used in traditional
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medical tomography (X-ray computed tomography, mag-
netic resonance intrascopy, single-photon emission tomog-
raphy, positron emission tomography, etc.). A diffuse optical
tomograph in general is not a linear filter because of the ab-
sence of regular rectilinear trajectories of the photons. How-
ever, the PAT method with the FBP realization has the fol-
lowing features.

(1) Our concept proposes the conditional PATs to be used
for reconstruction as regular trajectories.

(2) The object region corresponding to the rectilinear
parts of the PATs is only reconstructed.

(3) The reconstruction algorithm, all of whose operations
and transformations are linear, is used.

These features in our opinion warrant the application of
a model of a linear filter in given particular case of DOT.
Therefore, the PSF may be assumed for describing the blur
due to reconstruction.

Let us consider at once the variance of the PSF against
spatial shift. The time integral of function P(r1, τ; r, t) for
each τ describes instantaneous distribution of diffuse photon
trajectories. At time moment τ = t, this distribution forms a
“banana-shaped” zone [8, 11, 28] of the most probable tra-
jectories of photons migrated from (0, 0) to (r, t). The effec-
tive width of this zone estimates the theoretical spatial res-
olution and is described by the standard root-mean-square
deviation (RMSD) of photon position from the PAT as fol-
lows:

Δ(r, t, τ) =
[∫

V
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r1, t, τ

)∣∣2P
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r1, τ; r, t

)
d3r1

]1/2
.

(10)

In [8], Lyubimov has shown that RMSD depends slightly
upon the object form and coincides virtually with that in the
infinite media. Therefore, to estimate the resolution for the
objects of complex forms, the simple formulas for the infi-
nite media may be used. It is not difficult to show that in the
case of the homogeneous infinite media, equations (2) and
(10) are written as follows:
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(12)

It is seen from (11) that P(r1, τ; r, t) is not a function of the
difference r−r1 even for the simplest geometry of the infinite
space. Therefore, averaging (7) cannot be described by a con-
volution and the blur due to PAT reconstruction is spatially
variant. Numerically, the spatial variance can be estimated by
(12). For example, let us have a circular scattering object with
diameter d = 6.8 cm and optical parameters D0 = 0.066 cm
and n0 = 1.4. Let us assume a source and a receiver to lie on

the object boundary and to be poles asunder. Then the cal-
culation under (12) for time-gating delay t = 600ps gives the
following results:

Δ
∣
∣
τ=t/2 ≈ 1 cm, Δ

∣
∣
τ=t/4 = Δ

∣
∣
τ=3t/4 ≈ 0.87 cm. (13)

The first value obtained estimates the spatial resolution for
the central region of the object and the second one esti-
mates the resolution for regions remote from the center over
a half radius. According to (12), as the object boundary is
approached, the theoretical resolution tends to zero. Thus,
the resolution and, therefore, the PSF describing the blur
are strongly variant against spatial shift. It means that the
spatially variant blur model may be exclusively assumed for
restoration of the PAT tomograms.

A generic spatially variant blur would require a point
source at every pixel location to fully describe the blurring
operation. Since it is not possible to do this, even for small
images, some approximations should be done. There are sev-
eral approaches to restoration of images degraded by spa-
tially variant blur. One of them is based on a geometrical co-
ordinate transformation [29–31] and uses coordinate distor-
tions or known symmetries to transform the spatially vari-
ant PSF into one that is spatially invariant. After applying
a spatially invariant restoration method, inverse coordinate
distortion is used to obtain the result. This approach does
not suit for us since the coordinate transformation functions
need to be known explicitly. Another approach considered,
for example, in [32–34], is based on the assumption that the
blur is approximately spatially invariant in small subregions
of the image domain. Each subregion is restored using its
own spatially invariant PSF, and the results are then sewn to-
gether to obtain the restored image. This approach is labori-
ous and, moreover, gives the blocking artifacts at the subre-
gion boundaries. To restore the PAT images, we assume the
blur model recently developed by Nagy et al. [17–19]. Ac-
cording to it the blurred image is partitioned into subregions
with the spatially invariant PSFs. However, rather than de-
blurring the individual subregions locally and then sewing
the individual results together, this method interpolates the
individual PSFs, and restores the image globally. It is clear
that the accuracy of such method depends on the number of
subregions into which the image domain is partitioned. The
partitioning where the size of one subregion tends to a spatial
resolution seems to be sufficient for obtaining a restoration
result of good quality.

3.2. Implementation of blurmodel

Let x be a vector representing the unknown true image of an
absorbing inhomogeneity δμa(r) and let b be a vector repre-
senting the reconstructed image 〈δμa(r)〉 blurred due to av-
eraging (7). The spatially variant blur model of Nagy et al. is
described by a system of linear algebraic equations

b = A · x, (14)

where A is a large ill-conditioned matrix that models the
blurring operator (blurring matrix). If the image is parti-
tioned into m subregions, the matrix A has the following
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structure:

A =
m∑

j=1
D jA j , (15)

whereA j are the banded block Toeplitz matrices with banded
Toeplitz blocks [18, 35] andD j are diagonal matrices satisfy-
ing the condition

m∑

j=1
D j = I, (16)

where I is the identity matrix. The piecewise constant inter-
polation implemented implies that the ith diagonal entry of
D j is one if the ith pixel is in the jth subregion, and zero
otherwise. Each matrix A j is uniquely determined by a single
column a j that contains all of the nonzero values in A j . This
vector a j is obtained from an invariant PSF corresponding to
the jth subregion (PSF j) as follows:

a j = vec
(
PSFTj

)
, (17)

where the operator “vec(·)” transforms matrices into vectors
by stacking the columns. The “banding” of matrix A j means
that the matrix-vector multiplication product D jA jz, where
z is any vector defined into the image domain and depends
on the values of z in the jth subregion, as well as on val-
ues in other subregions within a width of the borders of the
jth subregion. Thematrix-vectormultiplication procedure is
implemented in Nagy’s Matlab package “Restore Tools” [36]
by means of the 2D discrete fast Fourier transform and is
fully described in [19].

To simulate the invariant PSF corresponding to individ-
ual subregion, first of all we must choose a characteristic
point and specify a point inhomogeneity in it. It is advisable
to choose the center of subregion for location of the point
inhomogeneity. The algorithm of individual PSF simulation
includes two steps as follows.

(1) Simulate the relative shadows caused by the point in-
homogeneity.

(2) Reconstruct the PSF from simulated shadows by the
PAT method with the FBP realization.

The relative shadows caused by the point inhomogeneity are
simulated via the numerical solution of the time-dependent
diffusion equation with the use of the finite element method
(FEM). To guarantee against inaccuracy of calculations, we
optimize the finite element mesh so that it is strongly com-
pressed in the vicinity of the point inhomogeneity location.
Thereto the Matlab function “adaptmesh(·)” is used. For
FEM calculations, the point inhomogeneity is assigned by
three equal values into the nodes of the little triangle on
the center of compressed vicinity. The example of the opti-
mized mesh is given in Figure 2(a). To reconstruct the PSF
from simulated shadows, the backprojection algorithm im-
plemented as described in Section 2 is used. The example
of the reconstruction result corresponding to the mesh of
Figure 2(a) is presented as surface plot in Figure 2(b).
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Figure 2: Simulation of the individual PSF: (a) high-resolution fi-
nite element mesh with the compressed vicinity, (b) the simulation
result corresponding to the mesh.

It is clear that some laborious numerical calculations
for various locations of the point inhomogeneity should be
made. To simplify the problem in the case of circular geom-
etry, it is desirable to consider polar coordinates (p, ϑ). It
is easy to see that the PSF for a constant radial distance p
has the same shape for all angular positions ϑ but is rotated
through angle ϑ. In other words, the PSF is spatially invari-
ant with respect to the angular position. Therefore, the PSFs
need to be calculated only for different values of p at an angle
00. At any other angle, the PSFs can be rotated, in real time,
using a bilinear interpolation. The array of the invariant PSFs
calculated for the case of image partitioning into 5 × 5 sub-
regions is presented in Figure 3.

3.3. Restoration algorithms

After constructing the blurring matrix A, an acceptable al-
gorithm should be chosen to solve system (14) for un-
known vector x. Because of the large dimensions of the linear
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Figure 3: The 5 × 5 array of the invariant PSFs corresponding to
individual subregions.

system, iterative algorithms are typically used to compute
approximations of x.

Those include a variety of conjugate gradient-type algo-
rithms [20, 37, 38], the steepest descent algorithms [21, 22,
38, 39], the expectation-maximization algorithms [40–42],
and many others [43]. Since no one iterative algorithm is op-
timal for all image restoration problems, the study of iterative
algorithms is an important area of research. In the present
paper, we consider the conjugate gradient algorithm CGLS
[20] and the steepest descent algorithmMRNSD [21, 22] im-
plemented inNagy’s package by the functions “CGLS(·)” and
“MRNSD(·),” correspondingly. These algorithms represent
two different approaches: a Krylov subspace method applied
to the normal equations and a simple descent scheme with
enforcing a nonnegativity constraint on solution. The step
sequences describing the algorithms are given in Figure 4.
The operator ‖ · ‖ denotes an Euclidian norm, the function
“diag(·)” produces the diagonal matrix containing the initial
vector.

Both CGLS and MRNSD are easy to implement and
converge more faster than, for example, the expectation-
maximization algorithms [22, 44]. Both algorithms exhibit
a semi-convergence behavior [38] with respect to the relative
error ‖xk − x‖/‖x‖, where xk is the approximation of x at
the kth iteration. It means that, as the iterative process goes
on, the relative error begins to decrease and, after some opti-
mal iteration, begins to rise. By stopping the iteration when
the error is low, we obtain a good regularized approximation
of the solution. Thus, the iteration number plays the role of
the regularization parameter. This is very important for us,
as the matrix A is severely ill-conditioned and regularization
must be necessarily incorporated. To estimate the optimal it-
eration number, we use the following blurring residual [45]
that measures the image quality change after beginning the

restoration process:

βk =
∥
∥xk − x

∥
∥

‖b− x‖ %. (18)

Like the relative error, the blurring residual has a minimum
that corresponds to the optimal iteration number. Note that
we do not know the true image (vector x) in clinical appli-
cations of DOT. However, using criterion βk → min, it is
possible to calibrate the algorithms on relation to the op-
timal iteration number via experiments (including numer-
ical experiments) with phantoms. In general many different
practical cases of optical inhomogeneities can be considered
for calibration. In clinical explorations, the particular case
is chosen from a priori information, which the blurred to-
mograms contain after reconstruction. Further, regulariza-
tion can be enforced in a variety of other ways, including
Tikhonov [46], iteration truncation [37, 47], as well as mixed
approaches [48]. Preconditioned iterative regularization by
truncating the iterations is an effective approach to acceler-
ate the rate of convergence. Such preconditioning is imple-
mented in Nagy’s package for both algorithms (CGLS and
MRNSD) considered. In general, preconditioning amounts
to find a nonsingular matrix C, such that C ≈ A and such
that C can be easily inverted. The iterative method is then
applied to preconditioned system

C−1b = C−1A · x. (19)

The appearance of matrix C is defined by the regularization
parameter λ < 1 that characterizes a step size at each iter-
ation. In this paper, we consider two methods for calculat-
ing λ: generalized cross validation (GCV) method [47] and
method based on criterion of blurring residual minimum.
In the first case we assume that a solution computed on a
reduced set of data points should give a good estimate of
missing points. The GCV method finds a function of λ that
measures the errors in these estimates. The minimum of this
GCV function corresponds to the optimal regularization pa-
rameter. In the second case we calculate blurring residual
(18) for different numbers of iterations and different discrete
values of λ, taken with the step Δλ. The minimum of blurring
residual corresponds to optimal number of iterations and the
optimal regularization parameter.

The main reason of choosing MRNSD for PAT image
restoration is that this algorithm enforces a nonnegativity
constraint on the solution approximation at each iteration.
Such enforcing produces much more accurate approximate
solutions in many practical cases of nonnegative true image
[21, 22, 49]. In DOT (e.g., optical mammography), when a
tumor structure is detected, one can expect that the distur-
bances of optical parameters are not random heterogeneous
distributions, but they are smooth nonnegative functions
standing out against a zero-mean background and forming
the macroinhomogeneity images. Indeed, the typical values
of absorption coefficient lie within the range between 0.04
and 0.06 cm−1 for healthy breast tissue, and between 0.06 and
0.1 cm−1 for breast tumor [50, 51]. Thus, we have the non-
negative true image δμa(r). This a priori knowledge gives the
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CGLS MRNSD
x = b x = b
r = b− Ax g = AT(Ax− b)
g = ATr X = diag(x)
γ = ‖g‖2 γ = gTXg
for k = 1, 2, . . . for k = 1, 2, . . .

if k = 1, s = g s = −Xg
otherwise s = g + (γ/γold)s u = As
u = As α = min(γ/uTu,minsi<0(−xi/si))
α = γ/‖u‖2 x = x + αs
x = x + αs X = diag(x)
r = r− αu z = ATu
g = ATr g = g + αz
γold = γ, γ = ‖g‖2 γ = gTXg

end end

Figure 4: The step sequences describing the restoration algorithms.

right to apply constrained MRNSD and change negative val-
ues for zeros after applying unconstrained CGLS.

4. RESULTS AND ANALYSIS

To demonstrate the effect of improving the spatial resolution
of the PAT tomograms, a numerical experiment was con-
ducted, wherein circular strongly scattering objects were re-
constructed and then restored. The diameter of objects was
equal to 6.8 cm. The refraction index, coefficients of diffusion
and absorption of the objects were equal to 1.4, 0.066 cm, and
0.05 cm−1, correspondingly. We considered two sets of phan-
toms. Each phantom of the first set contained a circular ab-
sorbing inhomogeneity with the diameter equal to 1 cm (ab-
sorption coefficient was equal to 0.075 cm−1). In one of the
cases, the inhomogeneity was located in the center of the ob-
ject, in the two others it was displaced from the center by 1.25
and 2.5 cm, correspondingly. The second set of phantoms
was designated to measure the modulation transfer function
(MTF) that was used by us for rough estimation of the spa-
tial resolution limit. We used five circular strongly scatter-
ing objects, each containing two circular absorbing inhomo-
geneities equal in diameter. The diameter and optical param-
eters of these objects, as well as the absorption coefficient of
inhomogeneities, were identical to those of the phantoms of
the first set. The distance between inhomogeneities was equal
to their diameter. Diameters of inhomogeneities of different
objects were equal to 1.4, 1.2, 1.0, 0.8, and 0.6 cm. Sources
(32) and receivers (32) were installed along the perimeter
of the objects at equal step angles (11.250); the angular dis-
tance between the nearest-neighbor source and receiver con-
stituted 5.6250. The relative shadows caused by the absorb-
ing inhomogeneity were simulated via the numerical solu-
tion of the time-dependent diffusion equation for the instan-
taneous point source with the use of the FEM method. The
time-gating delays of the receivers were chosen so that the
lengths of the outer segments for all broken-line approxima-
tions of PATs were equal to 0.3 cm. Thus, the internal region
of objects, corresponding to the middle segments of broken
lines, was equal to 6.2 cm in diameter. Reconstruction of each

phantom (its internal region) with the use of FBP was real-
ized onto rectangular grid 63 ∗ 63. Under visualization the
boundary region corresponding to outer segments of broken
PATs was filled by zeros and full image domain was shown in
each case.

The reconstruction results for phantoms of the first set
are presented in Figure 5 as gray-level images in compari-
son with the best results of deblurring. The blurred images
are given on the left. The central column of images corre-
sponds to the restoration results obtained with the use of
unpreconditioned CGLS. And the images restored by unpre-
conditioned MRNSD are presented in Figure 5 on the right.
The upper images correspond to the object with the cen-
tral inhomogeneity, the central row of images—to the ob-
ject with the inhomogeneity displaced from the center by
1.25 cm and the bottom ones—to the object with the inho-
mogeneity displaced by 2.5 cm. White points in the images
show the object boundaries known a priori. The coordinate
axes are graduated in centimeters and the intensity scale—
in reverse centimeters. The blurred reconstructions and the
results of their restoration with the use of unpreconditioned
algorithms for phantoms of the second set are given as sur-
face plots in Figure 6. Like in Figure 5, the blurred images are
given on the left. The CGLS restorations are shown in the
center, and the MRNSD ones—on the right of Figure 6. The
sequence of image triplets from top to bottom corresponds
to a scale of inhomogeneity diameters from 1.4 to 0.6 cm.
The intensity values are separately normalized for each image
and shown on a percent scale (vertical axes of the plots). The
restoration results presented in Figures 5 and 6 correspond
to the optimal iteration number and the image partitioning
into 5×5 subregions. The optimal iteration number obtained
by the criterion of blurring residual minimum is equal to 15
in the case of unpreconditioned CGLS and to 9 in the case of
unpreconditionedMRNSD, respectively. The number of sub-
regions into which the image domain is partitioned (5 × 5)
was chosen starting from compromise between the restora-
tion quality and the restoration time. Table 1 shows how the
restoration time per iteration grows as the number of image
subregions increases. From Table 1 it follows that the image
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Figure 5: The best results of restoration by unpreconditioned algorithms in comparison with the results of blurred image reconstruction:
the first set of phantoms.

Table 1: The restoration time per iteration depending on the num-
ber of image subregions. The computation time is given in seconds
for an Intel PC with 1.7 GHz Pentium 4 processor and 256-MB
RAM.

1× 1 3× 3 5× 5

CGLS 0.1 0.8 2.1

MRNSD 0.1 0.9 2.3

partitioning into more than 5 × 5 subregions cannot satisfy
demand of real-time medical explorations.

The bottom images of Figure 5 show that, as the ob-
ject boundary is approached, the restoration quality becomes
slightly worse. That is why the backprojection algorithm does
not correctly reconstruct the boundary region of an object.
When the inhomogeneities are remote well away from the
boundary, both unpreconditioned algorithms restore the to-
mograms without visible distortions and give a good gain in
resolution, which is numerically estimated by MTF, as it is
described below.

Figure 7 presents the restoration results obtained with
the use of preconditioned MRNSD. The left column of im-
ages corresponds to the regularization parameter calculated
by GCV method (λ = 0.003). To obtain the central restora-

tions, we used preconditioner with λ = 0.1. This value of
the regularization parameter was found by the criterion of
blurring residual minimum. The right column of images in
Figure 7 shows the result of restoration by unpreconditioned
MRNSD for comparison. As before the image domain was
partitioned into 5×5 subregions. The optimal iteration num-
ber in the cases of preconditioned algorithm was equal to
3. Thus, preconditioners allow the restoration procedure to
be accelerated. But, as it follows from Figure 7, precondi-
tioned algorithm distort the form of inhomogeneities being
restored. We can conjecture that the image partitioning into
5 × 5 subregions is not enough to obtain good quality of
restoration by preconditioned algorithms. As we save com-
putational time, the image partitioning number may be in-
creased. Moreover, to restore a local region of inhomogene-
ity location, the PSFs can be simulated for each pixel of such
region. Can we increase the restoration accuracy for precon-
ditioned algorithms in this case? It is advisable to investigate
this question in the future.

In view of ill-posed nature of the problem the restora-
tion algorithms should be tested for noise immunity. In time-
domain DOT, the random error of measurements is due to
quantum noise. We incorporated noise with a standard de-
viation of 5, 10, and 20% of the maximum value into the
relative shadows g(γs, γd). Noisy sinograms (gray-level maps
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Figure 6: The best results of restoration by unpreconditioned algorithms in comparison with the results of blurred image reconstruction:
the second set of phantoms.
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Figure 7: Comparison of the restoration results obtained with the use of preconditioned MRNSD (left and center) and unpreconditioned
one (right): the second set of phantoms. Diameters of inhomogeneities from top to bottom are equal to 1.4, 1.2, 1.0, and 0.8 cm.

of shadow distributions over the index ranges of the source
and the receiver) simulated for phantom with two inhomo-
geneities of diameter 1.4 cm are presented in Figure 8 on
the left. The sinogram abscissa is the receiver index and the
sinogram ordinate is the source index. The intensity scale is
graduated in relative units. The central column of images
shows the corresponding blurred tomograms reconstructed
by FBP. The results of their restoration by unpreconditioned
MRNSD are given on the right of Figure 8. You can see that
there are distortions of the inhomogeneity forms in the cases
of 10%- and 20%-level noise. If the level of relative shadow
noise is equal to 5%, distortions are minimized (the right im-

age in the top row). Unpreconditioned CGLS gives the simi-
lar results. Real quantum noise of time-resolved signal mea-
surements depends on a number of photons in laser pulse
and does not usually exceed the 2%-level [52]. Thus, we can
establish that unpreconditioned restoration algorithms are
robust to measurement noise.

In conclusion it is interesting to compare the presented
results with that obtained with a spatially invariant blur
model. In the latter case, only one PSF calculated for
point inhomogeneity in the center of image domain is
used for restoration. Figure 9 shows the unpreconditioned
MRNSD restorations of tomogram of phantom with two
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Figure 9: Comparison of the restoration results obtained with the
spatially variant blur model (left) and with invariant one (right):
phantom with two inhomogeneities of diameter 1.4 cm.

inhomogeneities of diameter 1.4 cm. The result obtained
with the spatially variant model is given on the left of
Figure 9. The right image represents the restoration with the
use of the invariant PSF. The crosses in the figure mark the
real positions of the centers of inhomogeneities. It is obvi-
ous that an application of the spatially invariant model leads

to a shift of restored structures relative to their real loca-
tions. While, space-varying restoration gives the result with-
out such distortions. This simple example justifies the theo-
retical assumption that the spatially variant blur model may
be exclusively applied for restoration of the PAT tomograms.

On the base of the profile of each image of Figure 6, the
modulation transfer coefficient (MTC) was determined as
a relative depth of a dish between two peaks. The numer-
ical results of MTC estimations are provided in Figure 6.
Discrete values of spatial frequency were put in conformity
with diameters of inhomogeneities. To estimate the MTF for
the central region of the image domain, a dependence of
the MTC on spatial frequency was accepted (Figure 10). It
is seen from Figure 10 that with contrast of not less than
20%, the spatial frequencies of no more than 0.54, 0.67, and
0.75 cycles/cm can be reproduced on images blurred due to
reconstruction and restored by CGLS and MRNSD, corre-
spondingly. It means that the inhomogeneities with linear
sizes of 0.92, 0.75, and 0.67 cm can be resolved on the coin-
cident images. Thus, the gain in spatial resolution achieves
∼19% in the case of the CGLS restorations and ∼27% in
the case of the MRNSD ones. The latter seems to be better
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Figure 10: MTFs for blurred tomograms and restorations obtained
with the use of unpreconditioned algorithms.

than the result obtained by using FBP with Vainberg fil-
tration [12–15]. Therefore, to improve the resolution of
the PAT reconstructions, not only special filtration of shad-
ows but post-reconstruction restoration may be successfully
used. Unlike the case of shadow filtration, the space-varying
restoration model takes into account the blurring kernel and
gives the results without any incline of the inhomogeneity
profiles.

Our codes are in Matlab on a Windows XP Intel PC
with 1.7-GHz Pentium 4 processor and 256-MB RAM. The
FEM calculations of time-domain measurements on a high-
resolution mesh of 46, 983 nodes and 10, 326 elements take
4-5min for one source. The time of reconstruction by our
FBP realization for the measurement ratio 32 × 32 and
the image grid 63 × 63 is less than 2 s, including the pro-
jection transformation. If the image domain is partitioned
into 5 × 5 subregions and unpreconditioned algorithms are
used, the deblurring time is not more than 2.3 s per itera-
tion (see Table 1). Thus, the reconstruction-restoration pro-
cedure takes approximately 30 s to produce satisfactory im-
ages. One can assume that the application of preconditioned
algorithms for the spatially variant blurmodel with large par-
titioning number allows the full computational time to be
saved. Moreover, in the future it is advisable to turn to a soft-
ware medium faster than Matlab.

5. CONCLUSION

In this paper, we have examinated the possibility of the ap-
plication of iterative restoration algorithms to improve the
spatial resolution of diffuse optical tomograms reconstructed
by the new photon average trajectories method. The spa-
tially variant blur model was developed to restore images

of inhomogeneities imbedded in a homogeneous strongly
scattering object. To describe the blurring kernel, the spa-
tially invariant point spread functions corresponding to dif-
ferent individual subregions of the image domain were sim-
ulated with the use of the finite element method. To study
the efficiency of the blur model proposed, two iterative algo-
rithms for solving a system of linear algebraic equations were
implemented. Those are the conjugate gradient algorithm
for least squares problem and the modified residual norm
steepest descent algorithm. We have conducted a numeri-
cal experiment on reconstruction and restoration of circular
phantoms with circular absorbing inhomogeneities. To re-
construct the blurred images under simulated time-domain
measurements, the well-known filtered backprojection al-
gorithm was used. The analysis of the restoration results
presented shows that unpreconditioned algorithms are effi-
cient for high-resolution deblurring the diffuse optical tomo-
grams, in particular, when the inhomogeneity is remote well
away from the boundary of the object. So, the steepest de-
scent algorithm allows the 27%-gain in spatial resolution to
be obtained. The accuracy of space-varying restoration de-
pends on the number of subregions into which the image
domain is partitioned. The partitioning number 5 × 5 con-
sidered in this paper suits for unpreconditioned algorithms
but seems to be not enough for effective use of accelerated
algorithms with preconditioners. The further investigations
of preconditioned algorithms should be carried on, as the
application of preconditioners is available approach for sav-
ing computational time. More examples, in particular, for
multitarget objects should be considered. The study of other
restoration algorithms is also the subject of our short-term
interest.
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