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and bandwidth-limited 3G wireless networks. The transcoder is also designed to employ a new adaptive intra-refresh algorithm,
which is responsive to the detected scene activity inherently embedded into the video content and the reported time-varying chan-
nel error conditions of the wireless network. Comprehensive computer simulations demonstrate significant improvements in the
received video quality performances using the new transcoding architecture without an extra computational cost.
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1. INTRODUCTION

The success of the Internet and mobile systems has motivated
the development of various enhanced-capacity fixed and
wireless networking technologies (e.g., 3G, WLAN, broad-
band Internet, etc.). The services supported by such networks
helped to foster the vision of being connected at anywhere,
anytime, and with any device for pervasive media applica-
tions. However, the coexistence of the different networking
infrastructures and services has also led to an increased het-
erogeneity of compressed video communication systems and
scenarios, in which a wide range of user-terminals with var-
ious capabilities access rich video content over a multitude
of access networks with different characteristics. The mis-
matches between the content properties and several network
and/or device-centric features, as well as diverse user prefer-
ences, call for efficient video delivery systems featuring effec-
tive video adaptation mechanisms [1]. In general, this con-
cept has been addressed in literature with the theme of the
universal multimedia access (UMA) [2, 3]. Several strate-
gies have been developed for UMA, which are based on the
multimedia content adaptation techniques using the context
specifications and descriptions defined in Part 7: digital item
adaptation (DIA) of the MPEG-21 standard [4-8].

An effective way of performing video adaptation is to
utilise transcoding operations in the networks. Transcod-
ing is particularly needed when compressed video streams
traverse heterogeneous networks. In such cases, a number
of content-specific properties of the coded video informa-
tion require adaptation to new conditions imposed by the
different networks and/or terminals to retain an accept-
able level of video service quality. Network-based adaptation
mechanisms can be employed at the edges or other strate-
gic locations of different networks, using a fixed-location
video adaptation gateway, node, or proxy as in conventional
networking strategies [9-11]. Alternatively, video adapta-
tion (i.e., transcoding) can be performed dynamically where
and whenever needed using active networking technologies
[12, 13].

This paper presents a comprehensive transcoding system
to facilitate the efficient adaptation of video for both error
resilience and rate control purposes in a scenario, where a
high bit-rate compressed video stream, which can be ac-
commodated over a high-bandwidth fixed network, is sent
to a mobile terminal over a 3G wireless network. This is a
typical heterogeneous video communications scenario that
consists of two networks with asymmetric bandwidth and
channel characteristics. Video transmission over the fixed
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network is not subject to bit errors, thus can be assumed
error-free. However, transmission over the wireless network
is error-prone. The wireless channel effects of 3G networks
are characterised by burst errors, which introduce noise into
the transmitted video signal, and thus cause the decoder to
misinterpret the received data. Such errors are caused by
channel fading, which is defined as the aggregated effects
of multipath, shadowing, intra/intercell interference, as well
as the number and location of users in a cell [14-16]. The
overall resulting effect of such error conditions is the signifi-
cant deterioration of the received video quality. Therefore, in
addition to the bit-rate matching requirement between the
two networks, an error resilience adaptation mechanism is
needed to provide robust video transmission and satisfactory
levels of quality of service (QoS). For this purpose, a video
transcoding architecture is developed, which can be deployed
at intermediate points in the networks. It incorporates a
rate control mechanism together with a suite of error re-
silience tools, which were originally designed for source cod-
ing methods, as described by the MPEG-4 video coding stan-
dard [17, 18]. However, the transcoder utilises them in har-
mony to add necessary amount of error robustness to coded
nonresilient video streams prior to transmission over error-
prone 3G wireless channels. Furthermore, a new scene activ-
ity and channel adaptive intra-refresh (SC-AIR) transcoding
algorithm is proposed to enhance the added robustness with
respect to the detected video scene activity and the reported
time varying channel error conditions. The computer simu-
lations performed demonstrate the effectiveness of the new
transcoding architecture in terms of providing video adapta-
tion for bit-rate controlled error resilience over error-prone
3G (i.e., W-CDMA) channels.

The organisation of the paper is as follows. Section 2
highlights the need for rate-controlled error-resilient video
adaptation, and describes the developed transcoding archi-
tecture in detail. Section 3 introduces the proposed visual
scene activity and channel adaptive error-resilient transcod-
ing mechanism (i.e., SC-AIR-based transcoding). Section 4
presents the computer simulation results and provides elab-
orate discussions on the resilient video adaptation perfor-
mance. Finally, Section 5 outlines the concluding remarks.

2. TRANSCODING-BASED VIDEO ADAPTATION

Noisy channel conditions in wireless networks introduce er-
rors in the compressed video streams, which are manifested
as degradations in the perceived quality of the decoded video.
Due to the predictive coding techniques applied in video
compression, errors are likely to propagate into the future
frames, making video communications perceptually unac-
ceptable. To mitigate such effects, MPEG-4 has adopted a
number of error resilience tools that make the video streams
more robust against error-prone transmission over wireless
channels [17, 18].

However, there exist numerous video applications all of
which may not be optimised for error-resilient transmission.
This is due to the fact that most error resilience tools re-
duce the coding efficiency, demand more bandwidth, and in-

crease the encoding and decoding complexities. Therefore,
users should be provided with error-resilient video adapta-
tion by the intermediate video adaptation nodes when and
where necessary. The problems addressed above hence call
for error-resilient transcoding units to be deployed in the
networks.

Video transcoding is the process of converting the for-
mat of an input coded video content into another format
[19-21]. It is primarily used to adapt the bit-rates, tempo-
ral, and spatial resolutions of the incoming compressed video
streams, as well as to provide syntax translations between dif-
ferent video coding standards. Moreover, video transcoding
with error resilience properties is particularly popular due
to the fixed/wireless internetworking interoperability issues,
and hence has been extensively addressed in literature [22—
29].

In general, transcoders are designed to operate either
in the discrete cosine transform domain (DCT domain)
or in the pixel domain. Working in the pixel domain of-
fers higher flexibility in terms of executing various differ-
ent transcoding services simultaneously (i.e., controlling the
output rate while inserting necessary amount of error ro-
bustness). The transcoding architecture presented in this pa-
per is based on a cascaded pixel domain transcoder (CPDT)
formation [19-21]. Typically, CPDT operation is computa-
tionally more expensive than the DCT domain architectures.
Consequently, the reduction of the complexity while provid-
ing a highly functional and efficient architecture has been the
main driving force behind many research activities in this
area.

Figure 1 shows the block diagram of the developed
transcoding architecture in this work. In its operation, the in-
put compressed video is decoded down to the pixel domain,
and then partial reencoding is performed on the decoded
video in the required adapted format. Partial reencoding is
utilised to reduce the inherent complexity of the CPDT op-
eration. It is an operation, whereby the original frame head-
ers are reused, and the time consuming reordering of the
video frames is avoided. More significantly, motion compen-
sation is performed reusing the original motion vectors of
the input video stream. This is because, previous research
has shown that methods like computationally complex mo-
tion reestimation and refinement can introduce considerable
delay to the transcoder’s operation, and yield only a minor
video quality gain in the case of transmission over error-
prone wireless channels [30]. In return, the overall effect is
the significantly reduced computational complexity and pro-
cessing time during transcoding.

The transcoder is compatible with the MPEG-4 video
coding standard [17]. It is designed to perform both rate
control (RC) and error resilience (ER) operations on the
input video streams. RC is generally required to provide bet-
ter utilisation of the bandwidth, rate matching between het-
erogeneous networks, and fair treatment to congestion re-
sponsive applications. In the context of this paper, RC is
employed to smooth out the fluctuations in the through-
put and convert input high bit-rate streams into lower rates
[25]. As a result, users with diverse terminal capabilities,
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personal requirements, and service level agreements can
be accommodated. The mechanism employed for RC is
a macroblock-based rate control algorithm, known as test
model 5 (TM5) [31]. As shown in Figure 1, the RC block
regulates the quantisation step size during partial reencod-
ing, so as to compress the input bit-stream at the target bit-
rate.

The ER tools are essential in alleviating the artefacts
resulting from the transmission errors. However, consid-
ering that transcoding needs to be performed with mini-
mal latency, error resilience tools are required to be compu-
tationally lightweight algorithms. Therefore, the developed
transcoding architecture utilises computationally simple, but
effective ER tools for mitigating the error effects in the per-
ceived video due to the transmission errors that are intro-
duced by the 3G wireless channel (i.e., W-CDMA chan-
nel). These ER tools are data partitioning (DP), video packet
resynchronisation (VPR), header extension code (HEC),
adaptive intra-refresh (AIR), and the novel scene activity and
channel adaptive intra-refresh (SC-AIR) algorithm. While
DP, VPR, and HEC are applied directly on the quantised
video information, AIR or SC-AIR algorithms are executed
prior to the partial reencoding process in order to alter the
macroblock mode decisions extracted from the decoding op-
eration. Depending on the operator’s choice, either AIR or
SC-AIR algorithms can be chosen as the intra-update mech-
anism. As illustrated in Figure 1, both algorithms make use
of the input motion vector information to decide which mac-
roblocks to update.

3. SCENE ACTIVITY AND CHANNEL ADAPTIVE
INTRA-REFRESH (SC-AIR) TRANSCODING

The standard AIR algorithm uses a fixed and predetermined
number of intra-macroblocks per frame for refreshing the
frames of a video stream. This means that a specific AIR rate
is determined before encoding or transcoding, and not al-
tered throughout the encoding/transcoding process. In addi-
tion, the AIR algorithm lacks a mechanism for determining
the optimum intra-refresh rate and providing adaptation to
the spatiotemporal characteristics of the video stream with
respect to varying channel conditions. For this reason, the
effectiveness of AIR is significantly undermined.

In attempt to improve video communications over error-
prone channels, various adaptive intra-refresh mechanisms
have been presented in literature. A rate-distortion-based
method was proposed by Coté and Kossentini, which mea-
sured the degradation in quality associated with the effects of
loosing individual macroblocks, and encoded certain blocks
in intra-mode accordingly [32]. Although this was shown to
be an effective method, it involved complex computations,
and thus can be unsuitable for low-latency or real-time video
applications. Similarly, Liao and Villasenor presented an
intra-refresh mechanism that was based on error-sensitivity
metrics [33]. This mechanism was implemented at the en-
coder and modelled the transmission medium as a random
error channel with a specific bit-error-rate (BER). Another
intra-refresh approach was employed by Reyes et al. as a tool
for providing temporal resilience in a rate-distortion-based
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FIGURE 2: Intra-refresh of motion-active macroblocks: (a) operation of the standard AIR algorithm with a fixed number of macroblocks per
frame; (b) operation of the SC-AIR algorithm with a variable intra-refresh rate.

error resilience scheme [22]. In this approach, the intra-
refresh resilience was altered with respect to the output bit-
rate and the BER of the channel. Mean-square-error (MSE)
measurements were used to calculate the distortion intro-
duced due to the lost macroblocks. Based on MSE measure-
ments, the intra-refresh mechanism altered the number of
intra coded blocks in every frame to provide optimal re-
silience. This algorithm involved complex computations, and
hence can also be regarded unsuitable for low-latency video
communications. Stuhlmiiller et al. used a similar approach,
where intra-refresh was based on a slightly modified ver-
sion recommended in H.263 standard [34]. Another adaptive
intra-refresh algorithm was proposed by Chiou et al. that re-
quired the encoder to extract some distortion information
offline before the transmission, which was later used by a
two-pass error-resilient video transcoder to decide on a pri-
oritised intra-refresh strategy [26]. This idea was then devel-
oped into a more comprehensive error-resilient transcoder,
which adaptively varied the intra-refresh rate according to
the video content and communication channel’s packet-
loss rate to protect the most important macroblocks against
packet losses over wireless networks [29, 35]. Moreover, a
profit tracing scheme has recently been proposed by Chen
et al. [36], so as to further improve the efficiency of intra-
refresh allocation to macroblocks in the content-aware intra-
refresh method developed in [29, 35]. A more practical intra-
refresh method was also introduced by Worrall et al. [37]. In
this approach, the intra-refresh mechanism at the encoder
was based on a simple motion activity analysis of each frame
and different GPRS channel conditions.

In this section, we introduce a video transcoding method
using a new intra-refresh algorithm, namely SC-AIR, which

is adaptive to changing channel conditions and source spe-
cific characteristics (e.g., motion-based scene activity) of the
video stream. The operation of the algorithm is similar to
that of the standard AIR algorithm, where a motion map
is formed to mark the location of the motion-active mac-
roblocks in every frame and intra code (i.e., refresh) them
sequentially [17]. This means that the motion-active mac-
roblocks are first determined, and a number of them are re-
freshed starting from the first one until the end of the ad-
missible intra-refresh rate (i.e., the number of macroblocks
to be refreshed) in a predictive frame. In the subsequent pre-
dictive frame, the refresh algorithm continues from the point
where it was left in the previous frame. This process contin-
ues in every predictive frame until the whole of the motion-
active macroblocks are fully refreshed, and then the algo-
rithm goes back to the first active macroblock to start the
process again. However, as depicted in Figure 2, the SC-AIR
algorithm computes the optimal intra-refresh rate for each
video frame in contrast to standard AIR, where the intra-
refresh rate is a predetermined fixed number of macroblocks
throughout its operation. The information about the ac-
tivity levels of a video scene is determined by examining
different aspects of the motion-active macroblocks. This in-
formation is then coupled with the instantaneous channel
condition factor to decide on the optimum number of intra-
refresh blocks that is required to obtain the best possible per-
formance. The operation of this algorithm has comparable
computational complexity to the standard AIR operation,
and thus it can be suitable for low-latency or real-time video
communications.

The first stage of the SC-AIR algorithm involves extract-
ing the activity information of each frame by means of a set
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of functions, which analyse the scene-activity-related infor-
mation from the input video scene. The second step involves
the modulation of the activity information with a channel
condition function, which represents the signal-to-noise ra-
tio experienced at the downlink W-CDMA channel. The out-
come of this operation determines the optimum number of
intra-refresh blocks required for a frame. The complete SC-
AIR algorithm is formulated as

QOt, j) = (t) - IRR(j), (1)

where Q) represents the number of macroblocks that need
to be refreshed in the motion map of frame j (as described
in Figure 2(b)), for any channel condition at time ¢. IRR(j)
stands for the intra-refresh rate determined from the scene
activity analysis and f(t) is derived from the instantaneous
channel condition. The detailed explanations of these func-
tions are given in the following subsections.

3.1. Activity measurement

In motion compensation-based video coders, the sensitiv-
ity to error can be related to the amount of motion within
a scene [37]. Motion is defined by the motion vectors, and
the activity is associated with the motion. Based on these as-
sumptions, it can be claimed that as the amount of activity
increases in a video scene, an increased number of intra-
refresh blocks may be required to prevent the temporal er-
ror propagation. Thus, activity measurements can be used
for developing an adaptation mechanism to counter the ad-
verse effects of changing channel conditions on the perceived
video quality. The activity measurement technique presented
here forms the core of the SC-AIR transcoding algorithm. It
reveals the required number of intra-refresh blocks for every
predictive frame. In the development of this algorithm, var-
ious standard and in-house produced video test sequences
with different scene activity levels were used. However, due to
space constraints, the discussions of the algorithm presented
in this paper are limited to the two standard test sequences,
namely, “Foreman” and “Students.”

The SC-AIR algorithm is composed of a number of func-
tions which represent the different aspects of the activity
in a video scene. The algorithm performs the primary ac-
tivity analysis using a function named the normalised ac-
tivity index (NAI). In addition, a number of supplemen-
tary functions are also used to shape the output obtained
by the NAI analysis. These functions are namely the motion
macroblock factor and range index. The shaped NAI output
is used to determine the optimum number of intra-refresh
blocks needed for a frame.

Activity index (AI) is a function, which computes the cu-
mulative magnitude of all motion vectors within a frame.
NALI is the normalised variation of the Al function with re-
spect to the number of macroblocks within a frame. This
normalisation is required, so that the NAI measurements of
different video sequences can be comparable with each other.
If the NAT value is high, it is likely that the frame is a part
of a highly active scene, which may indicate the need for
more frequent intra-refresh (e.g., as in the “Foreman” se-

Normalised activity index

1 15 29 43 57 71 8 99 113 127

Frame number

FiGure 3: NAI computation for the “Foreman” stream.

Normalised activity index

1 15 29 43 57 71 8 99

Frame number

FiGure 4: NAI computation for the “Students” stream.

quence) than a low-motion scene (e.g., as in the “Students”
sequence). The NAI function can be written as

Snet [ myi(n) |

i(j) ’
where i(j) is the number of motion-active macroblocks in
frame number j, n is the macroblock number, T represents
the total number of macroblocks in a frame (e.g., 99 for
quarter common intermediate format: QCIF), and mv;(n)
is the motion vector (both in x and y directions) of the nth
macroblock in the jth frame. The NAI computations for the
“Foreman” and “Students” sequences are depicted in Figures
3 and 4, respectively. As can be seen from these figures, the
NAI is able to indicate the activity-level characteristics of
both video sequences.

Nevertheless, the NAI computation on its own is insuf-
ficient in terms of defining the accurate levels of activity in
a video scene. This is because the output of the NAI func-
tion is directly proportional with the motion vector sizes
and inversely proportional with the number of motion mac-
roblocks in a frame. As a result, if macroblocks with relatively
small motion vectors are dominant in a particular frame, the
NAI parameter will yield a small value, indicating low activ-
ity in that scene. This is the case where more frequent refresh-
ing of the scene is required although the NAI result gives low
values (e.g., the last 2 seconds of the “Foreman” sequence).
Alternatively, if there is relatively small number of motion-
active macroblocks but with relatively large motion vectors,

NAI(j) = (2)
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then the NAI value will yield a very large value, indicating
an extreme activity in the scene. In this case, a high intra-
refresh rate will be chosen, which may lead to compromise in
the compression efficiency and degradation in the perceptual
quality.

The empirical studies performed at the development
stage have revealed that the inefficiency of the NAI func-
tion in determining the accurate levels of activity in a video
scene can be compensated using a function called the mo-
tion macroblock factor (8). The product of the NAI and the
0(j) functions determines the activity. The &(j) function is
computed for every frame, and is related to the ratio of the
number of motion macroblocks to the total number of mac-
roblocks in a frame. The use of this function can alleviate the
anomalies in the NAI decision (as in the last 2 seconds of the
“Foreman” sequence). The representation of the §(j) func-
tion is given in

8(j) = oc<1+ @) 3)
where,
(0.75 ifR(j) <5,
1 if 5 < R(j) = 10,
2 if 10 < R(j) < 20,
a=13 if 20 < R(j) < 30, (4)
4 if 30 < R(j) = 40,
5 if 40 < R(j) < 50,
|7 if R(j) > 50,

a is the scaling coefficient, whose value depends on the com-
puted range index (R) function for every frame. The R(j)
function is given in

i(j)

R = Nary

(5)

R(j) stands for the ratio between i(j) and the NAI(j),
and is calculated for every predictive frame. The scaling co-
efficient of the § function is directly proportional with the
outcome of R(j) function. In other words, R(j) is useful in
scaling 6(j), which shapes the NAI output in a way that an
optimum number of refresh blocks are chosen. As seen in
(4), R(j) defines seven different ranges for the scaling coef-
ficient of the §(j) function. These ranges and the weights of
0(j) were determined experimentally by observing the effects
of the W-CDMA channel errors on the video quality with re-
spect to the number of intra-refresh blocks enabled by the
proposed algorithm.

In effect, the ranges defined by the R(j) function corre-
spond to seven different levels of confidence on the NAI de-
cision. As R(j) increases, the confidence on the NAI result
decreases. Hence, as the R(j) results in higher values, §(j)
function needs to be scaled with a higher coefficient. Conse-
quently, these ranges enable a differentiated refreshing prior-
ity between frames with different motion characteristics. For
instance, if a frame contains macroblocks with higher average

R(j) or 8(j) values

31 41

1 11 21 51 61 71 81 91 101 111 121 131

Frame number, j

—— Range index R(j)
—=— Motion macroblock factor §(j)

FIGURE 5: Motion macroblock factor and range index analysis for
the “Foreman” stream.

motion vector magnitude than a frame with the same num-
ber of motion macroblocks but smaller average motion vec-
tor magnitude, then the proposed algorithm will always set a
higher refresh rate. In other words, R(j) function maintains
a balance between the influence of the number of motion-
active macroblocks and their average motion vector magni-
tude in determining the optimum intra-refresh rate.

Figure 5 shows the computed R(j) and 8( ) functions for
the “Foreman” stream. As seen from this figure, the value of
the R(j) function falls into its highest range during the last
2 seconds (i.e., between frame numbers 118 and 134) of the
“Foreman” sequence, indicating the lowest confidence on the
NAI output. That is to say, NAI function indicates low “ac-
tivity” if the number of motion macroblocks is high, but the
magnitude of their cumulative motion vectors is low. Thus,
an appropriate « value should be used in the §(j) function to
compensate for the deficiency of the NAI function. Similarly,
in the region that was indicated as the highest activity region
by the NAI function (i.e., between the 9th and 11th seconds),
the output of the R(j) function falls into its lowest range.
In this way, over-refreshing and consequently degradation
in the compression efficiency are prevented. Other than ac-
counting for these extreme cases, R(j) function is utilised to
assign an accurate weight to the &(j) function, such that the
best possible intra-refresh strategy can be applied.

On the other hand, the low-motion nature of the “Stu-
dents” stream is also reflected on the output of its R(j)
function. As depicted in Figure 6, the output values of this
function here are far less variable than in the case with the
“Foreman” stream. In contrast, the R(j) values for this video
stream are occasionally below 5, which indicates that there
are only a few motion-active macroblocks, and hence the
confidence on the NAI analysis is high.

Having introduced all the functions which play a part
in the activity analysis of the input video streams, the
intra-refresh rate (IRR) required for a given frame can be cal-
culated using the function given in

IRR(j) = 8(j) - NAI(j). ©6)



Sertac Eminsoy et al.

R(j) or 8(j) values
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FIGURE 6: Motion macroblock factor and range index analysis for
the “Students” stream.

IRR(j)

1 15 29 43 57 71 85 99

Frame number, j

—— Foreman
—=— Students

FiGUre 7: The intra-refresh rate computed for the “Foreman” and
“Students” streams.

The results of the computation of this function for
both the “Foreman” and “Students” streams are shown in
Figure 7. As can be observed from this figure, the activity
measurement functions are effective in differentiating be-
tween the activity levels of these two streams and assign par-
ticular number of intra-refresh macroblocks for each frame
accordingly.

3.2. Channel factor

For wireless video communications, the varying channel
conditions should also be considered in determining the op-
timum number of intra-refresh blocks to be used. In gen-
eral, a faster refresh rate is required as the channel conditions
worsen, while a limited number of intra-blocks will suffice
when the channel conditions become better. The informa-
tion on the instantaneous downlink bit-energy-to-noise ra-
tio (Ep/N,) value of the W-CDMA channel is available to the
base station. In the proposed algorithm, this information is
thus assumed to be fed back to the network node that per-
forms the error-resilient video adaptation (i.e., transcoding).
In 3G systems, such feedback can be made available to the

video adaptation node in less than 250 milliseconds of delay
[38].

As presented in (7), the channel factor (t) is a coeffi-
cient, whose values were determined experimentally for var-
ious channel conditions (i.e., E/N,) in W-CDMA. f(¢) is a
time-dependent function which implies that channel con-
ditions may vary over the time. In the exhaustive number
of experiments conducted, only those error patterns corre-
sponding to E,/N, ranging from 6 dB to 10dB were used.
Considering the performance figures presented in [39], it can
be argued that it is not possible to conceive acceptable qual-
ity video communications at E,/N, rates below 6 dB, and
the intra-refresh application thus becomes ineffective. On the
contrary, the effects of errors at E,/N, rates above 10 dB reach
to saturation, and the channel condition factor can remain
the same. As the channel condition worsens, a more aggres-
sive intra-refresh rate should be applied to the video streams
in order to limit the increased error propagation into the fu-
ture frames during transcoding. Conversely, when the chan-
nel conditions start to improve (i.e., E,/N, > 9dB), intra-
refresh should be made less frequent in order not to compro-
mise the coding efficiency by the introduction of unnecessary
number intra macroblocks.

Having tested the output of the IRR(j) function with var-
ious video streams and under different channel conditions,
the following f(¢) values were found to provide the optimum
efficiency for the SC-AIR algorithm operating at the follow-
ing specified conditions:

i . Ep
1. f = = 6dB,
8 i N, 6d
. Ep
1. f = =7dB,
5 i N, 7d
E
B(t) =410 if 2 =8dB, (7)
N,
. Ep
. f =~ =9dB,
0.9 1 N, 9d
. Ep
0.35 — =10dB.
7 TN,

The difference between consecutive Ep/N, values was
chosen to be 1 dB. According to the test results given in [39],
1 dB difference in E;/N, value represents a noticeable change
in the channel conditions. Hence for the SC-AIR algorithm,
any intermediate Ep/N, figure can be rounded to its closest
integer value.

4. ADAPTATION PERFORMANCE EVALUATION
BY COMPUTER SIMULATIONS

The advantages of employing an error-resilient transcoder
(i.e., using HEC, VPR, DP, and AIR) in an EDGE network
were demonstrated in our earlier work [25]. In this sec-
tion, we discuss the transcoding performance using these
tools over the 3G network in Section 4.2 while also pre-
senting the performance evaluation of our proposed SC-AIR
transcoding algorithm in Section 4.3. Therefore, a series of
experiments were conducted using the simulation scenario
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FIGURE 8: Experimentation scenario for the error-resilient video adaptation by transcoding.

shown in Figure 8. In this scenario, the video source lies in
the fixed network and transmits live or stored video con-
tent to subscribers in the 3G network, which uses W-CDMA
technology in its radio access network. The video server
sends the video stream through one of the video adaptation
nodes, which performs the necessary video adaptation for
heterogeneous media transmission. This node operates the
transcoder, and is assumed to be aware of the user profile, re-
quirements, and channel conditions. Consequently, it is ca-
pable of modifying the incoming bit-stream to the required
format. Due to their location, speed, and various interference
sources, mobile users experience time varying channel con-
ditions, as represented by ().

4.1. Simulation setup

In the experiments, two different test sequences were deliber-
ately chosen to comprise two different motion activity prop-
erties: “Students” and “Foreman” with low and high activ-
ity scenes, respectively. The video server depicted in Figure 8
employs an MPEG-4 video encoder, and is set to produce
a single base-layer stream without any rate control (with a
fixed quantisation step size at Q, = 2). The server produces
QCIF-sized video streams encoded at 10frames/s, and with
I-P-P-P.... layout for both video sequences. The duration of
the encoding operation was limited to 13.4 seconds (i.e., 134
frames) for both video sequences. The error resilience op-
tions of the server’s encoder were turned off, as the link be-
tween the source and the transcoder is assumed to be error-
free.

In the experiments performed, the transcoder was con-
figured to convert the incoming variable rate bit-stream (i.e.,
on average at 230 kbits/s for “Students” and 445 kbits/s for
“Foreman”) to a constant bit-rate output at 128 kbits/s. The
adaptation to the wireless channel errors was provided us-
ing the error resilience modules of the transcoder (i.e., DP,
VPR, HEC, and AIR or SC-AIR). It can be argued that if a
fixed number of AIR blocks are used for every frame, a video
packet size of 700 bits is a reasonable value that can be used
for most video sequences given the 128 kbits/s transcoder

output and the W-CDMA channel conditions [25, 40]. Sim-
ilarly, based on the figures presented in [40] and the prelim-
inary study performed, an AIR frequency of 10 blocks was
decided to be used in the first set of experiments, where the
standard AIR was used for the error-resilient video adapta-
tion tests.

The effects of W-CDMA physical link layer on the
transcoder’s downlink was simulated by corrupting the
transcoded video streams with appropriate error patterns.
These error patterns were produced by the in-house devel-
oped W-CDMA physical link layer simulator [39]. They are
used for emulating the downlink channel conditions for a
specific Ey/N,, channel coding scheme, spreading factor (SF),
propagation environments, mobile speed, and power control
availability. In the experiments, because of the transcoder’s
target output bit-rate selection, the SF was determined as 16.
In addition, the channel coding scheme was set to 1/3 con-
volutional coding (CC 1/3) in Vehicular-A propagation en-
vironment at 50 km/h mobile speed without power control.
The video performance in this environment is similar to that
in Pedestrian-B environment with power control [41]. The
channel E,/N, was selected as 9 dB, which corresponds to a
channel BER of 6 X 1072 [39].

Five different experiments were carried out for each video
sequence in the first set of tests, whose results are pre-
sented in Section 4.2. These experiments involved progres-
sive application of different combinations of the ER tools on
the 128 kbits/s rate controlled (e.g., constant bit-rate) video
streams. Firstly, a rate control transcoded nonresilient video
stream was transmitted over the error-prone wireless link. In
the second experiment, transcoding was performed using the
VPR and HEC tools. This was followed by the repetition of
the same experiment with the introduction of the DP tool.
Finally, the full resilience was provided by adding AIR on top
of all the other resilience tools applied. While testing the pro-
posed transcoding system with the SC-AIR method in the
second set of tests, whose results are presented in Section 4.3,
the SC-AIR block of Figure 1 was employed instead of the
standard AIR block in addition to the DP, VPR, and HEC
tools.
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TABLE 1: Error-resilient transcoding test results for different resilience tool combinations.

ER Tools
Avg. PSNR
No ER VPR+HEC VPR+HEC+DP  VPR+HEC+ DP + 10AIR  Error-Free
Foreman 25.67 dB 26.29 dB 28.45dB 31.33dB 33.98 dB
Students 26.57 dB 27.21dB 33.24dB 34.02dB 36.35dB

In the preliminary work performed, it was observed that
25 simulation runs for each test are adequate for the cor-
rect representation of the overall channel effects on the video
quality. In other words, each transcoder output was cor-
rupted with channel errors for 25 times with the same set
of seeds for each different test. The corrupted video streams
were then decoded, and the resulting video quality was mea-
sured in terms of average peak-to-peak signal-to-noise ratio
(PSNR). The obtained results for the two sets of tests con-
ducted (i.e., with standard AIR and SC-AIR) are discussed in
the following sections.

4.2. Error-resilient video adaptation performance
with standard AIR transcoding

Exhaustive simulations were run to test the performance of
the transcoder with the ER tools. The average PSNR mea-
surements of all of the five error resilience tests are pre-
sented in Table 1, which demonstrates the relative perfor-
mances of the different combinations of transcoding oper-
ations. This procedure is applied both to the “Foreman” and
“Students” sequences. The PSNR results reveal some inter-
esting findings. The use of combined VPR and HEC can pro-
vide better video quality than the non-error-resilient stream.
The use of these tools improves the PSNR results on aver-
age by 0.62 dB for the “Foreman” and 0.64 dB for the “Stu-
dents” streams compared to the “No ER” case. In fact, for
the given source rate, channel coding and propagation envi-
ronment, E/N, value of 9 dB can be considered to represent
a moderate channel condition. Therefore, the performance
gain obtained from using the combined VPR and HEC tools
is expected to become more distinctive as the channel condi-
tions worsen (i.e., as E;/N, decreases).

On the other hand, the use of DP brings in a consider-
able performance gain in the decoded video quality. How-
ever, it should be noted that DP is always used with VPR,
and optionally together with HEC. Here, a combined DP,
VPR, and HEC resilience tool is utilised for providing robust
transmission of the video streams over the error-prone W-
CDMA channel. The addition of DP reduces the amount of
video information discarded by the decoder in the case of
errors affecting the texture information. As can be observed
from the figures presented in Table 1, the DP tool together
with VPR and HEC provides an improved PSNR perfor-
mance on average by 2.16 dB for the “Foreman” and 6.03 dB
for the “Students” streams, over the “VPR + HEC only” case.
The difference in the performance gains is due to the mo-
tion activity differences between the two sequences. For the
bit-rate of 128 kbits/s at the transcoder output, only 3.1%
of the total compressed bits are motion information for the

“Students” stream while this figure is 11.3% for the “Fore-
man” stream. Thus, the “Students” stream contains much
more texture information than “Foreman.” This means that
the likelihood of channel errors corrupting the motion infor-
mation in the “Foreman” stream is considerably higher than
that in the “Students” stream, which has a limiting factor on
improving the transcoding video quality using DP.

DP alone is not capable of salvaging the video packet con-
tents when an error occurs in the motion partition of this
video packet. Thus, the combined DP, VPR, and HEC tool
results in an average PSNR figure of 33.24 dB for the “Stu-
dents” stream (i.e., around 6.5 dB better than the “No ER”
performance), and 28.45 dB for the “Foreman” stream (i.e.,
around 3 dB better than the “No ER” performance).

The final ER tool used in the experiments was the stan-
dard AIR. It is shown that the addition of the AIR tech-
nique to the combination of the other tools enables a con-
siderable performance gain in the decoded video quality, as
can be seen both in the PSNR measurements and subjec-
tive tests. The overall performance gains in the transcoded
video qualities using all of the ER tools amount up to 5.66 dB
for “Foreman” and 7.45dB for “Students” over transcoding
without ER. Furthermore, it can be observed from the objec-
tive results that while AIR addition makes a significant dif-
ference on the quality of the decoded “Foreman” stream (i.e.,
average PSNR result is improved by 2.88 dB) compared to
the “HEC + VPR + DP” transcoding case, the “Students”
stream’s average PSNR result is improved by 0.78 dB only.
From this result, it can be argued that video streams with
relatively higher motion activity can obtain a higher benefit
from AIR than those with lower motion activity. Meanwhile,
the effectiveness of the DP tool also decreases as the texture to
motion information ratio in a video packet decreases, which
in return limits the overall performance.

The PSNR results have also been supported with the as-
sociated subjective test results, as shown in Figures 9(a)-9(e)
for the “Foreman” stream. These results demonstrate that
the use of ER transcoding, particularly with the addition of
AIR tool significantly improves the perceptual quality. Sim-
ilar subjective test results have also been obtained for “Stu-
dents.”

4.3. Error-resilient video adaptation performance
with SC-AIR transcoding

The usefulness of the ER transcoding tools and in partic-
ular the effectiveness of the AIR algorithm in limiting the
temporal error propagation in video communications over
W-CDMA networks have been demonstrated in the previ-
ous section. Subsequently, a series of tests were performed
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FIGURE 9: Subjective test results of the 90th frames of the transcoded “Foreman” stream for E,/N, = 9 dB: (a) error-free; (b) No ER; (¢) HEC

+ VPR; (d) HEC + VPR + DP; (¢) HEC + VPR + DP + 10AIR.

to demonstrate the effectiveness of the SC-AIR transcoding
algorithm in comparison to the standard AIR algorithm-
based video transcoding. Two versions of the same error-
resilient transcoder architecture were used; one was set to ex-
ecute VPR, HEC, DP, and AIR, as presented in Section 4.2,
while the other operated with the VPR, HEC, DP, and SC-
AIR algorithms. In this way, it is possible to relate the per-
formances of AIR and the proposed SC-AIR algorithms for
the aforementioned channel conditions. However, in order to
make a fair comparison, the optimum operation point of the
AIR algorithm needed to be determined. For this purpose,
numerous preliminary tests were performed to find the most
effective fixed AIR frequency. The AIR algorithm was tested
for each sequence and under various channel conditions (i.e.,
between E,/N, = 6dB and 10 dB), and a range of fixed AIR
rates were listed experimentally, which produced the highest
average PSNR values. Depending on the video sequence, the
intra-refresh rate of the standard AIR algorithm was incre-
mented in steps of 2 to 4 macroblocks to find the optimum
operation points. Having determined four possible optimum
operation points for the standard AIR algorithm, the SC-AIR
performance was tested with the same video sequences and
the channel errors. Tables 2 and 3 show the results of the
comparison tests performed for the SC-AIR and the stan-
dard AIR algorithms using the “Foreman” and “Students” se-
quences, respectively.

As can be seen from these results, transcoding with
the SC-AIR algorithm has resulted in better video qualities
(i.e., in terms of PSNR) than those of the transcoding with
the standard AIR algorithm in all of the experiments per-
formed. However, it should be noted that with the chan-
nel condition feedback, the SC-AIR algorithm calculates the

TaBLE 2: Transcoding test results for the “Foreman” stream using
standard AIR and SC-AIR.

Foreman
E,/N, =6 dB
Intra-refresh algorithm | AIR  AIR  AIR  AIR SC-AIR
Intra-blocks per frame 24 28 32 36 avg.29
Avg. PSNR (dB) 21.56 21.81 22.15 22.11 2237
E,/N, =7 dB
Intra-refresh algorithm | AIR AIR AIR AIR SC-AIR
Intra-blocks per frame 24 28 32 36 avg.25
Avg. PSNR (dB) 26.49 26.38 26.43 26.54 26.81
Ey/N, =8dB
Intra-refresh algorithm | AIR  AIR  AIR AIR SC-AIR
Intra-blocks per frame 12 16 20 24 avg. 18
Avg. PSNR (dB) 29.93 30.21 30.33 30.06 30.41
E,/N, = 9dB
Intra-refresh algorithm | AIR  AIR  AIR AIR SC-AIR
Intra-blocks per frame 8 12 16 20 avg. 17
Avg. PSNR (dB) 31.01 31.25 31.28 31.16 31.36
Ey/N, = 10dB
Intra-refresh algorithm | AIR AIR AIR AIR SC-AIR
Intra-blocks per frame 4 8 12 16 avg. 7
Avg. PSNR (dB) 33.04 33.08 32.86 32.66 33.15

optimum number of intra-refresh blocks dynamically and
automatically. Conversely, the standard AIR algorithm rates
are fixed and configured manually to match the performance
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TABLE 3: Transcoding test results for the “Students” stream using
standard AIR and SC-AIR.

Students
Ey/N, =6 dB
Intra-refresh algorithm | AIR  AIR  AIR  AIR SC-AIR
Intra-blocks per frame 12 15 18 21 avg. 5
Avg. PSNR (dB) 26.62 26.74 26.83 26.30 26.96
Ey/N, =7dB
Intra-refresh algorithm | AIR  AIR  AIR  AIR SC-AIR
Intra-blocks per frame 3 6 9 12 avg. 4
Avg. PSNR (dB) 29.80 30.54 30.47 30.45 30.73
Ey/N, =8dB
Intra-refresh algorithm | AIR  AIR  AIR AIR SC-AIR
Intra-blocks per frame 3 6 9 12 avg. 3
Avg. PSNR (dB) 32.69 32.76 32.62 3244 33.13
E,/N, =9 dB
Intra-refresh algorithm | AIR  AIR AIR  AIR SC-AIR
Intra-blocks per frame 8 12 16 20 avg. 2
Avg. PSNR (dB) 3427 3431 3423 34.04 34.62
Ey/N, = 10dB
Intra-refresh algorithm | AIR AIR AIR AIR SC-AIR
Intra-blocks per frame 2 4 6 8 avg. 1
Avg. PSNR (dB) 35.71 34.47 35.39 3534 35.78

of the SC-AIR as much as possible, as described in the pre-
vious paragraph. As can be seen from the results presented
in the two tables, maximum of 1.31 dB and 0.81 dB improve-
ments were noted for the “Students” and “Foreman” streams,
respectively. These results show that even with the manual
configuration of intra-refresh rates for each video sequence
and the channel condition, the standard AIR-based transcod-
ing was outperformed by the SC-AIR transcoding. More-
over, in an actual video communications scenario, such man-
ual configuration will clearly not be feasible, and the differ-
ence in the performances of the two algorithms will hence be
much higher.

The major strength of the SC-AIR algorithm comes form
its ability to compute the activity levels in a video scene while
also taking into account the time varying W-CDMA channel
conditions, so as to adjust its refreshing strategy accordingly.
In this respect, its advantages are twofold: firstly, temporal
error propagation is decreased by intra-refreshing the right
number of macroblocks for each frame, and secondly, the
compromise in the compression efficiency is minimised by
preventing over-refreshing to take place (i.e., in better chan-
nel conditions).

4.4. Complexity analysis

In our early work, steps taken to simplify the inherent com-
plexity of the error-resilient CPDT architecture were ad-
dressed [25]. In this section, the relative run-time complex-
ities of different error resilience tools are presented. For this
purpose, the rate controlled (i.e., at 128 kbits/s) and error-

resilient transcoding operation was executed on a PC with
an Intel Pentium 4 processor at 3.19 GHz, with 512 kbytes
of L2 cache, 1Gbyte of memory running the Windows XP
operating system. The operation speed of the transcoder is
represented with the number of frames transcoded per sec-
ond (fps). With the channel condition set to E;/N, = 9dB,
the error resilience tools were progressively turned on and
operation speed for each case was noted. The run-time com-
plexity analysis of the transcoder for both the “Foreman” and
“Students” sequences are given in Table 4.

The obtained results reveal that the DP tool is the most
complex of all other resilience operations while VPR and
HEC tools constitute negligible complexity. These figures
also show that the SC-AIR algorithm does not introduce
measurable run-time complexity compared to the standard
AIR algorithm. In other words, the quality gain that can
be obtained by employing the SC-AIR algorithm in the
transcoder does not pose an additional computational cost
compared to the standard MPEG-4 error resilience intra-
refresh tool (i.e., AIR algorithm). As a result, the delay over-
head introduced to the end-to-end communications delay is
kept to minimum. Thus, it can be argued that the SC-AIR
transcoding operation is ideal for use in low-latency video
communications over the 3G wireless access networks.

5. CONCLUSIONS

In this paper, a comprehensive transcoding system has been
presented to provide video adaptation for both error-resilient
and rate-controlled video access/distribution from fixed to
3G wireless networks. Error-resilient video adaptation has
been provided by a combination of a number of error re-
silience tools, such as HEC, VPR, DP, AIR, and SC-AIR.
It has been shown that the developed error-resilient video
transcoder is efficient in providing protection for the com-
pressed video streams prior to their transmission over noisy
channels in heterogeneous inter-network communication
scenarios. The performance of the error-resilient video adap-
tation system was tested over a simulated 3G W-CDMA
channel, and the results have shown that the optimum qual-
ity performance is attainable when all the tools are used to-
gether. Compared to the nonresilient error-prone case, the
gain in the measured video quality performance (i.e., in
terms of PSNRs) has been demonstrated to be around 5 to
8 dB depending on the scene activities of the tested video se-
quences. With this finding in hand, a new W-CDMA spe-
cific intra-refresh algorithm, namely SC-AIR, was also devel-
oped and incorporated into the transcoding system, which
optimised the number of intra-blocks in a transcoded video
frame based on the scene activity and time varying wireless
channel conditions. Through exhaustive experimentations,
it has been demonstrated that for a given noisy 3G wireless
channel condition, SC-AIR transcoding can yield better per-
formances in terms of received video qualities compared to
those obtained using constant frequency AIR algorithm (i.e.,
conventional AIR tool). The strength of the SC-AIR-based
transcoding comes from the fact that the SC-AIR algorithm
has modelled the effects of the simulated W-CDMA channel
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TaBLE 4: Complexity analysis of the transcoder’s ER tools.

ER Tools No ER VPR + HEC VPR + HEC + DP VPR + HEC + DP + AIR VPR + HEC + DP + SC-AIR
Foreman@128 kbits/s 204 fps 204 fps 175 fps 168 fps 168 fps
Students@128 kbits/s 232 fps 232 fps 195 fps 195 fps 195 fps

and the video scene activity thoroughly, and thus the oper-
ation of the transcoder has been designed to be fully adap-
tive to the varying channel conditions as well as to the scene
activity inherently embedded into the video information. In
addition, it was shown that SC-AIR does not introduce mea-
surable run-time complexity compared to the standard AIR
algorithm. Thus, it is envisaged that SC-AIR-based transcod-
ing can be employed in low-latency video adaptation appli-
cations.
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