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1. INTRODUCTION

The problem of blind source separation has attracted a lot
of attention in the last years due to its applicability to many
fields, such as digital communications, pattern recognition,
and biomedical engineering [1].

Since the pioneering work by Hérault et al. [2], a myriad
of different techniques for source separation has been devel-
oped. In the great majority of the works, the mixing process
is modeled as an instantaneous linear system. Despite its sim-
plicity, an analysis of the vast literature on the subject clearly
attests that this simple linear instantaneous model can be ap-
plied to a large number of scenarios with good results. Even
highly complex systems, such as those found in biomedical
signal processing, can be surmised to suit a framework of
this sort (see, for instance, [1, 3, 4] and references therein
for more details on applications and reviews about the exist-
ing separation criteria). However, some mixing systems are
of a more complex nature, and, as a consequence, cannot be
modeled simply as linear combination of the instantaneous
source signals (which originates the notation instantaneous
mixture). Indeed, there are practical instances in which the
measured signals must necessarily be understood as being

formed by a combination of different sources and delayed
versions of them. A model of this kind bears a strong resem-
blance with the idea of convolution and, in the case of blind
source separation, this is exactly the reason why it is usually
designated by the name of convolutive mixture.

A typical situation in which convolutive mixtures are
found arises, for instance, when a set of microphones is used
to detect different sources in a reverberant environment; the
most accurate description of the traditional cocktail party
problem [3]. Another application emerges in digital commu-
nication systems wherein several users transmit wideband
signals. When the coherence time of the channel is greater
than the propagation time of the multiple signals, the phe-
nomenon of intersymbol interference (ISI) will be a relevant
factor and, consequently, the notion of convolutive mixture
will be of paramount importance in the process of modeling
the mutual influences of the different users (cochannel inter-
ference) and the ISI [5].

Convolutive mixtures are much more difficult to sepa-
rate, since the usual assumption of independence between
the sources must be augmented by hypotheses concerning
the statistical independence (or dependence) between the de-
layed versions of a given source. The complexity of the overall
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separation problem can be “measured” by the number of
proposed solutions thereto in the literature, which is con-
siderably smaller than the number of techniques belonging
to the context of instantaneous mixtures. Most of the ap-
proaches are related to the use of contrast functions based on
the cumulants of the pertinent signals [6-9] or on some sort
of modification in the information-maximization criteria to
allow dealing with the delayed copies of the source signals
[10]. A common factor shared by all these approaches is that
they employ the same structure of the mixture to perform
the separation of the signals.

In this paper, we propose a two-step technique for the
case in which all sources are i.i.d., that is, based on a pre-
diction paradigm, thus exploring the temporal structure of
the observed samples. Our approach makes use of nonlin-
ear prediction-error filters (NPEFs) to convert the convolu-
tive problem into an instantaneous one. Therefore, the use of
a nonlinear predictor can be understood as a preprocessing
stage of a more general separation method. In contrast with
related approaches found in [5, 11], we apply an independent
nonlinear error-prediction filter to each observed sequence,
hence being a useful preprocessing technique for underdeter-
mined mixtures or even a single-channel case.

The paper is structured as follows. In Section 2, we dis-
cuss the fundamentals of the problem of source separation
of convolutive mixtures. In Section 3, we review some con-
cepts about nonlinear prediction and present our approach
to solve the convolutive problem. In Section 4, the adopted
nonlinear structure and training algorithm are presented.
The simulation results are shown and discussed in Section 5,
and, in Section 6, our conclusions and final remarks are
stated.

2. PROBLEM STATEMENT

Let s1(n),s2(n),...,sm(n) denote M mutually independent
source signals and let x;(n),x2(n),...,xn(n) be mixtures of
the original sources, that is,

xi(n) = ©[s1(n),...,smy(n)], i=1,...,N, (1)

where O© represents a function with or without memory. The
main goal of blind source separation consists of recovering
the original source signals based solely on the observed sam-
ples of the mixtures.

In its simplest form, the mixing process is modeled as a
linear, memoryless system, and it is assumed to have the same
number of sources and mixtures (in contrast with the under-
determined case, in which N < M), that is,

x(n) = A - s(n), 2)

where

x(n) = [x1(n),x2(n),...,xp(m)],
s(n) = [s1(n), (), sm(m)]",

and A corresponds to the mixture matrix whose dimension
is M X M.

Thus, in order to recover the sources, one can devise a
separation system that consists of a matrix W such that the
vector z(n) = W - x(n) contains estimates of the original sig-
nals. Under the aforementioned independence hypothesis, it
is possible to understand this problem as being equivalent to
that of finding the matrix W which renders the components
of z(n) as independent as possible. This approach, known as
independent component analysis (ICA) [12], ideally permits
the recovery of the latent sources up to scaling and permuta-
tion ambiguities [1].

Even though the model presented in (2) has been studied
thoroughly in a number of practical contexts [1], it may not
be suitable for some applications in which the mixing pro-
cess is known to be of a “convolutive” nature (as in the case
of a digital communication channel) rather than being a sim-
ple linear combination of the present samples of the sources.
This limitation gave rise to the convolutive mixture model,
which can be understood as an extension of the instanta-
neous model (2) to the case wherein each observed signal
x(n) depends not only on the present value of s(n), but also
on delayed samples of the sources

L-1
2(n) = > A -s(n—k), (4)

k=0

where Ay denotes the mixing matrix associated with delay k.
Thus, each observed signal x;(#n) can be written as

L-1 M
xi(n) = > S AP si(n - k), (5)

k=0 I=1

with A,((”l) denoting the element (i,1) (row, column) of the
mixing matrix Ax. Consequently, the observed signal x;(n) is
composed of a linear combination of filtered versions of the
sources.

The solution in this case consists of a set of matrices W
that produces an estimate of the sources in accordance with
the following equation:

M-1

z(n) = Z Wi - x(n—k). (6)

k=0

As in the case of an instantaneous mixture, independence
of the components of z(n) is still a sufficient condition to
ensure effective separation [12]. However, it is important to
note that the problem is a little more involved than the in-
stantaneous one. In addition to the scaling and permuta-
tion ambiguities, there may be a filtering ambiguity as well
[1, 3, 4]. This is the reason why we will henceforth tacitly as-
sume that the discrete-time source signals are composed of
i.i.d. samples.

3. LINEAR AND NONLINEAR PREDICTION
APPROACHES

The rationale of the prediction task is, in simple terms, to es-
timate future samples of a given time series from its present
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FiGuRre 1: Prediction-error filter.

and past values. In signal processing, this task is usually un-
derstood as a filtering problem whose essence is the project of
a device called predictor. In mathematical terms, a predictor
is characterized by an input-output relationship of the form
y(n) = Flx(n—1),x(n—2),...,x(n — N)J, (7)
where x(n) is the input signal, N — 1 is the order of the pre-
dictor, and y(n) = F(-) is a mapping chosen in accordance

with the idea of minimizing the expected value of the square
of

e(n) = x(n) — y(n), (8)

which is called prediction error. The adoption of this super-
vised Wiener-based approach [9] allows us to establish yet
another relevant concept: that of a prediction-error filter, the
output of which is the signal defined in (8). These ideas are
depicted in Figure 1.

Although prediction itself is a very important research
topic, here our interest lies specifically on its relation with
another classical filtering problem: that of blind equalization.
In order to clarify this connection, the relevance of which will
soon become patent, let us briefly present the fundamentals
of the equalization problem.

Suppose that a transmitted signal s(n) is sent through
a given communication channel and received as a distorted
version x(n). The receiver can use a filter, the equalizer, to
produce an estimate as reliable as possible of the original
message. The problem of designing an equalizer without re-
sorting to supervised training (i.e., a blind equalizer) has
been a major research topic for many years. See, for instance
[13] and references therein. A fairly well-known fruit of these
efforts is exactly the key to relate a prediction-error filter
to an equalizer. Suppose that the transmitted signal, s(n), is
formed by i.i.d. samples, and that the channel is modeled as
a linear filter whose impulse response is h(n). In this case,
it is possible to show that a linear prediction-error filter can
play the role of an equalizer if the channel is minimum phase
[9, 14, 15]. This restriction is, in a certain sense, an emblem-
atic expression of the limited applicability of second-order
statistics to unsupervised problems. Nonetheless, as shown
in [16, 17], this limitation can be overcome if the predic-
tor and, consequently, the prediction-error filter are nonlin-
ear structures. In other words, it is possible to use nonlinear

prediction-error filters as equalizers of nonminimum phase
channels (notice that, in this case, there will be an implicit
use of higher-order statistics), which reveals that the afore-
mentioned restriction is related to the nature of the adopted
filtering structure, and not to the solidity of the prediction
criterion.

In order to analyze the viability of using nonlinear pre-
diction-error filters as equalizers, let us consider the input-
output relationship of a linear channel:

x(n) = hos(n) + his(n — 1)+ -+ -+ hy_1s(n—k)

-1
= Z his(n — k). ©)
k=0

If we return to (7), it will become clear that the output of
a predictor with N inputs will be
y(n) = Flx(n—1),x(n—2),...,x(n — N)|
10
=P[s(n—1),s(n—2),...,s(n— N —L+1)]. (10

Notice that the output is a function P(-) of s(n — 1),
s(n—2), and so forth, but not of s(n). Notwithstanding, as at-
tested by (8), this device will be designed in accordance with
the idea of minimizing an error signal that is a function of
s(n). Given the i.i.d. character of this signal, we are led to the
following conclusion.

If the predictor is a structure endowed with a sufficient de-
gree of flexibility, the prediction error will tend to be equal to the
signal s(n) [16], the “only information” to which the predictor
“has no access.”

This section would be no more than a review of the
present state of the literature if it were not for a noticeable
degree of similarity between (5) and (9), which allows us to
comprehend the model of a convolutive mixture as an ex-
tension of the classical scenario of SISO (single-input/single-
output) equalization to the case of multiple sources and sen-
sors [4]. This can be promptly verified if we consider the sig-
nal provided by the ith sensor according to (5) with M = 1.

If we assume, in agreement with the spirit of our previous
discussion, that, apart from being mutually independent, the
sources are composed of i.i.d. samples, it is straightforward
to conceive a direct extension of the prediction-based equal-
ization framework to the context of source separation. Let us
suppose that there is a prediction-error filter with N + 1 in-
puts connected to the output of each sensor. From (5), we
obtain

yi(n) = Flxi(n = 1),xi(n = 2),...,x(n - N)]
11
=P[s(n—1),s(n—2),...,s(n— N —L+1)]. (a
Since the prediction error would be, in this case,
ei(n) = xi(n) — yi(n)
= O®[s(n),s(n—1),...,s(n—N - L+2)] (12)

—P[s(n—1),s(n—2),...,s(n—N—-L+1)],
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FiGure 2: Converting a convolutive mixture problem to an instan-
taneous one.

it is licit to conclude that, if a sufficiently flexible structure to
conclude the separation was employed, the error would tend
to be equal to

M
eiopt(n) = %i(n) = > A si(n), (13)
=1
or, equivalently,
eopt(”) =Ao- S(I’l), (14)
where eopt(”) = [el,opt(n): eZ,opt(”)) e eM,opt(n)]T~

In (14), we find the essence of our proposal: effective
prediction-error filters can “transform” a convolutive mixture
into an instantaneous one. In other words, the project of a
bank of nonlinear prediction-error filters (one per sensor, as
indicated in Figure 2) in accordance with this spirit engen-
ders a sort of “preprocessing” which, ideally, allows the in-
fluence of past samples of the sources to be eliminated from
the problem. After this preprocessing step, conventional ICA
methods would be able to conclude the separation.

It is possible to consider the convolutive problem as a
kind of instantaneous problem with more sources than sen-
sors (the idea, in this case, is to think of each independent
signal or delayed version as a source) [4]. However, this con-
ception does not take advantage of the relationship between
a signal and its delayed versions, which, on the other hand,
is exactly the basis of the prediction approach. This fact in-
tuitively explains how a problem that appears to be “sub-
parametrized” can, at least from a theoretical standpoint, be
transformed into a conventional ICA problem.

4. FUZZY PREDICTION-ERROR FILTER

Having thus exposed the fundamentals of our proposal, it is
time to consider in more detail some aspects of its imple-
mentation. A natural first step in this direction is to choose
an adequate filtering structure to play the role of the nonlin-
ear predictor. In this paper, our choice fell on a fuzzy filter, a
fact that can be a priori justified on two capital bases.

(1) Fuzzy filters are flexible structures endowed with uni-
versal approximation capability [18].

(2) Fuzzy filters were employed with success in the re-
lated context of prediction-based nonlinear equaliza-
tion [17].

In simple terms, a fuzzy filter is a nonlinear filtering
structure capable of processing information in conformity
with a basis of logical rules that employ nonbinary member-
ship functions (fuzzy sets) [18]. If these membership func-
tions are Gaussian, product inference and centroid defuzzi-
fication are utilized, it is possible to obtain an input-output
mapping of the form

2
B Z?ﬁl w1 HT:] eXp ( - |xj - Cj’l| /2012’1)

y(n) 2
ST exp (= | = ca] */207)

> (15)

where N, and m are the numbers of rules and inputs of the
fuzzy system. In (15), it is noticeable that the free parameters
of this structure are the centers of the Gaussian membership
functions, c;, their variances, 0]2,1, and the “output weights,”
wy. The manifold nature of these parameters suggests a train-
ing process divided into two distinct stages, namely, choosing
centers and variances and finding the adequate set of out-
put weights. According to our previous discussion, our aim
is to choose these parameters in order to minimize the mean-
square value of the prediction-error signal defined in (8). Let
us now discuss how we will attempt to fulfill this task.

4.1. Learning algorithms

The problem of choosing the centers of membership func-
tions is typically associated with that of finding regions of
the input space which are representative of the available data.
In the context of digital communications, since the source
samples belong to a finite alphabet and, moreover, the mix-
ing process involves a limited number of delayed versions,
the observed signal will also be restricted to a finite alpha-
bet. Therefore, if we wish to process this signal using a filter,
its input vector will necessarily be contained in a finite set of
possibilities, the elements of which are called channel states.

In the presence of additive noise, this scenario becomes
somewhat more complicated, since, as a rule, there will be a
continuum of possible input vectors. Nevertheless, it is still
possible to assume that there are “clouds of noisy samples”
around the very same channel states. For instance, consider
a situation in which two binary independent source signals
are filtered by the FIR models 1+0.6z7! and 0.5+ 1.2z ! and
combined to form a mixture x;(#). Suppose that we wish to
use a filter with two inputs, x;(n— 1) and x; (n —2), to process
this signal. In this particular case, there will be 64 distinct
two-dimensional channel states, all of which are represented
in Figure 3. In this figure, it is also shown how the presence
of additive white Gaussian noise (AWGN) of variance equal
to 02 = 0.01 would originate “clouds” of data around these
deterministic states.

Under these circumstances, it is quite appealing to deem
representative a situation wherein each state is associated
with a multidimensional Gaussian, with variances propor-
tional to the dispersion of each “cloud” around the real states,
given by the variance of the noise o2. This, apropos, is a most
relevant step in the project of the celebrated Bayesian equal-
izer [19]. In the problem at hand, that is, that of nonlinear
prediction in the eventual presence of AWGN, it is possible
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F1Gure 3: Channel states and noisy data.

to demonstrate that this option is not only intuitive, but also
solid from a theoretical standpoint [17]. As a consequence,
the first stage of the training process of the nonlinear pre-
dictor will consist of estimating the states generated by the
convolutive mixture.

In signal processing applications, a task of this sort is
usually accomplished with the aid of a clustering technique.
Given a set of data vectors {x(1),x(2),...,x(n)}, the objec-
tive of a clustering algorithm is to find the set of centroids
R = {r},r,...,rr} that minimizes the following cost func-
tion:

K
2
J=2> > lxi—xll, (16)
j=1iec;
where C; corresponds to the jth cluster, and
r ! Z X (17)
i =N 2 X
N iECj

Ideally, the solution R obtained from the minimization
of (16) should be identical to the set of channel states. How-
ever, traditional optimization methods, such as the k-means
algorithm [19], may not converge to the optimal solution
due to the multimodal character of the cost function (16),
as pointed out by Merz [20].

Since the filtering problem is, from the “standpoint of the
output weights” (15), linear in the parameters, it is of capi-
tal importance that the choice of the centers of the nonlinear
membership functions be successful. In other words, an ap-
propriate estimation of the channel states is of vital impor-
tance to the design of a fuzzy predictor. Consequently, the
efficiency of the proposed training strategy will strongly de-
pend on the ability of the adopted clustering algorithm to
avoid convergence to local minima. Motivated by this cru-
cial issue, we decided to resort to a robust clustering tech-
nique based on the concept of iterated local search (ILS) [20],
which will be described in the sequel.

Begin
Initialization: Create Starting solution R;
R = Local search (R);
Repeat
R’ = R+ Random Disturbance (Mutation);
R’ = Local search (R);
IfJ(R') < J(R) then R = R’;
Until the stop criterion is met
Return R;
End

ArcoritaM I: ILS algorithm.

4.2. Iterated local search (ILS) approach for clustering

In order to avoid convergence to local minima, the ILS clus-
tering technique attempts to find the optimal solution by
combining concepts drawn from the field of evolutionary
computation and efficient local search techniques like the
k-means algorithm. A brief description thereof is shown in
Algorithm 1.

In a certain sense, the ILS operates on two different lev-
els: one that consists of an efficient local search, performed
in our implementation by the k-means algorithm, and an-
other that is founded on an evolutionary-based search, which
is responsible for the global search capability inherent to the
technique. The combination of these features produces an al-
gorithm with a very good balance between exploration and
exploitation of the search space.

The main drawback of the ILS algorithm is its higher
computational complexity when compared to k-means in
isolation [20]. As a result, in situations characterized by an
elevated number of inputs and sources, as well as by strin-
gent real time requirements, to use the ILS algorithm may be
rather impractical.

4.3. Adjusting the weights of the fuzzy predictor

After this initial clustering stage, there remain two issues to
be addressed: to choose the variances of the Gaussian func-
tions and the output weights. The first one can be estimated
using the results obtained with the ILS algorithm. Once we
have the centers of the clusters, it is straightforward to evalu-
ate the dispersion of the data around each cluster, and there-
fore obtain the variances 0%1. The second aspect, however,
must be considered in more detail. After the determination
of both the centers and variances of the Gaussian functions,
the output of the predictor can be rewritten as follows:

N,
y(n) = > wi-y, (18)
=1

where y; is given, in accordance with (15), by

- [Tiexp (= |x; - cj,1|2/202)
- 5 :
S T exp (1 = cja| */202)

v (19)
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In (18), we show that, at this point, the filtering problem
becomes simply a matter of linearly combining a number of
fuzzy-basis functions y in a manner consonant with the spirit
of the prediction criterion. This problem, as stated earlier, is
linear in the parameters, which allows us to resort to a vast
amount of tools and results belonging to the classical adap-
tive filtering framework [18]. In our implementation, we use
arecursive least squares algorithm (RLS) to adapt the weights
of the nonlinear predictor.

5. RESULTS

In order to analyze the validity of the proposed technique,
simulations were conducted in three distinct scenarios. In
the first and second one, we considered the existence of two
sources and a mixture system with memory equal to two
(L = 2). In the third, a case with two sources and L = 3
was studied.

The output signals of the nonlinear prediction error fil-
ters are used as inputs for the fastICA algorithm [1], in order
to complete the separation process. In all the situations, the
efficacy of the obtained solutions was quantified via the fol-
lowing criterion:

K
MSE; = % Silyi s’} (20)
n=1

where y; and s; correspond, respectively, to the ith estimated
and true source signal, and K is the number of samples. The
rationale of this measure is simply to reveal the degree of ef-
fectiveness of the discussed preprocessing followed by a tradi-
tional ICA technique in accomplishing the task of recovering
the source signals.

In accordance with our previous discussions, the source
signals are considered to be independent and identically dis-
tributed (i.i.d.) sequences of symbols belonging to a binary
{£1} alphabet.

5.1. First scenario: paraunitary mixture system
with memory L = 2

In the first case, there are two sources to be separated from a
mixture system with memory L = 2, with

0.79 —0.55 ~0.15 —0.21
Ao = [0.21 0.15}’ A= [0.55 0.79}’ (21)

and noise variance 6> = 107*. This is an example of a parau-
nitary channel, and was generated as indicated in [7].

In this first scenario, we employed our proposal and also
the technique introduced in [8]. The results obtained are ex-
hibited in Table 1, wherein the first row indicates the MSE
(20) associated with the pair of predictors in the ideal case,
that is, when all channel states are perfectly known, the sec-
ond row contains the MSE (average of 20 independent ex-
periments) of the two nonlinear prediction-error filters de-
signed in accordance with the method described in Sections
3 and 4, and the third indicates the MSE of the unprocessed

TaBLE 1: First scenario.

MSE, MSE,
Ideal case 0.001 0.002
Adapted case 0.0567 0.0490
Unprocessed 0.4129 0.4141
Algorithm in [8] 0.0548 0.0379
TaBLE 2: Second scenario.

MSE, MSE,
Ideal case 0.0001 0.0000995
Adapted case 0.00168 0.00136
Unprocessed 0.6242 0.6930

signals. The last row indicates the results using the approach
described in [8].

The results show that the nonlinear prediction approach
is able to reduce the problem to an instantaneous one, to
which the fastICA can be effectively applied. The results also
show that the performance is at least equivalent to that pre-
sented in [8].

5.2. Second scenario: mixture system
with memory L = 2

In the first case, there are two sources to be separated from a
mixture system with memory L = 2, with

1 05 0.6 1.2
Ao = [0.8 0.6]’ A= [0.3 0.9}’ (22)

and noise variance 0% = 107*.

Under these circumstances, from the point of view of
each sensor in the separating system, the received signal
can be understood as a superposition of SISO transmissions
through minimum- and maximum-phase channels (see (5)).
It is important to notice that these matrices do not represent
a paraunitary mixing system, thus they have not been suit-
able for direct application of techniques such as that shown
in [7, 8].

We evaluated this second scenario using the same struc-
ture described for the first scenario. The results are summa-
rized in Table 2, and show that, despite the mixing system is
not a paraunitary system, the nonlinear prediction in con-
junction with the fastICA algorithm is able to recover the
sources.

By analyzing the joint distributions of the relevant sig-
nals, one can notice the efficacy of the proposed technique
in this situation. In Figure 4, the joint distribution of the
sources is depicted, whereas, in Figure 5, the effect of the con-
volutive mixture on the ideal distribution is shown. It is no-
ticeable that the existence of a superposition of delayed ver-
sions is responsible for the creation of an “interference pat-
tern.” Finally, the joint distribution of the prediction-error
filters’ outputs is shown in Figure 6. Notice that the joint
distribution of the outputs of the bank of filters is clearly a
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L5 TaBLE 3: Third scenario.
MSE, MSE,
o+ +
Ideal case 0.0001 0.0001
05 | | Adapted case 0.00818 0.00669
Unprocessed 0.6621 0.4269
-0.5 R
rotated and scaled version of the source signals, thus being
-1 + + 1 suitable for classical ICA algorithm for instantaneous mix-
tures, for example, fastICA.
-15 : : : : :
-15 -1 -0.5 0 0.5 1 1.5
5.3. Third scenario: mixture system with memory L = 3
s1(n)
o Consider now a mixture system with memory L = 3 de-
F1GURE 4: Joint distribution of the sources. scribed by the foll owing matrices:
3 T T T
[ J
1.12 0.53 -1.57 0.92
2t -3 . = =
¢ Ao [0.625 .04] A [1.0625 2.32] ’
e (23)
1 b o ; A _| 078 0225
. 27 1-0375 122 |
= ot ° . |
5 o ®
L g _
. ¢ and noise variance g2 = 1074,
‘ All the SISO channels between each source and mixture
2 ® - 1 are nonminimum phase, which is a clear indicative of the
° difficulty inherent to the problem we will face, since, even in
-3 : : : the context of SISO systems, the equalization of such chan-
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1

FIGURE 5: Joint distribution of the mixture signals.
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F1GURE 6: Joint distribution of the error-prediction filters outputs;
(+) indicates the joint distribution of the corresponding instanta-
neous problem (14).

nonlinear structures.

In Table 3, we present the MSE for the ideal and adapted
cases. Once more, the MSE in the latter case was obtained
from the average of 20 experiments. Furthermore, the order
of the employed prediction-error filter was not altered.

The obtained results in the simulated situations allow us
to draw two conclusions.

(1) The idea of using a prediction-based preprocessing
proved itself to be valid, since, in the ideal case, it is
possible to remove virtually all the “convolutive as-
pect” of the mixture.

(2) The training method proposed in the previous section
was able to significantly reduce the MSE, thus being
successful in both these tasks.

6. CONCLUSIONS

In this paper, we have proposed a preprocessing technique
which, ideally, allows a convolutive mixture be transformed
into an instantaneous one. The basis of our approach is to use
a bank of nonlinear prediction-error filters to remove the in-
fluence of delayed version of the sources, which corresponds
to an extension of recent results in the field of nonlinear blind
equalization to the wider context of source separation.



EURASIP Journal on Advances in Signal Processing

In order to implement these ideas, we adopted a fuzzy
predictor and a training method whose essence lies in the ILS
clustering technique. This approach was tested in two dis-
tinct scenarios, and, in both cases, it was possible to attest the
efficiency of the proposal per se (by analyzing the MSE asso-
ciated with the ideal predictors) as well as that of the filters
obtained via the training method. In other words, the results
show that the idea of using a bank of prediction-error filters
to remove the “convolutive nature” is viable and, moreover,
can be implemented if appropriate structures and algorithms
are chosen.

A natural extension of this paper is to consider the even
more general case in which the sources are not necessarily
digital signals. This idea is feasible, since, albeit this restric-
tion was relevant for the chosen training process, it is, by no
means, inherent to the theoretical proposal.
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