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The performance of a super-resolution (SR) reconstruction method on real-world data is not easy to measure, especially as a
ground-truth (GT) is often not available. In this paper, a quantitative performance measure is used, based on triangle orientation
discrimination (TOD). The TODmeasure, simulating a real-observer task, is capable of determining the performance of a specific
SR reconstruction method under varying conditions of the input data. It is shown that the performance of an SR reconstruction
method on real-world data can be predicted accurately by measuring its performance on simulated data. This prediction of the
performance on real-world data enables the optimization of the complete chain of a vision system; from camera setup and SR
reconstruction up to image detection/recognition/identification. Furthermore, different SR reconstruction methods are compared
to show that the TOD method is a useful tool to select a specific SR reconstruction method according to the imaging conditions
(camera’s fill-factor, optical point-spread-function (PSF), signal-to-noise ratio (SNR)).
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1. INTRODUCTION

During the last decade, numerous super-resolution (SR) re-
construction methods have been reported in the literature.
Reviews can be found in [1, 2]. SR reconstruction is the
process of combining a set of undersampled (aliased) low-
resolution (LR) images to construct a high-resolution (HR)
image or image sequence. A typical solution for SR recon-
struction of an image sequence involves two subtasks: reg-
istration and fusion. Occasionally, an additional deblurring
step is performed afterwards. First, the LR images are reg-
istered against a common reference with subpixel accuracy.
During the fusion, an image at a higher resolution is con-
structed from the scattered input samples. Nonlinear deblur-
ring is needed to extend the frequency spectrum beyond the
cut-off limit of the imaging sensor.

Although SR reconstruction has received significant at-
tention over the past few years, not much work has been
done in the field of performance (limits) of SR. Relevant
works are reported in [3, 4]. Both study the problem of
SR from an algebraic point of view. Robinson and Milan-
far [5] recently analyzed the performance limits from sta-
tistical first principles using Cramér-Rao inequalities. This

analysis has the advantage that the performance bottlenecks
can be related to the subtask level of an SR reconstruction
method.

This paper discusses the performance of an SR recon-
struction method under different conditions such as number
of input frames and signal-to-noise ratio (SNR), for a spe-
cific vision task, using the characteristics of modern infrared
(IR) imagers. This vision task is the discrimination of small
objects/details in an image and is measured quantitatively us-
ing triangle orientation discrimination (TOD) [6, 7]. TOD is
a task-based evaluation method, which measures the ability
to discriminate the orientation of an equilateral triangle un-
der a specific condition.

The performance of an SR reconstruction method on
real-world data is especially interesting to measure, as it
shows the capability of the algorithm in practice. In this pa-
per, it is shown that with the TODmethod a quantitative per-
formance measure of an algorithm on real-world data can be
obtained. Moreover, it is shown that the results of this mea-
sure can be predicted accurately by measuring the TOD per-
formance on simulated data. This enables the optimization
and selection of the algorithm in advance given a real-world
camera.
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The paper is organized as follows. In Section 2, the reg-
istration of the real-world and simulated data is discussed.
In Section 3, the different SR reconstruction methods are
discussed. In Section 4, the TOD method is explained and
the setup of the measurements is given. The results are pre-
sented in Section 5 and finally conclusions will be provided
in Section 6.

2. REGISTRATION

The scenes (real-world and simulated) in our experiments
are static and captured with a moving camera. Therefore, the
scene movement between two frames can be described with
a single shift. All LR frames of an image sequence are regis-
tered to a reference frame, which is typically the first frame of
the image sequence. The registration of the LR frames is per-
formed with an iterative gradient-based shift estimator [8].
A gradient-based shift estimator [9] finds the displacement
t�x between two shifted signals as the least squares solution of

MSE = 1
N

∑

R

(
s2(�x )− s1(�x )− t�x

∂s1
∂�x

)2
(1)

with s2 a shifted version of s1, �x the sample positions, and N
the number of samples in supported region R.

The solution of (1) is biased, which is corrected in an iter-
ative way. In the first iteration, s2 is shifted with the estimated
subpixel displacement, which is accumulated in the next it-
eration with the estimated displacement between s′2 (shifted
s2) and s1. This schema is iterated until convergence, finally
resulting in a very precise (σdisp ≈ 0.01 pixel for noise free
data) unbiased registration, which approaches the Cramér-
Rao bound [10].

In our experiments, the set of registered LR frames is
processed by each of the SR fusion/deblurring methods de-
scribed in the following section. It is important to note that
all methods use the same set of registered LR frames. This
implies that differences in overall performance are not due
to differences in registration.

3. SUPER-RESOLUTION FUSION/DEBLURRING
METHODS

This section briefly describes the different SR reconstruction
methods used in the performance evaluation. The first three
methods perform only fusion, whereas the last threemethods
also incorporate deblurring.

3.1. Elad’s shift and addmethod

After registration of all LR frames, Elad’s [11] reconstruction
method assigns each LR sample to the nearest HR grid point.
When this is done for all LR samples, the mean is taken of all
LR samples on each HR grid point. Note that the shift and
add method is only a fusion method and does not incorpo-
rate deblurring.

3.2. Lertrattanapanich’s triangulation-basedmethod

In [12], Lertrattanapanich proposes a triangle-based surface
interpolation method for irregular sampling. First, a Delau-
nay triangulation of all registered LR samples is performed,
followed by an approximation of each triangle surface with a
bicubic polynomial function. The pixel value z(x, y) at a new
HR grid location (x, y) is expressed as in (2):

z(x, y)=c1+c2x+c3y+c4x2+c5y2+c6x3+c7x2y+c8xy2+ c9y
3.

(2)

Note that the monomial xy is omitted to maintain the
geometric isotropy. The nine parameters ci can be solved
with three vertices (LR samples) and their corresponding
estimated gradients along x and y directions. Lertrattana-
panich’s triangulation-based method performs fusion only.

3.3. Kaltenbacher’s least-squaresmethod
without regularization

This method [13] is based on the idea of estimating the
“underlying” unaliased frequency spectrum from multiple,
aliased spectra. For sake of clarity, the 1D case will be ex-
plained below.With the shift property, the Fourier transform
Fi of a shifted frame i before sampling is

Fi(ω) = F(ω)e jδiω, (3)

where δi is the shift of frame i and F(ω) is the Fourier trans-
form of the original image. After sampling by the camera the
transform in (3) converts to

F̃i(n) = 1
S

∞∑

m=−∞
Fi

(
2π
NS

n−mωs

)
. (4)

Here, F̃i(n) is the discrete Fourier transform of LR input
frame i = 1, . . . ,P. S is the sampling period and ωs = 2π/S is
the sampling frequency, N is the amount of samples per LR
frame, and n = 1, . . . ,N is the sample index (here S = 1 and
ωs = 2π).

If the sampling frequency is increased by a factor K
(zoom factor) such that Kωs > 2ωc (cutoff frequency), the
limits in the summation of (4) can be changed to �−K/2�+1
and �K/2�. When all shifts δi are known and K is chosen, for
each sample n a set of equations can be written:

Gn = ΦnFn, (5)

whereGn is a column vector with the nth Fourier component
of each LR frame,

Gn(i) = F̃i(n), (6)

andΦn is the (P × K) transformation matrix defined by

Φn(i, k) = e j2πδi(n/N+(�K/2�−k)). (7)

Fn is the column vector with the K-target Fourier com-
ponents dependent on n. This method needs at least 2K LR
input frames. When more than 2K frames are used, a least-
squares solution of the target Fourier components is ob-
tained by the Moore-Penrose inverse of Φn:

Fn =
(
ΦT

nΦn
)−1

ΦT
nGn. (8)
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3.4. Hardie’s method using a regularized
inverse observationmodel

Hardie et al. [14] employ a discrete observation model that
relates the ideally sampled image z and the observed frames
y:

ym =
H∑

r=1
wm,rzr + ηm, (9)

where wm,r represents the contribution of the rth HR pixel
in z to the mth LR pixel in y. This contribution depends on
the frame-to-frame motion and on the blurring of the point
spread function (PSF). ηm denotes additive noise.

The HR image estimate ẑ is defined as the z that mini-
mizes

Cz =
L∑

m=1

(
ym −

H∑

r=1
wm,rzr

)2

+ λ
H∑

i=1

( H∑

j=1
αi, j z j

)2

(10)

with L the number of LR samples and H the number of HR
grid points.

The cost function in (10) balances two types of errors.
The left term is minimized when a candidate z, projected
through the observation model (9), matches the observed
data. The right term is a regularization term, which is nec-
essary as directly minimizing the first term is an ill posed
problem. The parameters αi, j (11) are selected to perform a
Laplacian operation on z and ensure that the regularization
term is minimized when z is smooth:

αi, j =

⎧
⎪⎪⎨
⎪⎪⎩

1 for i = j

−1
4

for j : zj is a cardinal neighbor of zi.
(11)

3.5. Farsiu’s robustmethod

In comparison with Hardie’s method, the reconstruction
method proposed by Farsiu et al. [15] separates the fusion
and deblurring processes of an SR reconstruction method:
(1) the LR frames are fused with median shift and add (sim-
ilar as described in Section 3.1, but now the median, rather
than themean, is taken of the samples at eachHR grid point),
(2) the fusion result z0 is deblurred using an iterative mini-
mization method. The cost function that must be minimized
to obtain the SR image ẑ from fusion result z0 is shown in
(12):

Cz =
∥∥A
(
Gz− z0

)∥∥
1 + λ

P∑

l=0

P∑

m=0
αm+l

∥∥z− SlhS
m
v z
∥∥
1. (12)

Here, matrix A is a diagonal matrix with diagonal val-
ues equal to the square root of the number of measurements
that contributed to make each element of z0. Therefore, un-
defined pixels in z0 will have no influence on the SR estimate
ẑ. Matrix G is a blur matrix that models the PSF of the cam-
era system. The regularization term on the right-hand side is

based on the bilateral total variation (TV) criterion [15]. Ma-
trices Slh and S

m
v shift z by l andm pixels in horizontal and ver-

tical directions, respectively. The scalar weight α, 0 < α < 1,
is applied to give a spatial decaying effect.

3.6. Pham’s structure-adaptive and robustmethod

Pham et al. [16] recently proposed an SR reconstruction
method using adaptive normalized convolution (NC). NC
[17] is a technique for local signal modeling from projections
onto a set of basis functions. Pham uses a first-order polyno-
mial basis as shown:

f̂
(
s, s0

) = p0
(
s0
)
+ p1

(
s0
)
x + p2

(
s0
)
y, (13)

where f̂ is the approximated intensity value at sample s,
(x, y) are the local coordinates of s with respect to the cen-
ter of analysis, s0 and pi are the projection coefficients. In
contrast with a polynomial expansion like the Haralick facet
model [18], NC uses (1) an applicability function to local-
ize the polynomial fit and (2) allows each input sample to
have its own certainty value. To determine the projection co-
efficients at an output position s0, the approximation error
is minimized over the extent of an applicability function a
centered at s0:

ε
(
s0
) =

∫ (
f (s)− f̂

(
s, s0

))2
c(s)a

(
s− s0

)
ds, (14)

with a the applicability function and c the certainty of each
sample within the extent. A schematic overview of Pham’s
method is depicted in Figure 1.

After registration of the LR samples, the first step of the
fusion process consists of estimating an initial polynomial
expansion (using a flat model at a locally weighted median
level), which results in IHR0 . Next, NC using a robust cer-
tainty (15) is performed, which results in a better estimate
IHR1 and two corresponding derivatives IHRx and IHRy ,

c
(
s, s0

) = exp

(
−
∣∣ f (s)− f̂

(
s, s0

)∣∣2

2σ2r

)
. (15)

Here, the photometric spread σr defines an acceptable

range of the residual error | f − f̂ |. The derivatives are used
in the last fusion step to construct anisotropic applicability
functions for adaptive NC. Such an applicability function is
an anisotropic Gaussian function whose main axis is rotated
to align with the local dominant orientation. Deblurring is
done with bilateral TV regularization (as in Farsiu’s method).

4. PERFORMANCE EVALUATION EXPERIMENTS

To measure the performance of SR reconstruction, several
quantitativemeasures such asmean squared error (MSE) and
modulation transfer function (MTF) are often used. How-
ever, we use the triangle orientation discrimination (TOD)
measure as proposed in [6]. The TOD method determines
the smallest triangle size in an image of which the orientation
can be discriminated. This evaluation method is preferred
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Figure 1: Flow diagram of Pham’s structure-adaptive and robust SR reconstruction method.
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Figure 2: The four different stimuli used in the TOD method.

over methods like MSE and MTF because (1) the measure-
ment is done in the spatial domain and is well localized, and
(2) it employs a specific vision task. This vision task is di-
rectly related to the acquisition of real targets, which was first
shown by Johnson [19]. Such a relationship is relevant for
determining the limitations of your camera system including
the image processing for recognition purposes. TheMSE and
MTF are neither localized nor task related. The MTFmethod
is also not suited for evaluating nonlinear algorithms, which
most SR reconstruction methods are.

4.1. TODmethod

The TOD method is an evaluation method designed for sys-
tem performance of a broad range of imaging systems. It is
based on the observer task to discriminate four different ori-
ented equilateral triangles (see Figure 2).

The observer task is a four-alternative forced choice, in
which the observer has to indicate which of the four orien-
tations is perceived, even when he is not sure. In the experi-
ments, an automatic observer is used which makes its choice
θ̂ based on the minimumMSE between the triangle in the SR
result IHR and a triangle modelM:

θ̂ = min
θ,s

{
1
N

∑

�x

(
IHR
(
�x; θ f , s f

)−M
(
�x; θ, s

))2
}
. (16)

Here, θ indicates the orientation, s indicates the size of
the triangle, �x are the sample positions, and N is the number
of samples. Note that θ is limited to the four different orien-
tations and s is quantized in steps of 4/17th of the LR pixel
pitch. The subscript f denotes one member of these sets. Al-
though (16) is minimized for θ and s, only the estimated ori-

entation θ̂ is used as a result. Note that triangle modelM can
also incorporate a gain and offset parameter.

The probability of a correct observer response increases
with the triangle size. In [6] it is shown that this increase can
be described with a Weibull distribution:

pc(x) = 0.25 +
0.75

1.5(α/x)β
, (17)

where α is x at 0.75 probability correct and β defines the
steepness of the transition. Such a Weibull distribution can
be fitted to a number of observations for different triangle
sizes as depicted in Figure 3. From this fit the triangle size
that corresponds with an 0.75 probability correct response
(T75) is determined. T75 (in LR pixels) is a performance mea-
sure, where a smaller T75 indicates a better performance.
When for different conditions, for example, SNR, T75s are
determined, a performance curve can be plotted. Such curves
will be used in Section 5 to show the results.

4.2. Real-world data experiment

In this experiment the performance of an SR reconstruction
method on real-world data is measured.

4.2.1. Setup

The setup of the experiment (including TOD) is depicted in
Figure 4. The LR data ILR comes from a real-world thermal
IR camera (FLIR SC2000) with a rotating mirror in front of
the lens. In the scene a thermal camera acuity tester (T-CAT
[20]) is present as depicted in the left-hand side of Figure 4.
This apparatus contains an aluminium plate with 5 rows of
4 equilateral triangle shaped cutouts. A black body plate is
placed 3 cm behind this plate. Between the plates several tem-
perature differences can be created. By controlling the tem-
perature difference, different contrast levels (SNRs) are ob-
tained. Although the triangle shaped cutouts on the plate
vary in size, more size variation can be obtained by changing
the distance from the apparatus to the camera. Real-world
data sequences (40 frames) are processed with three different
SR reconstruction methods with optimized parameter set-
tings: Elad’s method, Hardie’s method, and Pham’s method.

From both the ILR data and the reconstructed IHR

data the orientation of the triangles is determined. This is
done using (16) with gain and offset estimation in trian-
gle model M. The triangle model M is implemented with
shifted, blurred, and downsampled triangles in the triangle
database. The triangle database contains equilateral triangles
with sides 12, 16, . . . , 280 pixels. In our evaluation each tri-
angle is equidistantly shifted, blurred (σ = 0.9 × S), and
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Figure 3: Example of a possible Weibull distribution of probability
correct observer response.

downsampled (S = 17) resulting in 25 realizations for each
triangle. Here the blurring with σ = 0.9 × S is chosen
such that these reference triangles will have a right balance
between residual aliasing and high-frequency content [21].
The orientation of the triangle obtained from the triangle
database that results in the smallest mean-square error with
the triangle in the data is selected. In the final step of the ex-
periment setup the obtained orientation in the previous step
is compared with the known ground-truth (GT) orientation
of the triangle in the original real-world data.

4.2.2. Measurements on real-world data

To validate the performance on real-world data of the SR re-
constructionmethods with simulations, somemeasurements
are needed of the real-world data: (1) SNR, (2) point-spread-
function (PSF) of the lens, and (3) fill factor (ff), which is the
percentage of photo-sensitive area of the pixels on the focal
plane array sensor.

The real-world data was recorded with three different
temperature differences of the T-CAT, which results in three
SNRs. Here, the SNRdB is defined as

SNR = 20 log10

(∣∣ITR − IBG
∣∣

σBG

)
, (18)

with ITR is the triangle intensity, IBG the background intensity
on the T-CAT plate, and σBG the standard deviation of IBG.
Our measurements resulted in SNRs 7 dB, 30 dB, and 48 dB.

The parameters of the camera (PSF and ff) are obtained
by estimating the overall blur (LR pixels), σtot, in the real-
world data by fitting an erf model to several edges in the data
(with highest SNR). Measurements on edges of large trian-
gles resulted in an overall blur of σtot ≈ 0.7, whereas on
medium-sized triangles an overall blur of σtot ≈ 0.5 was mea-
sured. When comparing these measurements with the spec-
ifications of the camera (FLIR SC2000), the smallest overall
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Figure 4: Left: example of real-world data ILR. Right: flow diagram
of the real-world data experiment.
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Figure 5: Camera model used in the experiments.

blur seems more likely. Given the camera model as depicted
in Figure 5, the PSF blur can be determined from the overall
blur for a certain fill factor. In modern infrared cameras a re-
alistic fill factor is approximately 80% [22, page 101]. Given
a σtot = 0.5 the blurring of the lens is σPSF = 0.4.

4.3. Simulated data experiment 1

Based on the estimates of the camera’s parameters, simulated
data sets have been generated. After processing the simulated
data sets with the same SR reconstruction methods as in the
previous experiment an indication can be obtained of the
predictability of the real-world performance of these algo-
rithms.

4.3.1. Cameramodel

A data set is simulated with a camera model as depicted in
Figure 5, where IHYPi is a discrete representation of a scene
sampled at the Nyquist rate with an S× smaller sampling dis-
tance than the observed frames ILRi . δi represents the trans-
lation of the camera, the PSF of the lens is modeled with a
2D Gaussian function G with standard deviation S · σPSF and
the fill factor are modeled with a uniform filter U with width
S · √ff. The overall noise in the camera model is assumed to
be Gaussian distributed.

In this experiment two simulated data sets ILR are gener-
ated: (1) σPSF = 0.3, ff = 0.8, which results in a less-blurred
data set as derived in Section 4.2.2 and (2) σPSF = 0.55, ff =
0.8, which results in a more-blurred data set. The downsam-
pling factor is chosen as S = 17. The shift vectors S·δi are ran-
dom integer shifts ([0,S] pixels in the hyper-resolution (HY)
domain) such that this results in subpixel shifts in the sim-
ulated data. Different amounts of Gaussian noise are added,
resulting in a SNR varying from 12 dB to 42 dB.
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Figure 6: Left: example of simulated data ILR. Right: flow diagram
of the simulated data experiment.

4.3.2. Setup

The setup of the experiment on simulated data is depicted in
Figure 6. The scene generator produces HY scenes IHYP con-
taining different triangle sizes and orientations from the tri-
angle database. The camera model converts the IHYP data to
ILR data in such a way that for each triangle size 16 realiza-
tions are present in the data set. Note that the number of real-
izations determines the statistical validity of the experiment.
The ILR data, of which an example is shown in the left-hand
side of Figure 6, is the input for the SR reconstruction meth-
ods. Note that the settings of these methods are the same as
for processing the real-world data. From both the ILR data
and the reconstructed IHR data the triangle orientation is de-
termined using (16). Note that for this experiment no gain
and offset estimation is used in the triangle modelM.

4.4. Simulated data experiment 2

This experiment is done to show that the TOD method is a
useful tool to select a specific SR reconstruction method ac-
cording to the imaging conditions (camera’s fill factor, opti-
cal PSF, SNR). Here, camera model parameters (σPSF = 0.2,
ff = 1) that result in a more-aliased data set than the previous
simulated data sets are chosen. These parameters are cho-
sen to enhance the differences between the SR reconstruction
methods. To measure the performance of each method, the
same setup is used as in “simulated data experiment 1” (see
Figure 6). The performance of the SR reconstruction meth-
ods is measured for the following conditions

(1) Different number of frames.
(2) Different SNRs.
(3) Different zoom factors.

Note that the first two conditions are determined by the sim-
ulated data and the last one (ratio between resulting HR grid
and original LR grid) is determined by the algorithm. Only
Hardie’s, Farsiu’s, and Pham’s methods are tuned to perform
optimally under the varying conditions. For all three meth-
ods the parameter λ is tuned. The tuning criterium is to ob-
tain a smallest T75 triangle size under the condition at hand.
Note that the parameter λ in Hardie’s method has a slightly
different meaning than in the other two methods. The pa-
rameter σ , which is the standard deviation of a Gaussian

function and represents both the PSF due to the optics and
the sensor blur due to the fill factor, is chosen in such a way
that it fitted best to the blurring of our used camera model.

The results of all experiments are discussed in the follow-
ing section.

4.5. TOD versusMSE

An alternative measure to TOD is the MSE:

MSE = 1
N

∑

�x

(
IHR(�x; θ f , s f

)−M
(
�x; θ f , s f

))2
. (19)

To show the difference between both measures, the fol-
lowing experiment is performed. Simulated LR data (varying
SNR) is processed with the Hardie SR reconstructionmethod
with different settings (varying λ and number of frames).

The resulting images are first scored with the TOD
method and subsequently the MSE is calculated between the
SR results and a triangle modelM of size s f closest to the tri-
angle threshold (T75) found. Contour plots of both measures
are depicted in Figure 7.

It is clear from Figure 7 that the profiles of the TODmea-
sure differ from the corresponding MSE profiles. Analyzing
the profiles for a fixed frame number shows that the “opti-
mal” λ resulting in the lowest T75 is significantly smaller than
the “optimal” λ resulting in the lowest MSE: 10−2 and 1, re-
spectively. The corresponding SR results (not depicted in this
paper) show that a small λ result in steep edges with some
ringing at the boundary of the triangles. Note that TOD and
thereby correct identification does not solely depend on the
lowest MSE found, but rather on the separability (= expected
difference in MSE between the observation and the correct
assignment and the MSE between the observation and an
incorrect assignment divided by the variance of the MSE).
Hence, the ringing imposes a positive influence on this mea-
sure of separability.

5. RESULTS

All results of the experiments can be found at the end of this
paper. Note that the vertical axis in the plots indicate the tri-
angle threshold size at 75% probability correct. A smaller
triangle threshold size (T75) corresponds with a better per-
formance, hence the lower the curve, the better the perfor-
mance.

5.1. Results of real-world data and simulated
data experiment 1

The results of the “real-world data experiment” and the “sim-
ulated data experiment 1” can be seen in Figure 8. These
graphs show that the performance on real-world data can
be approximated by the performance of a simulated data
set. The depicted performance of the two simulated data sets
form a performance lower bound (σPSF = 0.55 and ff = 0.8,
resulting in an “overall” σtot ≈ 0.6) and a performance upper
bound (σPSF = 0.3 and ff = 0.8, resulting in σtot ≈ 0.4) on
the real-world performance. Note that in Figure 8 the per-
formance upper bound is visually a lower bound and the
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Figure 7: (a) Contour plot T75, SNR = 42 dB, (b) contour plot T75, SNR = 24 dB, (c) contour plot MSE, SNR=42 dB, (d) contour plot MSE,
SNR = 24 dB.

performance lower bound is visually an upper bound. Elad’s
method shows that for all SNRs the performance on the real-
world data is close to the performance upper bound. For
Hardie’s method we see the opposite for high SNRs: here
the real-world performance is equal to the performance lower
bound. Furthermore, it can be seen that the performance on
real-world data of the three algorithms is similar for low and
medium SNR, whereas for high SNR Pham’s and Hardie’s
methods perform slightly better.

5.2. Results of simulated data experiment 2

In Figure 9 the performance of all SR reconstruction meth-
ods with zoom factor 2 for different number of LR input
frames is compared. Here the black line indicates the per-

formance on “raw” unprocessed LR input data and therefore
should be taken as baseline reference. From these plots it is
clear that the performance of all SR reconstruction meth-
ods improves when processing more frames. For high SNRs
this improvement is only marginal, but for low SNRs it is
significant. Kaltenbacher’s method performs poorly when
processing only 4 LR frames. This can be explained by
the fact that the shifted LR frames are nonevenly spread,
which results in an unstable solution. When 64 LR frames
are processed, Lertrattanapanich’s method performs worst
for low SNRs. For high SNRs the performance of Elad’s
method performs worst. The best performing SR recon-
struction methods (when many LR frames are available)
are Kaltenbacher’s method and Hardie’s method, closely fol-
lowed by the method of Pham.
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Figure 8: Performance measurements on real-world and simulated
data (40 frames). Blue line: simulated data created with σPSF = 0.55
and ff = 80%, green line: simulated data created with σPSF = 0.3
and ff = 80%. (a) Elad, (b) Hardie (σ = 0.55, λ = 0.01), (c) Pham
(σ = 1, λ = 10−3, β = 10). All data is processed with zoom factor 2.
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Figure 9: Performancemeasurements on simulated LR data (σPSF =
0.2, ff = 100%) processed with different SR reconstructionmethods
(zoom factor 2) with optimized settings, (a) 4 frames, (b) 16 frames,
(c) 64 frames.
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Figure 10: Performance measurements on simulated LR data (σPSF = 0.2, ff = 100%, 64 frames), processed with different methods with
optimized settings for zoom factors 1, 2, and 4. (a) Elad, (b) Lertrattanapanich, (c) Kaltenbacher (no zoom factor 1 results could be obtained
with our implementation), (d) Hardie, (e) Farsiu, (f) Pham.
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To illustrate the effect of an increasing zoom factor,
Figure 10 shows performance curves of all SR reconstruction
methods for zoom factors 1, 2, and 4. All methods processed
the same 64 LR frames (σPSF = 0.2 and ff = 100%). From
Figure 10 it is clear that the performance of zoom factors 2
and 4 for most methods (except for Kaltenbacher’s method
and Farsiu’s method) is comparable. For low SNRs the per-
formance of each method (for all zoom factors) is signifi-
cantly better compared to LR performance. Here, the tem-
poral noise reduction is visible. For high SNRs the results
show an improvement of a factor 2, which approximately
equals the amount of aliasing in the LR data. This explains
why zoom factor 4 does not yield a significant better per-
formance. Note that the bad performance of Kaltenbacher
with zoom factor 4 compared with zoom factor 2 can be ex-
plained by the fact that this method has no regularization
and hence becomes ill posed. Furthermore, an improvement
by a factor 2 (between zoom factor 1 and zoom factors 2 and
4) is not obtained for low SNRs. Here, the temporal noise
reduction is more relevant than the antialiasing. The perfor-
mance of some SR reconstruction methods, when processed
with zoom factor 1 under high SNR, is slightly worse com-
pared to baseline LR performance. This could be explained
by blurring in the fusion process and/or blurring as a result
of registration errors.

6. CONCLUSIONS

From the results in the previous section, the following con-
clusions can be derived.

(1) From the results of the real-world data experiment it
can be concluded that the performance of different
SR reconstruction methods on real-world data can be
predicted accurately by measuring the performance on
simulated data, if a proper estimate of the parameters
of the real-world camera system is available.

(2) With the ability to predict the performance of an SR re-
construction method on real-world data, it is possible
to optimize the complete chain of a vision system. The
parameters of the camera and the algorithm must be
chosen such that the performance of the vision task is
optimized.

(3) It is shown that with the TOD method the perfor-
mance of SR reconstructionmethods can be compared
for a specific condition of the LR input data. Consid-
ering the imaging conditions (camera’s fill factor, op-
tical PSF, SNR) the TOD method enables an objective
choice on which SR reconstruction method to use.

(4) Comparing the performance of the unregularized
Kaltenbacher’s method with the regularized methods
of Hardie, Farsiu, and Pham (see Figure 9), it can
be concluded that in general regularization is not re-
quired for good performance whenmany input frames
are available.

(5) The relative performance of the various methods
change a little as a function of SNR.

(6) The results presented in Figure 10 show that a larger
zoom factor does not yield a better performance. This
can be explained by the fact that sensors with high
fill factors exert an amount of blurring on the LR in-
put frames and therefore limit the resolution gain and
hence the maximum achievable resolution gain. For
high SNRs the resolution gain is approximately equal
to the amount of aliasing in the LR data and for low
SNRs the resolution gain is minor compared with the
temporal noise reduction.
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