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This paper deals with the application of distributed source coding (DSC) theory to remote sensing image compression. Although
DSC exhibits a significant potential in many application fields, up till now the results obtained on real signals fall short of the
theoretical bounds, and often impose additional system-level constraints. The objective of this paper is to assess the potential of
DSC for lossless image compression carried out onboard a remote platform. We first provide a brief overview of DSC of correlated
information sources. We then focus on onboard lossless image compression, and apply DSC techniques in order to reduce the
complexity of the onboard encoder, at the expense of the decoder’s, by exploiting the correlation of different bands of a hyper-
spectral dataset. Specifically, we propose two different compression schemes, one based on powerful binary error-correcting codes
employed as source codes, and one based on simpler multilevel coset codes. The performance of both schemes is evaluated on a
few AVIRIS scenes, and is compared with other state-of-the-art 2D and 3D coders. Both schemes turn out to achieve competitive
compression performance, and one of them also has reduced complexity. Based on these results, we highlight the main issues that
are still to be solved to further improve the performance of DSC-based remote sensing systems.

Copyright © 2007 Enrico Magli et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

In recent years, distributed source coding (DSC) has re-
ceived an increasing attention from the signal processing
community as a new paradigm to code statistically depen-
dent sources [1, 2]. DSC considers a situation in which two
ormore statistically dependent data sources must be encoded
by two separate encoders that are not allowed to talk to each
other, that is, each encoder sees only the output of one of the
two sources; in the following we will use the terms “depen-
dent” and “correlated” interchangeably. Data sources must
be encoded by two separate encoders that are not allowed to
talk to each other, that is, each encoder sees only the output
of one of the two sources. Following the standard encoding
paradigm, each source can be compressed losslessly, with a
total rate no less than the sum of the two source entropies.
This is clearly less efficient than an encoder that jointly com-
presses the two sources, since in this latter case a bit rate equal
to the joint entropy of the sources could be used. The surpris-
ing result of DSC theory [3–5] is that, under certain assump-
tions, the same result can be achieved by using two separate

encoders, provided that the two sources are decoded by a
joint decoder. For example, it is possible to perform stan-
dard encoding of the first source (called side information)
at its entropy, and conditional encoding of the second one
at a rate lower than its entropy; no information about the
first source needs to be available at the second encoder, but
only correlation parameters such as the conditional entropy.
Interestingly, DSC coders are typically implemented using
channel codes; conditional encoding is performed by repre-
senting the source using its syndrome (or the parity bits) of a
suitable channel code. An overview of this process is given in
Section 2.1.

DSC theory can be immediately applied to all the cases
where two or more correlated sources must be coded effi-
ciently by separate encoders and decoded by a unique de-
coder, as is the case with distributed sensor networks appli-
cations [1]. Less evident, but equally appealing, is the pos-
sibility of applying DSC principles to situations where a sin-
gle source is artificially subdivided into correlated subsources
that are encoded separately. In this case, the advantage is that
decorrelation among the subsources is no longer required
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thus considerably simplifying the encoder (though at the ex-
penses of the decoder). Moreover, no communication be-
tween the subsources is required, at least in the ideal case,
thus greatly reducing the communication bandwidth of the
processing system. These concepts have a strong potential
for remote sensing image compression; this application field
has been devoted preliminary investigations in [6–9]. In a
remote sensing system, correlation among different images
can be found at several different stages. Some potential ap-
plications include (i) exploiting the correlation between two
(or more) bands of a multispectral or hyperspectral image to
achieve lower encoder complexity by avoiding explicit decor-
relation, (ii) exploiting the correlation between newly ac-
quired and archived images, (iii) exploiting the correlation
between multimodal images, (iv) exploiting the correlation
between archived images to reduce storage space. The first
application is the one dealt with in this paper.

Although several near-capacity DSC coders have been de-
signed for simple ideal sources (e.g., Gaussian sources), the
applications of practical DSC schemes to realistic signals have
been so far quite limited, and have yielded somewhat con-
troversial results. On one hand, the performance of practi-
cal systems is often further away from the theoretical bounds
than in the ideal case due to various characteristics of the sig-
nal to be coded that do not fit the ideal model. On the other
hand, the complexity required to achieve these results may
outweigh the computational saving obtained by reducing the
decorrelator complexity; moreover, additional system-level
requirements (such as the availability of a feedback channel)
may be posed in order to make DSC feasible at all. These is-
sues are discussed in more detail in Section 2.3.

The goal of this paper is to evaluate the performance
of DSC coders in a realistic application environment, such
as hyperspectral image compression. In particular, we de-
sign two DSC coders based on different principles, and assess
the potential of either coder to accomplish the advantages of
DSC, that is, moving complexity from the encoder to the de-
coder by following an approach similar to that proposed in
[10] for the compression of video sequences. The first codec
employs powerful error-correcting codes, as is typically done
in most existing DSC schemes; the second codec employs
scalar multilevel coset codes. Some parts of both coders bor-
row from existing schemes, while their integration in a com-
pression algorithm for hyperspectral images presents a few
innovative aspects. The new codecs have been tested on a
set of scenes of the AVIRIS sensor, and the results have been
compared with those achieved by some popular 2D and 3D
compression algorithms (JPEG-LS, 2D and 3D CALIC). The
results we obtained provide useful insights about the chal-
lenges to be solved to effectively apply DSC principles to
practical scenarios.

The remainder of the paper is organized as follows. In
Section 2, the basic results of DSC theory are presented and
prior works attempting to turn these results into practical al-
gorithms are reviewed. In Section 3, the first DSC codec we
developed is described and its performance is discussed in
Section 4. A second algorithm, following an alternative ap-
proach with complementary advantages and drawbacks, is

presented in Section 5 and the corresponding experimental
analysis is given in Section 6. The paper ends with Section 7,
where some conclusions are drawn and directions for future
research are indicated.

2. DISTRIBUTED SOURCE CODING: OVERVIEW AND
STATE OF THE ART

2.1. Overview of syndrome-based coding

We consider two correlated information sequences [. . . ,X−1,
X0,X1, . . . ] and [. . . ,Y−1,Y0,Y1, . . . ] obtained by repeated
independent drawing from a discrete bivariate distribution
p(x, y). We denote these sequences as X = {Xk}∞k=−∞ and
Y = {Yk}∞k=−∞. If two separate encoders are used, the total
rate required to represent the two sources exactly is Rtot =
Rx + Ry ≥ H(X) +H(Y), where H(·) denotes entropy. If the
intersource correlation was exploited, for example, by means
of a joint encoder that provides a single description of both
X and Y , the total rate would be lower-bounded by the joint
entropy, that is, Rtot ≥ H(X ,Y). In DSC, two separate en-
coders generate descriptions of X and Y , and a joint decoder
reconstructs the pair of signals. Slepian and Wolf [3] have
shown that, somewhat surprisingly, such scheme can the-
oretically achieve the same asymptotic performance as the
joint scheme.

In most existing DSC schemes, this is achieved by means
of “binning.” To explain this concept, let us assume that X
and Y are binary strings, and that the block size is not infinity
but a given n. The set of 2n possible values assumed by X can
be partitioned into 2n−k cosets Ci, i = 1, . . . , 2n−k, containing
2k elements each; k is chosen so that (n− k)/n � H(X | Y).
When the encoder receives a signal X , it seeks the coset C∗

to which X belongs. Instead of coding X at rate H(X), the
encoder sends the label that identifies C∗; this requires n− k
bits. The joint decoder compares the elements inC∗ with the
side information Y , and picks as estimate X∗ the element of
C∗ that is closest to Y . Note that designing such coset code
requires prior knowledge of H(X | Y); in practice this may
be an issue.

Typically, the input alphabet is partitioned by means of a
linear channel code, in such a way that all messages with the
same syndrome (here playing the role of coset label) are as-
signed to the same coset. Syndrome-based coding of a binary
sourceX involves the use of an (n, k) linear channel code with
(n − k) × n parity-check matrix H . Using this channel code
for error correction, the length-k message X is transformed
into a length-nmessage X ′ by appending n− k parity bits to
X . Using it as a source code, the message X has length n, and
n − k syndrome bits are computed as S = HX . The channel
code rate is defined as k/n, whereas the obtained compres-
sion ratio is n/(n− k).

2.2. Prior work

Several practical techniques have been proposed for Slepian-
Wolf (S-W) andWyner-Ziv coding of Gaussian sources. If the
sources are not i.i.d. in the sense of Section 2.1, a decorrelator
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must be applied. The distributed Karhunen-Loeve transform
[11] is the optimal decorrelator; however, in practice stan-
dard transforms and predictors have been used in all exist-
ing works, due to the difficulty of modeling the inter-source
correlation as required by the optimal transform. As for the
coding stage, it has been shown (see, e.g., [12]) that chan-
nel codes that are able to get very close to channel capacity
are good candidates for S-W coding. The intuition is that,
if the correlation between X and Y can be modeled as a
“virtual” channel described as X = Y + W , a good chan-
nel code for that transmission problem is also expected to
be a good S-W source code. Therefore, S-W coding is gen-
erally carried out by employing the cosets of good linear
block or convolutional codes. In the lossy case, a quantizer is
also employed to set the distortion, followed by an S-W en-
tropy coder. The first practical technique has been described
in [13], and employs trellis-coded quantization and trellis
channel codes. Recently, more powerful channel codes such
as turbo codes have been proposed in [2, 14, 15], and low-
density parity-check (LDPC) codes have been used in [16].
Note that the constituent codes of turbo codes are convolu-
tional codes, hence the syndrome is difficult to compute. In
[2], the cosets are formed by all messages that produce the
same parity bits, even though this approach is somewhat sub-
optimal [15], as these cosets do not have as good geometrical
properties as those of syndrome-based coding. Turbo codes
and LDPC codes can get extremely close to channel capac-
ity, although they require the block size n to be rather large.
Multilevel codes, that is, codes working on alphabets of size
larger than two, have also been proposed [17] in order to ex-
ploit the correlation between the multiple binary sources, for
example, bit-planes, that can be obtained from a multilevel
source.

In addition to coding of Gaussian signals, a few appli-
cations to real-world data have also been proposed. In [10],
the trellis-based construction of [13] is applied to the video
coding problem. The idea is to consider every video frame as
a different source; DSC allows to encode the video without
performing motion estimation at the encoder, as in motion
JPEG, with performance similar to a video coder that per-
forms interframe decorrelation. Hence, this scheme reverses
the classical video coding paradigm, by requiring a light en-
coder and a complex (joint) decoder. Similar ideas have been
proposed in [2] using turbo codes. In [18], a Wyner-Ziv im-
age coding technique working in the pixel domain is pro-
posed, while in [19, 20], a scheme preventing the perfor-
mance loss in scalable video coding is proposed, which per-
forms DSC between the base and enhancement layer of a
video sequence. In [21], coset codes are used to improve er-
ror resilience for video transmission. In [6, 7], it has been
proposed to apply S-W coding to hyperspectral data in or-
der to obtain a light on-board encoder; in [6] the S-W coder
is based on LDPC codes, whereas in [7] it employs a scalar
code. In [8], Wyner-Ziv wavelet-based coding of hyperspec-
tral data is investigated, and improvements with respect to
SPIHT [22] are shown for a few AVIRIS bands; a wavelet-
based technique, applied to video coding, is also proposed
in [23]. A technique for Wyner-Ziv coding of multispectral

images based on set theory is proposed in [9]; the perfor-
mance of this technique is worse than that of JPEG 2000 [24].
The techniques in [8, 9] deal with lossy image coding, while
the subject of the present paper is lossless coding. Wavelet-
based techniques can be easily extended to the lossless case
using integer transforms and transmitting all bit-planes,
though, for lossless compression, this approach is known to
yield a performance loss with respect to prediction-based
techniques [25].

2.3. Technical challenges

Although DSC coders based on channel coders have been sh-
own to achieve near-optimal performance on ideal sources,
the performance loss turns out to be significant on real-world
data. There are several assumptions of DSC theory that are
only partially satisfied by practical coders; two of them are
outlined in the following, and will be discussed later on with
the aid of experimental results.

Most channel codes used in syndrome-based coding are
optimized for binary data, whereas typical signals are multi-
level sources. Binary channel codes can be applied to 16-bit
data, like most hyperspectral data, by means of a bit-plane
approach, however, this approach does not exploit the inter-
bit-plane correlation. Therefore, there is some performance
loss to be expected by neglecting this correlation. As will be
seen, we have found this loss to be significant.

The conditional entropyH(X | Y), which determines the
rate of the code to be used for X , is assumed to be known
at the encoder. This assumption causes a few practical prob-
lems. Ignoring H(X | Y) requires some additional mecha-
nism to ensure that the correct code rate has been selected.
For example, in [2] a feedback channel is set up between the
video encoder and decoder; punctured codes are used, and
a cyclic redundancy code (CRC) is also sent to allow for de-
tection of decoding errors. The decoder requests additional
parity bits until it achieves error-free decoding. If the two sig-
nals X and Y are not physically separated, but are stored in
the same memory, some interband communication may be
necessary in order to estimate H(X | Y); if this communi-
cation does not outweigh the cost of explicit decorrelation,
then it makes sense to apply DSC in order to decrease the
encoder complexity at the expense of the decoder’s.

2.4. Two proof-of-concept codecs

It is evident from the above discussion that the practical ap-
plication of DSC principles is not straightforward, and sev-
eral issues have to be taken into account. The most common
DSC designs are based on capacity-achieving channel codes,
such as LDPC [26, 27] and turbo codes [2, 28]. Irregular
LDPC codes are known to almost reach channel capacity;
when used as entropy coders in the DSC scenario, they are
expected to provide a bit rate reasonably close to the con-
ditional entropy of the source given the side information.
However, LDPC codes are so powerful only when the data
block size is very large, for example, in excess of ten thousand
samples, or even more; this could make the encoding process
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Figure 1: Block diagram of the proposed encoder.

computationally demanding, possibly outweighing the ben-
efits of DSC.

Scalar codes are at the other end of the spectrum. These
codes are much less powerful because they operate sample by
sample; however, the encoding and decoding processes are
much simpler, which is a good fit to the DSC scenario. More-
over, unlike LDPC codes, it is easy to design a scalar multi-
level code, as opposed to a binary one.

In the following sections, we present and compare two
different DSC algorithms, based on either approach. In par-
ticular, the first algorithm, described in Section 3, employs
LDPC codes as S-W codes; its performance evaluation is re-
ported in Section 4. The second algorithm, based on scalar
codes, and amenable to a vector extension, is described in
Section 5 and its results are shown in Section 6.

3. A DSC SCHEME FOR HYPERSPECTRAL IMAGES
BASEDON CAPACITY-ACHIEVING CODES

The algorithm described in the following is called DSC-
CALIC; it combines the 2D prediction stage of CALIC [29]
with an S-W entropy coder to exploit interband redundan-
cies. The S-W entropy coder is based on the syndrome-based
channel coding using LDPC codes, similarly to what has been
proposed in [16]; the coder is improved by the selective use
of the channel code and an arithmetic coder.

As for the prediction stage, CALIC employs a nonlinear
gradient-adjusted prediction that uses seven adjacent pixels
in the neighborhood of the pixel to be encoded. Since this
algorithm is well known, the reader is referred to [29] for
further details.

Figure 1 sketches a block diagram of the proposed en-
coder. Let X and Y be, respectively, the current (to be coded)
and previous (already coded) bands of a hyperspectral scene.

First, the CALIC encoder is applied to X in order to
generate the prediction error array EX , which is ideally a
zero-mean stationary memoryless source. The prediction er-
ror of the previous band, EY , is available from the encoding
process of the previous band, and can be used as side infor-
mation at the decoder.

The next step aims at “improving” the side information
for the decoder. Specifically, we employ a linear correlation
model, such as E′Y = αEY , to obtain a modified side infor-
mation E′Y that is closer to EX . The parameter α is obtained
imposing that E′Y and EX have the same energy:

E′Y = round
(
α̂EY

)
(1)

with

α̂ = Q

[∑N
i=1
(
EX ,i

)2∑N
i=1
(
EY ,i

)2
]
, (2)

where EX ,i and EY ,i, with i = 1, . . . ,N , are all the predic-
tion error samples contained in the band being coded, and
round(·) denotes rounding off to the nearest integer. The
operator Q[·] denotes scalar quantization; in fact, a 16-bit
quantized version of α̂ is employed, and is written in the
compressed file to facilitate decoding.

After computing α̂, the actual encoding process takes
place. In particular, the encoder decomposes the predic-

tion error array EX into its bit-planes E(b)
Xi
, with 0 ≤ i ≤

�log2(max |EXi|)�, plus an additional bit-plane containing

the signs of the samples. Specifically, E(b)
Xi

is the ith bit-plane
of EX , and the superscript simply indicates that the data ar-

ray is binary; its entropy is denoted as Hi = H(E(b)
Xi
). The

equivalent bit-plane E′(b)Yi
will be used as side information

for decoding. For each bit-plane, the conditional entropy

Hc,i = H(E(b)
Xi
| E′(b)Yi

) is assumed to be known.

For each bit-plane E(b)
Xi
, the encoder selects one out of two

possible coding modes, that is, (1) encode the current bit-
plane employing the DSC mode with syndrome-based cod-
ing, and (2) encode the current bit-plane using an arithmetic
coder. Mode 2 is typically used when DSC is not efficient for
a given bit-plane, whereas mode 1 is employed the majority
of times. Mode 1 exploits the fact that DSC theory ensures

that each bit-plane E(b)
Xi
, regarded as a binary source, can be

transmitted at a rate Ri ≥ Hc,i. In practice, mode 1 triggers
the LDPC encoder and performs syndrome-based coding of

the bit-plane E(b)
Xi
. The syndrome Si of the array E

(b)
Xi

is com-
puted using an LDPC code of suitable rate, and is written in
the compressed file; we select in the available database the
LDPC code with highest rate, whose syndrome is no smaller
than Hc,i ×N bits.

In particular, we use irregular LDPC codes [26, 30] with
belief-propagation decoding. A database of 100 codes with
code rates between 0.01 and 0.95 has been designed based
on the density evolution optimization technique described
in [31], for a block size of N = 157184 bits (the block size
is obtained as the product of the number of lines that we
code as one entity, that is, 256, times the number of pixels
per line). This size corresponds to a bit-plane obtained scan-
ning in raster order all pixels of 256 lines of an AVIRIS scene.
A scene containing 512 lines can be encoded in two runs;
since the coding process is lossless, there is no need to worry
about possible boundary artifacts caused by tiling. The per-
formance gap of these codes with respect to ideal S-W coding
is between 0.001 and 0.07 b/p.
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Mode 2, which is based on the CACM [32] arithmetic
coder, is used in a few specific cases.

(i) For all the bit-planes of a few bands, for which it has
been found experimentally that DSC provides little
or no advantage with respect to classical 2D coding.
These bands are typically the noisiest ones, for exam-
ple, those corresponding to the water absorption re-
gion. Bands from 1 to 4, from 107 to 114, and from
153 to 169 are quite critical for DSC, because the differ-
ence between the entropy and the conditional entropy
is very small, typically less than 0.1 b/p. Hence, mode 1
has been disabled for all bit-planes belonging to those
bands (more on this can be found in Section 4). For
the first band, this intraband coding mode is also dic-
tated by the fact that no side information is available.

(ii) For all the bit-planes for which Hi < 0.01 or Hc,i >
0.95, because our code database does not contain
any LDPC code that would outperform an arithmetic
coder in those cases. The case of Hi < 0.01 is typical
of a few most significant bit-planes, in which most of
the bits are zero, while the case Hc,i > 0.95 is typical
of the least significant bit-planes, which are very noisy
and hence very difficult to compress.

Mode selection requires one bit of signaling per bit-plane per
block, which represents a negligible overhead given the large
block size (the worst case is about 1 · 10−4 bpp). In terms of
complexity, mode selection requires estimating the entropy
and the conditional entropy of each bit-plane. The condi-
tional entropy would have to be estimated in any case in or-
der to select the LDPC code rate; the entropy can be easily
derived from the conditional entropy, hence mode selection
does not generate a significant complexity overhead.

3.1. DSC-CALIC decoder

The decoding process works as follows. For each band, the
side information E′Y is generated by multiplying the predic-
tion error of the last decoded band EY by α̂ and rounding
to the nearest integer, as in (1). Then, the side information

bit-planes E′(b)Yi
are extracted.

The decoding process is different according to whether
mode 1 or mode 2 has been used by the encoder. If mode 2
has been used, as many bits as are necessary to the arithmetic
decoder to outputN samples are read, and the next bit-plane
is processed.

If mode 1 has been used, the decoder runs the iterative
message-passing LDPC decoding algorithm, with no more

than 100 iterations, to recover bit-plane E(b)
Xi
. In particular,

the LDPC decoder takes as inputs the log-likelihood ratios

(LLR) of E(b)
Xi
, the received syndrome of E(b)

Xi
, and the side in-

formation E′(b)Yi
, and performs syndrome-based decoding of

E′(b)Xi
, attempting to converge to an estimated message having

exactly the received syndrome Si (see [27] for details of the
LDPC decoding process).

At the heart of the decoding process are the LLRs for de-
coder initialization. In typical channel coding applications,

these LLRs are computed assuming a given channel model,
for example, a binary symmetric channel with known cross-
over probability. For this binary channel, knowing the cross-
over probability is a requirement of most soft decoding tech-
niques, and in particular of the belief-propagation decoders
of turbo codes and LDPC codes, that require it in order to
compute posterior probabilities to initialize the iterative de-
coding process. However, this binary symmetric model turns
out to be a poor match to the DSC scenario. The reason lies
in the fact that the most significant bit-planes contain mostly
zeros, and the probabilities that a zero in the side information
becomes a one in the signal, and vice versa, are not equal.
Hence, we employ an asymmetric channel model in which
these probabilities are allowed to be different; denoting as x
and y the channel output and input, respectively (i.e., the sig-
nal and side information), the LLRs are defined as follows:

LLRX = P(x = 1 | y)
P(x = 0 | y) with y = 0, 1, (3)

and they are estimated considering the transmission of the

bit-planes E′(b)Yi
through a binary asymmetric channel with

the following transition matrix:

[
1− pi pi
qi 1− qi

]
, (4)

where pi = P(xi = 1 | yi = 0) and qi = P(xi = 0 | yi = 1) are
assumed to be known.1 The channel output is represented by

the bit-planes E(b)
Xi
. For this binary channel, the LLRs can be

written as

LLRX = P(x = 1 | y)
P(x = 0 | y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
pi

1− pi
if y = 0,

1− qi
qi

if y = 1.
(5)

All the decoded bit-planes E(b)
Xi

are grouped together and
the original prediction error array EX is reconstructed. Fi-
nally, the decoder applies to EX the CALIC inverse decorrela-
tor to generate the losslessly decoded source X .

4. EXPERIMENTAL RESULTS: PART 1

4.1. Discussion

Before providing compression results on AVIRIS data, it is
worth recalling and discussing a few assumptions that have
been made in the implementation of DSC-CALIC.

The first assumption is that the entropy Hc,i of each bit-
plane is available. In DSC theory, H(X | Y) is assumed to
be known at the encoder of X ; this conditional entropy is a

1 These probabilities can be computed by the encoder and written in the
compressed file with negligible overhead. They could also be estimated
by the decoder from previously decoded data, though this option has not
been investigated in this paper.
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measure of how much X and Y are correlated, and is needed
to select the correct degree of redundancy for the S-W coder,
and in practice the channel code rate of the employed LDPC
code. This is a known issue in the literature, that has to be
coped with. For DSC-CALIC, we assume that Hc,i is given
for every bit-plane, and in practice it is computed from the
data. To avoid this, one can, for example, let the sources
communicate; this is what has been done in the second al-
gorithm, described in Section 5. As long as the complexity
of this communication is negligible, the advantages of DSC
are not endangered. Otherwise, if at all possible, one can set
up a feedback channel as in [2] and use punctured codes;
the decoder tells the encoder to send more parity bits until
decoding is correct. More recently, probability models have
been proposed for estimating the entropy and other relevant
probabilities with limited or no intersource communication
[33]. It should be noted that this is still an open problem in
the DSC literature, and that no totally satisfactory solution
has been proposed so far. Related to this problem is the issue
of computing the LLRs for the LDPC decoder. If the binary
symmetric channel model is employed, the crossover proba-
bility must be known, while the asymmetric model requires
pi and qi. This is another known issue, and most existing
DSC techniques assume that these probabilities are known
exactly; statistical estimation of these parameters could be
carried out (e.g., by simply using the probabilities of the pre-
vious bit-plane, which has already been decoded), but this
goes beyond the scope of this paper.

While performing channel decoding, one should check
whether the decoder converged to the correct codeword, or
there are some uncorrected errors. For irregular LDPC codes,
if the code is slightly more powerful than necessary, as is done
in DSC-CALIC, there should be no residual errors. In fact,
during our experiments, the first available code whose syn-
drome size is larger than Hc,i · N always decoded the sig-
nal without errors. Moreover, it is worth noticing that the
convergence (or divergence) of the belief-propagation LDPC
decoding process is a good (though not perfect) indicator
of whether the decoding is correct, that is, the decoder has
some built-in error detection capability. However, it is possi-
ble that, if not all the codes employed are equally efficient, or
if some bit-planes have unusually high bit-error rate, resid-
ual errors occur after S-W decoding. The set of codes we have
employed are not rate-compatible, hence it is not possible
to just send more parity bits, as would be instead possible
with turbo codes [2]; this is a price to pay for the higher cod-
ing efficiency of LDPC codes. We have attempted to use bit-
doping, that is, sending more systematic bits and modifying
the decoder LLRs accordingly; this strategy has turned out to
be poorly matched to syndrome decoding, because too many
such bits are required to make the decoding process success-
ful. For error detection purposes, if an arbitrarily high degree
of confidence is required, a CRC code can be appended to the
coded bit-plane data. The CRC allows to detect decoding er-
rors with very high probability, and the data block size is so
large that the overhead due to the CRC is negligible. How-
ever, a rate-compatible code would then be required in order
to avoid resending the whole bit-plane with a more powerful

code. It would be necessary to switch to a rate-compatible
(but less powerful) LDPC code, or to employ a different class
of codes that are rate-compatible. This issue has been left for
further work.

As far as complexity is concerned, the following remarks
are in order. It is known that the encoding complexity of
LDPC codes is O(N2) [34], even though the basic operations
are very simple, as they are sums in modulo-2 arithmetic.
TheO(N2) behavior makes the encoder complexity relatively
large, and may outweigh the benefits of the DSC encoder in
terms of complexity. In [34], it is noted that, however, the ac-
tual encoder complexity is quasilinear in N ; for example, for
a (3,6) regular code, the number of operations can be shown
to be no more than 0.0172N2 + O(N). Moreover, irregular
LDPC codes can be optimized so that the encoder complex-
ity is linear. In the present work, we have decided that DSC-
CALIC should not be overly concerned with complexity, but
that the most efficient available codes should be used. This
choice reflects the typical DSC coder designs, and allows to
assess the performance loss of a practical scheme from the
theoretical bounds. As will be seen in Section 4.2, compari-
son between the performance of DSC-CALIC and the binary
and multilevel entropies allows to draw useful indications re-
garding the causes of performance loss, as well as the possible
remedies. As a consequence, the encoding time of our soft-
ware encoder is larger than that of 3D CALIC, although it
could be made significantly lower by careful optimization of
the set of parity check matrices.

4.2. Compression of AVIRIS images

In the following, we provide compression results for DSC-
CALIC, and compare it with other state-of-the-art 2D and
3D coders. The tests are performed on the 16-bit radiance
data of a few AVIRIS scenes acquired in 1997; in partic-
ular, the first 256 lines (with all bands) of scene 1 of the
Cuprite, Lunar Lake, and Jasper Ridge images have been used.
The AVIRIS sensor is able to achieve a spectral resolution
of about 10 nm in the visible-infrared range (400–2500 nm),
thus yielding 224 highly correlated bands. We employ the
publicly available radiometrically corrected radiance data,
which are represented on 16 b/p, although the raw sensor
data only have 12 b/p. Since both scalar and vector codecs
consider one pair of bands at a time. For all the algorithms
considered in this paper, the data are assumed to be available
in band-sequential (BSQ) format.

The following algorithms have been compared. JPEG-
LS [35] has been considered, as it is an efficient and low-
complexity technique. 2D-CALIC [29] and 3D-CALIC [36]
are more complex, but provide state-of-the-art performance.
Specifically, 2D-CALIC and JPEG-LS are two examples of
codecs exploiting only intraband correlation, whereas 3D-
CALIC performs both spatial and spectral decorrelation of
the hyperspectral cube.

The technique labeled as “B-iDSC-CALIC” is a version
of DSC-CALIC in which S-W coding is ideal, that is, assum-
ing that the S-W coder employs a bit rate exactly equal to
the conditional entropy; the initial letter “B” indicates that
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Table 1: Coding efficiency of DSC-CALIC compared to that of con-
ventional 2D and 3D schemes.

Algorithm Cuprite Lunar Jasper Average

JPEG-LS 6.78 6.98 7.58 7.11

2D-CALIC 6.61 6.84 7.43 6.96

3D-CALIC 5.11 5.25 5.13 5.16

DSC-CALIC 5.99 6.22 6.37 6.19

B-iDSC-CALIC 5.94 6.17 6.31 6.14

M-iDSC-CALIC 5.12 5.21 5.13 5.15

S-W coding is binary. A practical S-W coder, such as DSC-
CALIC, cannot achieve a rate smaller than the conditional
entropy, that is, smaller than that of B-iDSC-CALIC, in the
same way as a Huffman or arithmetic coder can not achieve
a rate smaller than the source entropy. As a consequence, B-
iDSC-CALIC can be used to evaluate the performance loss of
the practical LDPC-based S-W encoder with respect to the
ideal case.

Similarly, the technique labeled as “M-iDSC-CALIC” as-
sumes ideal S-W coding; however, in this case, the entropy is
not computed considering bit-planes as binary sources and
summing their entropies, hence disregarding the correlation
among different bit-planes. Rather, we consider the complete
multilevel source, with an alphabet containing 216 symbols,
and compute the frequency of occurrence of each symbol.
The multilevel entropy represents the performance bound
for a multilevel as opposed to a binary S-W coder.

The results are reported in Table 1. As can be seen, DSC-
CALIC obtains significantly lower bit rates than all 2D cod-
ing techniques, and in particular is on average 0.77 b/p better
than 2D-CALIC and 0.92 b/p better than JPEG-LS, notwith-
standing that DSC-CALIC does not perform context model-
ing, which amounts to a performance loss of about 0.2 b/p.

Comparing DSC-CALIC and iDSC-CALIC, it can also be
seen that the proposed S-W coder is very efficient, in that it is
only about 0.05 bit worse that an ideal bit-plane-based S-W
coder.

Comparing iDSC-CALIC and 3D CALIC, it can be seen
that even the ideal S-W coder falls short of the theoreti-
cal bounds, in that there is still a gap with respect to a 3D
technique. Part of this gap is due to the context modeling
in 3D-CALIC, which adaptively captures spatial and spec-
tral features, and does not neglect correlation between dif-
ferent bit-planes. This can be further explained by looking at
the entropies for multilevel S-W coding. Although the aver-
age multilevel entropy for each band is only slightly less than
the binary entropy (0.08 b/p), the multilevel conditional en-
tropy is 1 b/p lower than the binary one. This is the reason
why 3D-CALIC can get extremely close to the multilevel en-
tropy, while DSC-CALIC and iDSC-CALIC are 1 b/p away.
The difference between the binary andmultilevel conditional
entropies highlights a limit of binary S-W coders, which are
not able to capture all the correlation in the data. Although
DSC-CALIC is extremely close to iDSC-CALIC, significantly
better performance could be obtained by using a multilevel

coder, or at least a binary coder whose posterior probabili-
ties are computed taking into account the already decoded
bit-planes. In fact, as will be seen in Section 6, a scalar mul-
tilevel coder may achieve performance as good as a capacity-
achieving binary code, with much lower complexity.

5. SPATIALLY ADAPTIVE DSC OF
HYPERSPECTRAL IMAGES

To develop the DSC coder described in the previous section,
we assumed that the quantity H(X | Y) is known. A pos-
sible solution could be to estimate H(X | Y) “on the fly,”
however this may require too much communication between
image bands. The problem is further complicated by the ob-
servation that image bands can not be modelled as stationary
sources hence calling for an adaptive estimation ofH(X | Y).

In this section, we present a second DSC codec that tack-
les the above problem by relying on a completely different
strategy than DSC-CALIC. First of all, we allow the encoder
to compare two consecutive image bands, say X and Y . How-
ever, such a comparison is kept as simple as possible, thus
permitting to achieve a considerable gain in terms of encoder
simplicity, at the expense of a symmetric complication of the
decoder. Secondly, we adopt a block-based approach that, by
splitting the image bands into small parts, allows to finely
adapt the estimation of image dependency. This forces us to
use codes having a small length, thus tending to reduce the
effectiveness of the system. As it will be shown in the next
section, though, the benefits brought by adaptivity outper-
form the coding loss, thus permitting to achieve rather good
coding efficiency.

In order to describe the DSC codec, let us focus on two
consecutive bands X and Y . We assume that Y has already
been coded losslessly and hence it is available at the decoder.
To see how X can be coded, let us assume that a model P
permitting to predict the value of the pixels in X from those
of Y is known (we will remove such an assumption later on),
that is, the value of each pixel x(i, j) in X can be written as

x(i, j) = P
(
y(i, j)

)
+ n(i, j), (6)

where n(i, j) is called correlation noise, and y(i, j) is the
value of the pixel in Y . Of course, using a scalar predictor
as in (6) is not an optimum choice, however we opted for it
in order to maximize the simplicity of the encoder. We also
assume that the statistics of n(i, j) are known. The value of
the pixels in X is coded by retaining only the k least signifi-
cant bits of x(i, j), where the exact value of k depends on the
correlation between the bands, that is, on the statistics of n.
Note that these k least significant bits (LSB) can be seen as
the index i∗ of the coset containing x(i, j). Specifically, each
coset is formed by all the grey levels with the same LSBs, and
each codeword in the coset is characterized by the particu-
lar values assumed by the most significant bits (MSB). The
decoder will have to resolve this ambiguity by recovering the
MSBs on the basis of the side information Y . Specifically, it
chooses themost significant bits tominimize the distance be-
tween the reconstructed pixel value and the predicted value



8 EURASIP Journal on Advances in Signal Processing

Number k of
transmitted bits

K least significant
bit-planes

CRC bits

Figure 2: Content of a compressed block for the adaptive DSC
scheme.

P (y(i, j)). If the number of transmitted bits is chosen prop-
erly, no reconstruction loss is incurred.

Themain problemwith the above implementation is that
the model P and the statistics of n(i, j) are not known, and,
in any case, are not stationary quantities. To get around the
problem, the availability of Y at the encoder is exploited.
Note that being our final aim that of reducing the complex-
ity of the encoder, the availability of Y can still be exploited,
as long as we do not increase the encoder complexity. Specifi-
cally, we first splitX into nonoverlapping blocks of size n×m.
Then, for each block, a rough estimate of themaximum value
of n(i, j) is computed and used to decide the number of bits
that can be discarded while coding the pixels of the block.

In addition to the least significant bits of X , the encoder
computes some parity check bits by applying a CRC code to
the values of the pixels in the block (the reason for the intro-
duction of the CRC bits will be explained below). Finally, the
encoder specifies the number of least significant bits actually
stored. The exact content of the coded bit stream is summa-
rized in Figure 2.

Since the decoder does not know the particular P used
by the encoder, it considers several predictors obtaining, for
each pixel, a set of np possible predicted values

x̃l(i, j) = Pl
(
y(i, j)

)
, l = 1, . . . ,np. (7)

When the MSBs of the predicted values are combined with
the least significant bits of x(i, j), np possible reconstructed
values are obtained. The decoder uses the CRC bits com-
puted by the encoder to choose the right predictor. In par-
ticular, it looks for a P for which the reconstructed values of
the pixels in the block result in the correct CRC sequence. If
the length of the CRC sequence is chosen properly, the prob-
ability that the correct parity bits are obtained for a wrong
reconstruction can be made arbitrarily small, hence ensuring
the lossless reconstruction of X .

5.1. Estimation of k

A major problem at the encoder side is that of defining the
number k of LSBs to be transmitted at the decoder. To de-
scribe the strategy we developed, let us start by observing
that, since two adjacent bands of a hyperspectral image gen-
erally exhibit a strong correlation, the correlation coefficient
ρXY between a block of the band X and the corresponding
block in the previous band Y is very close to 1. As a conse-
quence, there exists an approximately linear dependency be-
tween the two blocks and a linear prediction model based on
the side information Y is likely to be a good predictor for the
current block to be coded. To be specific, let us focus on a
single block in X . Let μx be the average value of the block.
The encoder considers a set of linear predictors leading to a

pool of predicted values {x̃(l)(i, j)}

x̃(l)(i, j) = μx + α(l)
[
y(i, j)− μy

]
, (8)

where μy is the average value of the corresponding block in
Y and α(l) is a varying parameter. In particular, α(l) is de-
termined by inserting within (8) the true values of a pair of
corresponding pixels in X and Y . So, given two pixels x(il, jl)
and y(il, jl), the parameter α(l) is determined as

α(l) = x
(
il, jl

)− μx
y
(
il, jl

)− μy
. (9)

In our implementation, the pixels x(il, jl) and y(il, jl) are all
the pixels on the left and upper borders of the to-be-coded
block, that is, all the pixels belonging either to the first row
or to the first column of the block (only one pixel out of four
is considered so to reduce as much as possible the computa-
tional complexity of the encoder). Eventually, by indicating
with x the vector with all the values of the pixels in the block,
the quantity

nmin = min
l

∥∥x− x̃(l)
∥∥∞ (10)

is taken as a rough estimate of the correlation noise existing
between the current block x and the corresponding block in
Y . This quantity is used to set the number of least significant
bits to be retained as

k = ⌈ log2 nmin
⌉
+ 1, (11)

that is, the minimum number of least significant bits to be
transmitted for each pixel that ensures a lossless recovery at
the decoder.

5.2. Decoding

In order to exploit the side information to recover the most
significant bits of X , the decoder would need to know a
model to predict the values of the pixels inX from those in Y .
This model does not need to be the same used by the encoder,
it is only required that the prediction error experienced by
the decoder does not exceed the maximum prediction error
estimated by the encoder. For sake of simplicity, we decided
to use a predictor having the same form of the one used by
the encoder. However, the decoder does not know the aver-
age value μx of the current block, nor the value of the pixels
in the first row and in the first column. Then it has to esti-
mate these parameter, by resorting to the pixels of spatially
contiguous blocks already decoded and to those belonging to
the side information Y .

Let us call μxu and μxl the average values of the blocks
above and on the left of the current block, and μyu and μyl
the corresponding values in the previous band. By assuming
that the spatial correlation in Y is retained in X , we use the
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following estimate for the mean value μx:

μ̂x = 1
2

[
μxu

(
1 +

μy − μyu
μyu

)
+ μxl

(
1 +

μy − μyl
μyl

)]
, (12)

which is more and more accurate as ρXY gets closer to 1. A
similar expression is used to estimate the values of all the
pixels of the first row and the first column of the block to
be decoded.

The estimates of the pixels in the border of the block to be
decoded undergo a further refinement obtained by replacing
their least significant bits with those received from the en-
coder. The estimate of μx and those of the border pixels are
used to define a set of predictorsPl. Indeed, a larger number
of predictors is built by perturbing the estimated values of μx
and those of the border pixels by adding a number of mul-
tiples of a given quantization step. Of course, the lower the
quantization step is the more precise, and the more complex,
the decoder is.

All the candidate predicted values obtained by applying
Pl to Y are combined with the received least significant bits
resulting in a right reconstruction of the current block if the
condition ∣∣x̃(l)(i, j)− x(i, j)

∣∣ < 2k−1 (13)

is verified for all the pixels in the block. In fact, a coset in-
dex of length k specifies a coset of values at a distance of 2k

from each other and in order to select the correct value x(i, j)
the predicted value x̃(l)(i, j) must be at a distance lower than
2k−1.

5.3. Vector extension

5.3.1. Vector encoder

We also implemented a vector extension of the above scheme.
In fact, using a vector encoder permits to increase the mini-
mum distance between two elements of the coset, thus pro-
viding a higher immunity against spectral correlation noise
than in the scalar case. More in detail, the coset index is
formed by two parts, the former obtained scalarly by re-
taining the k − 1 least significant bit-planes of the block, as
in the scalar coder, the latter, let us indicate it by sk, com-
puted by applying channel coding to the kth bit-plane (see
Figure 3). In order to determine the number of bit planes to
be transmitted, the encoder makes an estimate of the corre-
lation noise existing between the current block and the cor-
responding block in the previous band, by using the same
approach adopted for the scalar encoder. Note that the length
of sk is at the most equal to the length of the bit-plane itself.
Since the dimension of a block is fixed to 2q − 1 pixels (for
some q > 0), the bit-plane has 2q−1 bits thus allowing to em-
ploy a (2q−1, 2q−1− ls) BCH channel code [37] to transmit
a syndrome of length ls:

sk = pkH
t, (14)

where pk is the kth bit-plane andH is the ls× (2q − 1) parity
check matrix of the BCH code. The length ls of the syndrome

The k � 1 least significant
bit-planes are not coded

The kth bit-plane
is BCH-coded

The most significant
bit-planes are discarded

2q � 1 pixels

Figure 3: Bit-plane coding by means of the vector DSC coder. The
kth bit-plane is BCH-coded, whereas the k − 1 least significant bit-
planes are transmitted uncoded.

sk is preliminarily estimated in order to select the BCH code
with an error correction capability matched to the correla-
tion noise and to ensure a lossless reconstruction at the de-
coder. In summary, the bit-stream relative to a compressed
block includes

(1) (k − 1) × r × c bits for the (k − 1) least significant bit
planes (r and c are the dimensions of the block);

(2) �log2(h − 1)� bits to code the scalar syndrome length
(having indicated with h the number of bits each pixel
value consists of);

(3) ls bits of the vectorial syndrome sk relative to the kth
least significant bit-plane of the block;

(4) (q − 2) bits to code the vectorial syndrome length, as
the maximum error correction capability of a BCH
code of length (2q − 1) is typically (2q−2 − 1) [37];

(5) p parity check bits relative to the CRC computed on
the block.

The choice of using a channel code to compress X is consis-
tent with DSC theory which sees the side information Y (or,
as in our case, the prediction of X obtained by relying on Y)
as the output of a virtual channel with X as an input. To cor-
rect the errors induced by this correlation noise, the decoder
needs some redundant information which is nothing but the
X-syndrome delivered by the BCH coder.

5.3.2. Vector decoder

The decoder resorts to a suitable linear prediction estimate
obtained by means of the side information and the already
decoded bits as done for the scalar case. For each candi-
date predictor, the decoder selects among the elements of
the coset specified by the syndrome sk the bit-plane which
is at minimum Hamming distance from the kth bit-plane of
the predictor currently tested. A successful decoding is ob-
tained if the number of errors induced by a candidate predic-
tor is lower than the error correction capability of the BCH
code. Regardless of the result of the decoding of the kth bit-
plane, the k− 1 least significant bit-planes are added to form
2q − 1 scalar syndromes of length k. Then the decoder needs
to determine the most significant bits of each pixel. As in the
scalar case, this is done byminimizing the distance to the pre-
dicted pixel value. The reconstruction of the current block is
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Table 2: Coding efficiency of the adaptive DSC coders compared to
that of conventional 2D and 3D schemes.

Algorithm Cuprite Lunar Jasper Average

JPEG-LS 6.78 6.98 7.58 7.11

2D-CALIC 6.61 6.84 7.43 6.96

3D-CALIC 5.11 5.25 5.13 5.16

s-DSC 6.08 6.23 6.24 6.18

v-DSC 5.94 6.09 6.10 6.04

considered to be successful if the CRC sequence computed
on the reconstructed pixels matches the received CRC, oth-
erwise another candidate predictor is tested.

6. EXPERIMENTAL RESULTS: PART 2

To check the effectiveness of the adaptive schemes both from
the point of view of computational complexity and coding
efficiency, the scalar and the vector DSC adaptive codecs
have been applied to the same hyperspectral images used in
Section 4.2, and the results we obtained have been compared
to those of existing popular lossless compression algorithms,
namely, 2D-CALIC, JPEG-LS, and 3D-CALIC. As in the pre-
vious case, all data are assumed to be available in BSQ format.

With regard to the scalar codec, we chose a block size of
16 × 16, since it provides a good balance between adaptivity
and length of the channel code. Note also that the use of a
small block size increases the relative weight of headers and
trailers carrying the information about syndrome length and
checksum. As to the vector codec, a 15×17 block is employed
allowing to use a (255, 255 − ls) BCH code (q = 8), while
a CRC code with the same parity check length (p = 32) is
adopted for both the DSC codecs, thus providing a decoding
error probability of 2−32.

All the algorithms have been run on a workstation with
a Pentium III 850MHz processor and Linux 2.6.5 operat-
ing system. Table 2 reports the bit rates achieved by each
compression algorithm for Cuprite, Lunar, and Jasper im-
ages as well as the average value relating to the three scenes,
while Figure 4 depicts the computing times per band, aver-
aged over the three images for both encoder and decoder. As
expected, both DSC schemes show a remarkable asymme-
try in the computational complexity between encoder and
decoder, the former resulting much faster than the latter. By
comparing the new schemes, there is a little gain in the com-
pression ratio (nearly 0.1 b/p) achieved by the vector scheme
with respect to the scalar one though it causes a considerable
increase of the computational cost both in coding and decod-
ing operation. A comparison with the other methods reveals
that the DSC codecs perform about 1 b/p below the bit rates
achieved by JPEG-LS and 2D-CALIC but about 1 b/p above
the bit rates of 3D-CALIC. On the other side, the scalar DSC
encoder, which is the fastest between the two DSC schemes,
is about 10 times faster than 3D-CALIC and about 5 times
faster than 2D-CALIC, though it is about 2 times slower that
JPEG-LS.
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Figure 4: Computational complexities of DSC and conventional
codecs. Both the per-band complexities of the encoder and the de-
coder are reported.
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Figure 5: Computational complexity of the scalar and vector en-
coders split among tasks.

Comparing the results in Table 2 with those of DSC-
CALIC in Table 1, it can be seen that the average compres-
sion performance of DSC-CALIC is similar to that of s-DSC.
The vector extension has improved performance, but also
improved complexity. Therefore, it turns out that, for the ap-
plication considered in this paper, a scalar multilevel code
achieves the same performance as a powerful binary code,
with evident advantages in terms of encoder computational
complexity.

6.1. Further insights on the encoder complexity

In order to better understand where the residual complexity
of the encoder derives from, wemeasured the impact that the
various steps performed by the encoder have on the encoding
time. The results we obtained are shown in Figure 5.

Interestingly, the calculation of the CRC is the most
computationally intensive operation. At the same time, the
choice of the predictor, thanks to the particular procedure
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we adopted that estimates it by considering only a small sub-
set of the pixels in the block, accounts only of one third of
the computing time. The above observation suggests some
possible directions to further speed up the encoder. First of
all, we can observe that the error correction code we used
(a 255 long BCH code) offers good geometric properties but
is characterized by a rather complicated encoding process.
Faster computation of CRC bits could be achieved by adopt-
ing a simpler code, possibly at the expense of worse error de-
tection properties.2 A second way of improving the system
consists in deciding to transmit the parameters of the pre-
dictor used by the encoder. In this way, we could avoid to
transmit the CRC bits hence significantly speeding up the en-
coder. This improvement would be paid by a slight increase
of the bit rate, since storing the predictor parameters requires
a few more bits than the CRC length. It is also worth noting
that, at least in the scalar case, this latter approach would con-
stitute a significant deviation from the DSC paradigm, since
the new scheme would closely resemble a classical interband
prediction-based encoder.

7. DISCUSSION AND CONCLUSIONS

The objective of this paper was to evaluate the potential of
DSC as applied to real-world data in a realistic scenario.
Among the possible benefits brought by the DSC approach,
we focused on reducing the computational burden of the en-
coder. Specifically, our target application was on-board loss-
less compression of hyperspectral data with reduced encoder
complexity. The possibility of exploiting the opportunities
offered by DSC theory to improve other aspects of hyper-
spectral codecs, for example, to reduce the communication
bandwidth between the two sources of information repre-
sented here by two consecutive image bands, is left for future
research.

To achieve the above objective, we have designed two
DSC coders that borrow from existing coders as for the pure
S-W coding, but exhibit distinctive features in their applica-
tion to real-world data. The rationale behind designing two
coders is to evaluate two different approaches to DSC, that
is, capacity achieving channel codes, and simple multilevel
codes. The performance of these techniques has been com-
pared with that of state-of-the-art 2D and 3D lossless com-
pression algorithms. The following remarks can be made on
the basis of the experimental results on AVIRIS data.

(i) Practical binary S-W coding based on LDPC codes has
very high performance, since it is as close as 0.05 b/p
to the theoretical bound.

(ii) However, the encoder complexity of capacity-achiev-
ing binary codes is not negligible, and may outweigh
the benefits of DSC if the encoder is not implemented
carefully.

(iii) Binary S-W coding turns out to be significantly sub-
optimal with respect to multilevel S-W coding. This

2 Worse error detection properties, in turn, call for a longer code, hence
slightly diminishing the compression efficiency.

can be seen by comparing binary and multilevel con-
ditional entropies, which differ by about 1 b/p.

(iv) This implies that a simplemultilevel coset code can ob-
tain performance as good as a powerful binary code,
with much lower complexity. This result is achieved
by the proposed scalar scheme. In fact, the perfor-
mance of the scalar scheme is equivalent to that of
DSC-CALIC, but with much lower complexity.

(v) This also implies that there is still a lot of perfor-
mance gain to be achieved, in order for DSC-based
schemes to get as close as possible to the performance
of a multilevel joint encoder such as 3D-CALIC. This
can be done by employing capacity-achieving multi-
level channel codes. However, in [38] it is shown that
the most significant correlation is between the current
and the previous bit-plane; this suggests that careful
optimization of a binary coder, employing a probabil-
ity model that takes into account also the probability
of the symbols in the previous bit-plane, might lead
to improved performance. Whether this also holds for
16-bit data is still to be investigated.

We would like conclude our discussion by explicitly ob-
serving that the schemes we developed, though offering
promising results, are not efficient enough to compete with
classical state-of-the-art techniques. Indeed, similar or better
performance, both in terms of coding efficiency and simplic-
ity, can be achieved by applying a very simple interband pre-
diction scheme followed by intraband coding of the predic-
tion error (e.g., by means of a standard JPEG-LS encoder).
This is not surprising: it took several years before conven-
tional lossless interband prediction-based codecs reached the
maturity level they offer today. Similarly, it is easy to imagine
that a significant amount of research is still needed before en-
coders designed according to the DSC paradigm can compete
with their predecessors. Nevertheless, we deem that our in-
vestigation is an interesting one, because it clearly highlights
the difficulties encountered when trying to apply DSC tech-
niques to remote sensing image compression and, most of all,
it introduces a bunch of new ideas that permit to reduce the
gap between theoretically predicted performance and practi-
cal schemes.
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