Hindawi Publishing Corporation

EURASIP Journal on Advances in Signal Processing
Volume 2007, Article ID 45768, 8 pages
doi:10.1155/2007/45768

Research Article

Quasi-Cyclic LDPC Codes of Column-Weight Two

Using a Search Algorithm

Gabofetswe Malema and Michael Liebelt

School of Electrical and Electronic Engineering, The University of Adelaide, North Terrace, Adelaide 5005, SA, Australia

Received 16 February 2006; Revised 11 August 2006; Accepted 6 February 2007

Recommended by Richard Heusdens

This article introduces a search algorithm for constructing quasi-cyclic LDPC codes of column-weight two. To obtain a submatrix
structure, rows are divided into groups of equal sizes. Rows in a group are connected in their numerical order to obtain a cyclic
structure. Two rows forming a column must be at a specified distance from each other to obtain a given girth. The search for rows
satisfying the distance is done sequentially or randomly. Using the proposed algorithm regular and irregular column-weight-two
codes are obtained over a wide range of girths, rates, and lengths. The algorithm, which has a complexity linear with respect to the
number of rows, provides an easy and fast way to construct quasi-cyclic LDPC codes. Constructed codes show good bit-error rate
performance with randomly shifted codes performing better than sequentially shifted ones.

Copyright © 2007 G. Malema and M. Liebelt. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

1. INTRODUCTION

Gallager has shown that column-weight-two codes have min-
imum distance increasing logarithmically with code length,
compared to a linear increase when the column-weight is
at least three [1]. Despite the low increase in minimum dis-
tance, these codes have shown potential in some applications
such as partial response channels [2, 3]. These codes also
have less computation because columns have only two con-
nections.

Although LDPC code performance has been shown to be
good, their hardware implementation still remains a chal-
lenge. This is mainly because of their large sizes and com-
plex random (unstructured) row-column connections. Ap-
plications have power, area, latency, and cost constraints
that LDPC encoders and decoders must meet. Structured
codes have been developed to reduce hardware implementa-
tion complexity by constraining code construction. However,
constraining row-column connections may reduce the max-
imum girth (smallest cycle) attainable [4]. It has been shown
that increasing the girth or average girth of a code increases
its decoding performance [5, 6]. The girth also determines
the number of iterations before a message propagates back
to its original node. Performance of structured codes could
therefore be improved by increasing their girths.

In [7] girth 16 and 18 codes with row-weights of 4
and 3 are constructed from graphical models. The method
does not provide an easy way of constructing codes for
high row-weights and expanding codes. In [3] cyclic codes
are constructed algebraically with girth of twelve for row-
weights of k, where k — 1 is prime. Large-girth column-
weight-two codes can also be derived from distance graphs
[8]. However, most of the derived codes are not easily im-
plementable because of their row-column interconnection
structure. In this paper, we construct quasi-cyclic codes with
a wide range of girths, rates, and lengths using a search al-
gorithm. Quasi-cyclic codes have a structure that is rela-
tively easy to implement in hardware for both encoder and
decoder[9, 10].

This paper is organized as follows. Section 2 describes
a non-bipartite graph representation of LDPC codes. With
this representation LDPC codes can be derived from distance
graphs. Bit-filling and progressive-edge growth algorithms
are briefly described in Section 3. The proposed algorithm is
introduced in Section 4 from which a wide range of codes is
obtained. Bit-error rate (BER) performances of the obtained
codes are simulated and evaluated. Hardware implementa-
tion issues of these codes are also discussed. Section 5 has
concluding remarks.

EURASIP Journal on Advances in Signal Processing

Distance graph

Matrix form

1111100000
10001 1100

[=E - -

010010

[=I -]

001001

0001001O0T11
Columns

(a) (b)

FiGure 1: Graph and matrix LDPC code representation.

2. LDPCREPRESENTATION

A LDPC code matrix is usually represented by a Tanner or bi-
partite graph in which rows (check nodes) are one set of ver-
tices and columns (variable nodes) are another set of vertices.
Check and variable nodes are connected by an edge if the cor-
responding row and column have a “1” entry in the matrix. A
LDPC code matrix can also be represented by a non-bipartite
or distance graph in which vertices are rows and edges rep-
resent columns. A distance graph is a connected graph with
M vertices, a smallest cycle length of ¢ and average vertex
degree of k. With this representation connected vertices of
the graph represent rows that are connected to the same col-
umn in the matrix form. In the case of two rows per column
(column-weight of two), a single edge between two vertices
represents a column. Figure 1 shows a distance graph of five
vertices with a minimum cycle length of three. Taking each
vertex as a row and each edge as a column a corresponding
matrix is formed as in the figure. The connections are rep-
resented by “1” entries in the matrix. A parity-check matrix,
H, entry is equal to “1” or Hy, = 1, if vertices vy and v,
are connected in the graph. The number of “1” entries in a
row, k, is equal to the number of edges of the corresponding
vertex. The number of rows is equal to the number of ver-
tices in the graph whereas the number of columns is equal to
the number of edges. In general the size of a derived column-
weight-two LDPC code matrix from a distance graph is given
by M x Mk/2, where M is the number of vertices in the graph
and Mk/2 is the number of edges. The notation (N, j, k) is of-
ten used to show size and rate of a code, where N is the num-
ber of columns or length of a code and j and k are column
and row-weights, respectively. The rate of a code is given by
1 — j/k, hence for these codes the rate is 1 — 2/k.

A cycle length of ¢ in the graph corresponds to a cycle
of length 2¢ in matrix form. In the graph we calculate the
length using either vertices or edges only. In matrix form a
cycle alternates between rows and columns. Therefore, the
graph cycle represents half of the cycle. A cycle of three in the
example graph is shown in dotted lines between vertices 1,
2, and 3. It forms a cycle of length six between rows 1, 2, 3

and columns 1, 2, 5 in matrix form. A cycle of length four in
a parity-check matrix is formed if a pair of vertices are con-
nected more than once in the corresponding graph represen-
tation. Four cycles can be broken by not connecting any two
rows of a code more than once in the graph representation; a
condition also known as the row-column constraint [11].

3. SEARCH ALGORITHMS

Random or pseudorandom construction algorithms such
as bit-filling (BF) and progressive-edge growth (PEG) have
been developed to construct a wide range of codes. The BF
algorithm introduced in [12] constructs a LDPC code by
connecting rows and columns of a code one at a time pro-
vided that a targeted girth is not violated. The number of
connections to rows and columns is kept mostly evenly dis-
tributed by randomly selecting rows or columns with the
least number of connections first. The algorithm obtains
irregular codes with either a fixed row or column-weight.
Although the algorithm produces high-rate and high-girth
codes given a particular code size, the resulting codes are
not easily implementable in hardware. This is mainly because
the structure of row-column connections is not consistent
enough to be an advantage in hardware implementation. The
objective of the algorithm is to optimize girth or rate.

The PEG algorithm [13] is also a simple nonalgebraic
algorithm that can be used to construct codes of arbitrary
length and rate. It is similar to the bit-filling algorithm. In
PEG, node degrees are distributed according to some perfor-
mance criteria before edges are added. The algorithm builds
a Tanner graph by connecting the graph’s nodes edge by
edge provided that the added edge has minimal impact on
the girth of the graph. With this algorithm regular and ir-
regular codes can be obtained with optimized performance.
Codes obtained using this method are amongst the best per-
formance codes at short lengths with column-weight of at
least three. However, as with codes obtained using the BF al-
gorithm, PEG codes are not easily implementable due to their
pseudorandom interconnections.

4. PROPOSED ALGORITHM

There are different methods for constructing quasi-cyclic
LDPC codes including algebraic and combinatorial, exam-
ples of which are found in [4, 14]. These construction meth-
ods avoid four cycles by employing the row-column con-
straint. Although these methods can be used to construct
a wide range of codes, they have limited ability to produce
codes with arbitrary girth, rate, and length.

We take advantage of the flexibility found in random
search methods such as BF and PEG to construct a wide
range of structured codes. We add further constraints to
search algorithms such that the obtained codes are quasi-
cyclic. This is achieved by dividing rows of a code into equal
groups to form submatrices. Rows representing vertices are
used to form a distance graph in which two vertices are con-
nected if they are in different groups. Vertices in a group are
connected in a sequential order to obtain cyclically shifted

G. Malema and M. Liebelt

After one
connection

Row connections

1.5 1.6 17 1.8

26 27 28 25
3.7 38 35 3.6
48 45 4.6 4.7

(a)

(1) Divide rows into j" equal groups of size
P> (RGy,..., RGy). If the number of rows
is unknown or not given, start with a
theoretical minimum number of rows if
known otherwise start with a group size
of k (row-weight).
7y 1S TOW X.
U, is a set of rows within a distance of g
from r,.

(2) Pair row groups such that each group
appears k times. There are kj’/2 row group
pairs, (RGP, ...,RGPyj).

(3)Fort =1to k2] {

RG,ef = RGP(1)
select r; € RGyer
sequentially or randomly search for
1« € RGP,(2) where r, & U,,, else
algorithm fails
Forz=1top {

Ti+, 1s connected to ryy, if

Teiz € U,,,» else algorithm
fails

}

(4) Use obtained distance graph to form a
LDPC parity-check matrix.

ALGORITHM 1

identity submatrices. That is, if vertices v, and v, are con-
nected, then vy, and v, are also connected. A desired girth,
g, is achieved by randomly or sequentially selecting and con-
necting vertices that are at a desired distance from each other.
The resulting graph is then used to form an equivalent LDPC
code matrix as was done in Figure 1. Algorithm 1 is described
with rows representing vertices.

After two
connections

After four
connections

After three
connections

FIGURE 3: Matrix representation of a (16, 2, 4) code with girth eight.

The algorithm constructs a distance graph code rows in
step 3 of algorithm. Row r, which is at a distance of at least
g from r;, is searched sequentially or randomly in RGP;(2). A
sequential search traverses a row group in ascending or de-
scending order. If r, is found, the rest of the rows are con-
nected relative to r; and ry if the girth condition is not vio-
lated. Figure 2 shows row connections for a (16, 2, 4) LDPC
code with girth eight constructed using the proposed algo-
rithm. There are two groups of size 4. The first group and row
1 are always chosen as the reference group and row, respec-
tively. A sequential search is used in group 2. The first group
has rows 1 to 4 and the second group has rows 5 to 8. Since
there are only two groups (group 1 and 2), the groups pair-
ings are [1 2], [1 2], [1 2], [1 2] with each group appearing
four times (desired row-weight). In the first connection row
5 is found to satisfy the distance of four (desired girth) from
row 1. The rest of group 1, rows 2 to 4, are then connected
to rows 6 to 8. In the second connection, row 6 is the first to
satisfy the distance. It is connected to row 1 with the rest of
group 1 connected to the rest of group 2. The process is re-
peated in connections three and four as shown in the figure.
The row connections form a distance graph with the num-
ber of vertices equal to eight, a vertex degree equal to four
and a girth of four. Figure 3 shows a matrix representation of
the obtained code. Each set of connections forms a column
group with each row group as a 4 X 4 submatrix. Since the
first group is not searched or shifted, rows in this group are
connected in their natural order in each submatrix. The top
four rows contain four unshifted identity submatrices corre-
sponding to four connections for group 1 rows. Group 2 rows
are connected in their natural order only in the first connec-
tion. The bottom 4 X 4 submatrices represent group 2 con-
nections.

EURASIP Journal on Advances in Signal Processing

4
I I
I I, I, I,
(a)
I 0o I o
L, | O I o I, I
3} I, I, I, | O N

FIGURE 4: Structure of obtained quasi-cyclic LDPC codes.

When two row groups are used, obtained codes will have
a structure as shown in Figure 4(a). Iis a p X p identity sub-
matrix and I, is a shifted p X p identity submatrix. When
more than two groups are used, codes with zero submatrices
are obtained as the example in Figure 4(b) illustrates, where
Oisa p X p zero submatrix. The first row group and column-
group submatrices would be shifted if the reference row (r;)
is chosen randomly.

The complexity of the algorithm is analyzed in terms of
the number of rows, M, and the number of row groups as
follows.

(i) If the number of row groups is j’, each group is of size
M/j'.

(ii) Updating neighbors of a row at a distance of g takes g
cycles (or operations). For a single row group it takes
gM/j" cycles. For each pair of row groups rows from
the two groups are connected if they do not violate
the girth condition. Checking the condition for all the
connections takes another M/ cycles. Hence, a single
row group pair takes M(g + 1)/j" cycles.

(iii) The connection process is repeated for each row group
pairing. There are kj’/2 group pairings for regular
code with row-weight of k. Therefore, it takes kM (g +
1)/2 cycles to complete all connections. This is assum-
ing that the group size is large enough for the algo-
rithm to form all connections and does not include
the number of extra tries in case the connections failed
the girth condition. The complexity of this algorithm
is therefore O(M).

The actual complexity may also depend on how the algo-
rithm is implemented. In [12] set algebra is used to eliminate
rows that are too close to the current or reference row. With
this approach, the complexity depends on how fast the neigh-
bors of each row are updated. The algorithm fails if the set of
rows satisfying the distance from the current row is empty. If
it is not empty, the rows in the set could be chosen randomly,
in sequential order or using other criteria. Sequential search-
ing results in the same code, as the found rows will be the
same assuming the reference group and rows are the same.
Random searches will result in a variety of codes. Figure 5
shows row connections for two girth-eight codes obtained by
sequential and random searches. When a sequential search
is used, the second group is shifted by one with each con-
nection. With random search, both groups are shifted ran-

1.8 1.9 11 .11 112 113 1.14
2.9 21 211 212 213 214 28
3.1 311 312 313 314 38 39
411 412 413 414 438 49 4.1
512 213 311 713 312 111 49
6.13 314 412 814 413 212 5.1
714 48 513 28 514 313 6.11

1.8 59 614 39 6.8 4.14 7.2
2.9 6.1 7.8 4.1 7.9 58 113
3.1 7.11 1.9 511 1.1 69 214
411 112 21 6.12 211 7.1 3.8
512 213 311 713 312 111 49
6.13 314 412 814 413 212 5.1
714 48 513 28 514 313 e6.11

(b)

FIGURE 5: Girth-eight row connections using (a) sequential search
(b) random search.

NS
RS
S

— First connection
--- Second connection

FIGURE 6: Formation of smaller cycles than the target girth.

domly observing the condition that they are not shifted by
the same amount (avoid 4-cycles). The codes obtained may
have different minimum distances as shown by Fossorier in
[4]. Hence, random searches would generally result in bet-
ter performing codes as was confirmed by simulations shown
later in this section.

G. Malema and M. Liebelt

The proposed algorithm does not guarantee higher girths
larger than six or eight. The fact that no two rows are con-
nected more than once guarantees a girth of six. If only two
row groups are used, girth eight is guaranteed. For higher
girths the algorithm checks if connecting the rest of row
groups relative to the reference row does not violate the girth.
Figure 6 shows how a target girth of twelve could be violated
when the rest of group rows are connected. The solid and
dotted lines represent the first and second connections, re-
spectively. In the second connection try, row 20 is found to
satisfy the length of at least six from reference row 1. How-
ever, connecting the rest of group 1 rows creates cycles of
length four. An example of such a cycle is between rows 1,
15, 6, 20. In this case the algorithm tries another connec-
tion. From our experiments the algorithm does not take long
to find connections that hold the desired girth especially for
large group sizes.

4.1. Girth-eight codes

When only two row groups are used the codes obtained have
a minimum girth of eight. The row groups form a bipar-
tite graph. A bipartite graph has a minimum cycle length of
four. It also has even cycle lengths. Therefore, only girths of
eight and twelve can be obtained. Quasi-cyclic codes with the
number of row groups equal to the column-weight have a
maximum girth of twelve [4].

Obtained girth-eight codes have a minimum size of 2k x
k? with a group size of k for all row-weights of k. This is the
minimum size that could be obtained as it corresponds to the
size of a cage graph of distance four for a given vertex degree
[8]. Also, the minimum size of a row group is of size k as each
row has to be connected to k different rows. Larger codes can
be obtained by using larger group sizes. When the group size
is larger than k, the row groups still form a bipartite graph
resulting in a minimum cycle of four.

4.2. Girth-twelve codes

Girth-twelve codes are formed by a bipartite graph with a
smallest cycle length of six when two row groups are used.
As with girth-eight codes, girth-twelve codes could be con-
structed from cage graphs. For codes with (k — 1) as a prime,
derived girth-twelve codes from cages are of size k(k?* —k+1)
[3, 8]. Construction of codes based on cages could only be
done with known cages.

Using the proposed algorithm, girth-twelve LDPC codes
could be constructed for any row-weight. Table 1 shows code
and row group sizes obtained using a sequential search. Ob-
tained codes are about twice the size of codes derived from
cage graphs in some cases. Figure 7 shows row connections
for two girth-twelve codes. Part (a) is a (60, 2, 4) code with
a group size of 15. In part (b) a larger group size of 20 is
used to construct an (80, 2, 4) code. The same amount of
shifts are obtained in both cases in the second row group.
From our experiments we observed that group sizes larger
than those found in Table 1 hold the girth. Larger codes can
therefore be constructed by using larger row groups. How-

TaBLE 1: Smallest girth-twelve code sizes obtained with two groups
and a sequential search.

k Min. group size Code size

3 7 14 x 21

4 15 30 X 60

5 25 50 X 125

6 35 70 X 210

7 61 122 x 427
8 77 154 x 616
9 119 238 x 1071
10 134 268 X 1340
11 174 348 X 1914
12 216 432 X 2592
13 251 502 X 3263
14 304 608 x 4256
15 390 780 x 5850
16 509 1018 x 8144
17 615 1230 x 10455
18 663 1326 x 11934

ever, we could not prove that all larger groups maintain the
girth of twelve. Table 2 shows code sizes obtained using a ran-
dom search. Random searches may result in smaller codes
as in Table 2. However, obtaining smaller codes generally re-
quires many tries to get the right combination of shifts.

4.3. Girths larger than twelve

Codes with higher girths were obtained by using a number
of row groups larger than two. It was proved algebraically in
[4] that quasi-cyclic codes formed with the number of row
and column groups equal to row- and column-weights, re-
spectively, have a maximum girth of twelve. A larger number
of row groups than row-weights is used here to search for
codes with girths larger than twelve. Figure 8 shows row di-
vision and row group pairing for a girth-sixteen code. There
are 162 rows and three row groups. The three groups are
paired as [1 2], [1 2], [1 3], [1 3], [2 3], and [2 3] with each
group appearing four times. Connected rows are separated
by a period. Irregular codes could be constructed by having
different number of appearances of the groups. The column-
weight will still be two but the row-weights will be equal to
the number of times the group appears in the pairings. For
example, row group pairings of [1 2], [1 2], [1 3], [1 3], and
[2 3] for the example code will result in a code with an aver-
age row-weight of 10/3 and rate of 0.4. Rows in row groups
2 and 3 will have three connections only. Table 3 shows code
sizes for some obtained codes with girths higher than twelve.
The sizes and girths of obtained codes may differ depending
on the number and combination of groups. The number of
groups and group combinations used here were chosen arbi-
trarily.

EURASIP Journal on Advances in Signal Processing

.16 1.17 119 1.23
2,17 2.18 2.2 2.24
318 319 321 3.25
419 4.2 422 4.26
5.2 521 523 527
6.21 622 624 6.28
722 723 725 729
8.23 824 826 83
9.24 9.25 927 9.16
10.25 10.26 10.28 10.17
11.26 11.27 11.29 11.18
12.27 12.28 12.3 12.19
13.28 13.29 13.16 13.2
14.29 143 14.17 14.21
153 15.16 15.18 15.22

(a)

.21 1.22 1.24 1.28
222 223 225 229
323 324 326 33
4.24 425 427 431
525 526 528 5.32
6.26 627 629 6.33
727 728 7.3 7.34
8.28 829 831 8.35
9.29 93 9.32 9.36
10.3 10.31 10.33 10.37
11,31 11.32 11.34 11.38
12.32 12.33 12.35 12.39
13.33 13.34 13.36 13.4
14.34 14.35 14.37 14.21
15.35 15.36 15.38 15.22
16.36 16.37 16.39 16.23
17.37 17.38 17.4 17.24
18.38 18.39 18.21 18.25
19.39 19.4 19.22 19.26
20.4 20.21 20.23 20.27

(®)

FIGURE 7: Row connections for girth-twelve LDPC codes.

TasBLE 2: (N, 2,k) girth-twelve codes using two groups and a ran-
dom search.

k Min. group size Code size
3 7 14 x 21
4 13 26 X 52
5 21 42 x 105
6 31 62 X 186
7 53 106 x 371
8 67 134 X 536
9 105 210 x 945

10 125 250 x 1250

4.4. Performance simulations

Bit error rate (BER) performances of constructed codes were
simulated on an AWGN channel with BPSK modulation. Per-
formance curves are shown in Figure 9. Simulated codes are
all of size (2556, 2, 4). Four points are noted from these
curves. Firstly, randomly shifted codes perform better than
sequentially shifted codes. The two seq-(2556, 2, 4) and ran-
(2556, 2, 4) codes in the figure have sequential and ran-
dom shifts, respectively, from two row groups. They have a
girth and average girth of twelve. However, the randomly
shifted code outperforms the sequentially shifted code by
about 0.4 dB at 107> BER. Secondly, multilevel or multidi-
vision codes perform better than those with two groups. The

Group pairs — [1 2] [12] [13] [13] [23] [23]

1.55 1.56 1.109 1.112 55.119 55.134

2.56 257 2110 2113 56.120 56.135

Row —> 3.57 3.58 3.111 3.114 57.121 57.136
connections

458 459 4112 4.115 58.122 58.137

54.108 54.55 54.162 54.111 108.117 108.133

FIGURE 8: Group row connections forming girth-sixteen LDPC code
with row-weight of 4.

multilevel code used here was constructed with six groups.
It has a girth and average girth of twelve as the other se-
quentially shifted code. It, however, performs better by about
0.4dB at 107> BER. This confirms the results obtained in
[15] showing that multidivision codes have better perfor-
mance compared to those with fewer divisions. However,
codes in [15] are of a different structure (sub-matrix shift
values and arrangement). Thirdly, performance curves show
larger girth codes performing better. A girth-twenty code also
from six row groups with sequential shifts outperforms the
girth-twelve code by 1dB at 107> BER. Lastly, performance
curves also show a random code outperforming girth-twelve
codes by about 0.7 dB. The random was constructed using
a slightly modified bit-filling algorithm to obtain a regu-
lar code. It has a girth of ten and average girth of 14.6. It

G. Malema and M. Liebelt

TasLE 3: Code sizes of girths larger than twelve using a sequential
search.

k No. of groups Min. group Code size Girth
3 4 9 36 X 54 14
3 4 16 64 X 96 16
3 4 17 68 X 102 18
3 4 18 72 x 108 20
4 3 35 105 x 210 14
4 3 54 162 x 324 16
4 3 69 207 x 414 18
4 8 390 3120 x 6240 24
4 6 213 1278 x 2556 20
5 4 65 260 X 650 14
5 4 112 448 X 1120 16
6 6 121 726 X 2178 14
6 12 108 1286 x 3888 16
BER versus SNR

107! : R N

1072

1073
z

1074

10-5 b

106 : : : : :

0 1 2 3 4 5 6
SNR (dB)

—— Seq-(2556,2,4),g = 12
—6— Ran-(2556,2,4),¢ = 12
—v— Seq-multilevel-(2556,2,4),g = 12
—©— Seq-(2556,2,4),g = 20
—&- Random code-(2556,2,4),g = 10

FiGure 9: BER performance of obtained codes with 35 iterations.

outperforms girth-twelve codes by about 0.7 dB. However,
quasi-cyclic codes offer the best performance and hardware
complexity tradeoff.

Figure 10 shows larger codes compared to codes obtained
using graphical models in [7] and a random code with a high
girth of 14. The row-weight-three codes have the same per-
formances. The obtained QC-LDPC code with row-weight of
four outperforms the graphical code by about 0.6 dB at 107>
BER and outperforms the random by about 0.1dB at 107>
BER.

BER versus SNR
10° H T R

BER

1077 7| 7|) 1) 1 1
0 05 1 1.5 2 25 3 35 4 45 5
SNR (dB)

—+— QC-LDPC (4008,2,4),g = 16
—6— QC-LDPC (4002,2,3),g = 20
—o— (4395,2,3),¢ = 20

—o— (4368,2,4),5 = 16

—&— Random (4016,2,4),g = 14

F1Gure 10: BER performance of larger codes compared to graphical
codes with 35 iterations.

4.5. Hardware implementation

Codes obtained using the original BF or PEG algorithms
are not easily implementable. They have an unstructured
row-column connection because of the random selection of
connections. Random codes are not easily implementable in
hardware since there is no general rule(s) to describe row-
column connections. Connections are therefore hardwired
or stored in lookup tables. Hardwired interconnections are
inflexible whereas lookup tables require a large amount of
memory.

Codes derived from cage graphs have some structure in
that the connections can be described algebraically in most
graphs [16]. However, connections may vary from vertex to
vertex and from graph to graph. All connection rules need
to be stored in hardware. Quasi-cyclic LDPC codes are one
type of codes in which a group of rows or columns has simi-
lar connections defined by shifts. These codes can be imple-
mented by mapping a row or column group to one process-
ing node. Addressing of messages within processing nodes is
accomplished by memory shifts or offsets corresponding to
the cyclic structure of the matrix. Examples of quasi-cyclic
LDPC decoder architectures can be found in [10, 17]. Vari-
able and check node computations can be overlapped for
quasi-cyclic LDPC codes reducing the decoding time by up
to half [17]. Encoder implementations could also be simpli-
fied by taking advantage of the quasi-cyclic structure as in
[9].

Another advantage of the proposed algorithm over other
methods is that it could be used to construct codes for any
group configuration. The code construction is the same re-
gardless of the submatrix arrangement. Quasi-cyclic LDPC

EURASIP Journal on Advances in Signal Processing

code submatrix configuration could be optimized for BER
performance or designed to map a given hardware architec-
ture. For example, in [18] simulated annealing is used to find
a configuration giving the best BER performance. A decoder
architecture could then be designed based on that configura-
tion.

5. CONCLUSIONS

A nonalgebraic search algorithm for constructing quasi-
cyclic LDPC codes of column-weight two has been intro-
duced. Rows of a code are divided into groups from which
a distance graph is formed. Rows are connected in the graph
if they are separated by a desired distance to obtained a de-
sired girth. A sequential or random search could be used to
find rows satistying the distance condition. Although the al-
gorithm does not guarantee girths larger than eight, larger
girths were easily obtained from experiments. The algorithm
obtains a wide range of codes in terms of girths, rate, and
lengths. The algorithm is also efficient with a computational
complexity linear in the number of rows. Randomly shifted
codes perform better than sequentially shifted codes. Also
more row groups result in better codes compared to codes
from two row groups. Although the performance of obtained
quasi-cyclic codes does not match that of random codes of
the same size and girth, they are easier to implement in hard-
ware.

REFERENCES

[1] R. G. Gallager, “Low-density parity-check codes,” IRE Trans-
actions on Information Theory, vol. 8, no. 1, pp. 21-28, 1962.

[2] H. Song, J. Liu, and B. V. K. V. Kumar, “Low complex-
ity LDPC codes for partial response channels,” in Proceed-
ings of IEEE Global Telecommunications Conference (GLOBE-
COM °02), vol. 2, pp. 1294-1299, Taipei, Taiwan, November
2002.

[3] H.Song,J. Liu, and B. V. K. V. Kumar, “Large girth cycle codes
for partial response channels,” IEEE Transactions on Magnetics,
vol. 40, no. 4, part 2, pp. 3084-3086, 2004.

[4] M. P. C. Fossorier, “Quasi-cyclic low-density parity-check
codes from circulant permutation matrices,” IEEE Transac-
tions on Information Theory, vol. 50, no. 8, pp. 1788-1793,
2004.

[5] M. E. O’Sullivan, “Algebraic construction of sparse matrices
with large girth,” IEEE Transactions on Information Theory,
vol. 52, no. 2, pp. 718-727, 2006.

[6] Y. Mao and A. H. Banihasherni, “A heuristic search for good
low-density parity-check codes at short block lengths,” in Pro-
ceedings of IEEE International Conference on Communications
(ICC01), vol. 1, pp. 4144, Helsinki, Finland, June 2001.

[7] H. Zhang and J. M. Moura, “The design of structured regular
LDPC codes with large girth,” in Proceedings of IEEE Global
Telecommunications Conference (GLOBECOM 03), vol. 7, pp.
4022-4027, San Francisco, Calif, USA, December 2003.

[8] G. Malema and M. Liebelt, “Low-complexity LDPC codes
for magnetic recordings,” in Proceedings of International En-
formatika Conference (IEC ’05), vol. 5, pp. 269-271, Prague,
Czech Republic, August 2005.

[9] H. Fujita and K. Sakaniwa, “Some classes of quasi-cyclic
LDPC codes: properties and efficient encoding method,” IE-
ICE Transactions on Fundamentals of Electronics, Communi-

cations and Computer Sciences, vol. E88-A, no. 12, pp. 3627—
3635, 2005.

[10] S. Olger, “Decoder architecture for array-code-based LDPC
codes,” in Proceedings of IEEE Global Telecommunications Con-
ference (GLOBECOM °03), vol. 4, pp. 2046-2050, San Fran-
cisco, Calif, USA, December 2003.

[11] J. Xu, L. Chen, L. Zeng, L. Lan, and S. Lin, “Construction of
low-density parity-check codes by superposition,” IEEE Trans-
actions on Communications, vol. 53, no. 2, pp. 243-251, 2005.

[12] J. Campello, D. S. Modha, and S. Rajagopalan, “Designing
LDPC codes using bit-filling,” in Proceedings of IEEE Interna-
tional Conference on Communications (ICC01), vol. 1, pp. 55—
59, Helsinki, Finland, June 2001.

[13] X.-Y. Hu, E. Eleftheriou, and D. M. Arnold, “Regular and ir-
regular progressive edge-growth tanner graphs,” IEEE Transac-
tions on Information Theory, vol. 51, no. 1, pp. 386-398, 2005.

[14] Y. Kou, S. Lin, and M. P. C. Fossorier, “Low-density parity-
check codes based on finite geometries: a rediscovery and
new results,” IEEE Transactions on Information Theory, vol. 47,
no. 7, pp. 2711-2736, 2001.

[15] R. Bresnan, “Novel code construction and decoding tech-
niques for LDPC codes,” M.Eng.Sc. thesis, Department of
Electrical and Electronic Engineering, University College
Cork, Cork, Ireland, 2004.

[16] M. Meringer, “Fast generation of regular graphs and construc-
tion of cages,” Journal of Graph Theory, vol. 30, no. 2, pp. 137—
146, 1999.

[17] Y. Chen and K. K. Parhi, “Overlapped message passing for
quasi-cyclic low-density parity check codes,” IEEE Transac-
tions on Circuits and Systems, vol. 51, no. 6, pp. 1106-1113,
2004.

[18] J. Thorpe, K. Andrews, and S. Dolinar, “Methodologies for de-
signing LDPC codes using protographs and circulants,” in Pro-
ceedings of IEEE International Symposium on Information The-
ory, pp- 238-242, Chicago, Ill, USA, June-July 2004.

Gabofetswe Malema obtained the B.S. de-
gree in computer engineering (1997) and
the M.S. degree in electrical engineering
and computer science (1999) from Val-
paraiso University and The University of
Illinois at Chicago, respectively. He worked
as a Lecturer at Department of Computer
Science, the University of Botswana, from
2000-2003. He is currently in his final year
of Ph.D. study at School of Electrical and B

Electronic Engineering, the University of Adelaide. His main re-
search interests are LDPC construction and hardware implementa-
tion and processor-in-memory architectures.

Michael Liebelt obtained B.S. degree
in computer science and applied maths
(1978), the B.E. degree (with honors)
in electrical and electronic engineering
(1979), and the M.E. degree in electrical
and electronic engineering (1982) all from
the University of Adelaide, Australia. His
research interests are computer architec-
ture, asynchronous digital systems and test
methods and design for testability. He is
currently an Associate Professor and Head of School of Electri-
cal and Electronic Engineering at The University of Adelaide,
Australia.

\.\

	Introduction
	LDPC Representation
	Search algorithms
	Proposed algorithm
	Girth-eight codes
	Girth-twelve codes
	Girths larger than twelve
	Performance simulations
	Hardware implementation

	Conclusions
	REFERENCES

