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This paper deals with segmentation of breast anatomical regions, pectoral muscle, fatty and fibroglandular regions, using a
Bayesian approach. This work is a part of a computer aided diagnosis project aiming at evaluating breast cancer risk and its asso-
ciation with characteristics (density, texture, etc.) of regions of interest on digitized mammograms. Novelty in this paper consists
in applying and adapting Markov random field for detecting breast anatomical regions on digitized mammograms whereas most
of previous works were focused on masses and microcalcifications. The developed method was tested on 50 digitized mammo-
grams of the mini-MIAS database. Computer segmentation is compared to manual one made by a radiologist. A good agreement
is obtained on 68% of the mini-MIAS mammographic image database used in this study. Given obtained segmentation results, the
proposed method could be considered as a satisfying first approach for segmenting regions of interest in a breast.
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1. INTRODUCTION

Breast cancer is the leading cause of death among all can-
cers for middle-aged women. Currently it affects one woman
out of eight and an increase of this rate in the nearest future
is expected. For the last 40 years, extensive means have been
devoted to tackling this disease but without the expected suc-
cess. Efforts are now focused on early detection and pre-
vention. It is now known that screening programs reduce
the mortality rate of about 30% for middle-aged women.
At present, mammography is the current standard for early
breast cancer detection.

Mammographic images are difficult to analyse due to
wide variation of anatomical patterns of each breast. One
important task for radiologists when reading mammograms
consists in evaluating the proportion of fatty and fibroglan-
dular tissue with respect to the whole breast. Mammographic
density is known to be an important indicator of breast can-
cer risk. There are four metrics which are used in practice
to relate the mammographic parenchymal patterns and the
risk of breast cancer, namely: Wolfe’s four parenchymal pat-
terns [1], Boyd’s six class categories [2], BI-RADS [3], and
Tabár’s five patterns [4]. The comparative study of these four
approaches on MIAS database [5] in particular has been re-

ported in [6]. In first studies devoted to computer aided
diagnosis and early detection of breast cancer using image
processing techniques, analysis was performed on the whole
image without taking into account different density, texture
and anatomic region levels, that radiologists use in their
interpretation [7]. Other methods have been proposed for
anatomic region segmentation on digitized mammograms
[8–12]. Aylward et al. [8] divided a mammographic image
into five regions and then used geometric and statistical tech-
niques. Ferrari et al. [9] segmented the peripheral breast tis-
sue with an automatic thresholding method based on Lloyd-
Max quantification. Matsubara et al. [10] segmented the fi-
broglandular tissue by means of horizontal and vertical his-
togram variance computation followed by a local discrimi-
nant analysis. Zhou et al. [11] used a three-step segmentation
method to locate the fibroglandular edges whereas Ferrari et
al. [12] segmented the fibroglandular disc with a statistical
method based on a Gaussian mixture modelling.

Other segmentation methods have been developed in the
literature but did not focus on anatomical region segmenta-
tion. Specific problems such as peripheral breast tissue cor-
rection [13, 14], nipple automatic localization [15], breast
density quantification [16], and its association with the risk
of breast cancer [17–22] have been also investigated.
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However, most of classification results in comparison
with expert assessment tend to be low. Masek et al. [23]
used average histograms of each original image density class
as a feature and reported an agreement of 62.42% whereas
Zwiggelaar et al. [24] and Muhimmah and Zwiggelaar [25]
obtain an agreement of 71.50% and 77.57% when using
statistical grey-level histogram modeling and classification
based on multiresolution histogram information, respec-
tively.

This paper deals with Bayesian segmentation of breast
anatomical regions, namely: the pectoral muscle, the fibrog-
landular and fatty regions, on digitized mammograms. Nov-
elty in this paper is in applying and adapting a Markov ran-
dom field for detecting region of different tissues on mam-
mographic digitized images whereas most of previous works
were focused on abnormalities (masses and microcalcifica-
tions). One of the objectives of this study is to provide radi-
ologists with computer aided classification tool for discrim-
inating anatomical breast regions on a digitized mammo-
grams and then for determining more accurate proportion of
fatty and fibroglandular tissue with respect to whole breast.
Moreover, this study is a part of computer aided diagnosis
project aiming at studying risk of developing a breast can-
cer and its association with the mammographic parenchymal
patterns.

After a brief introduction to Markov random fields
(MRF) and Bayesian segmentation in Section 2, the method
is developed and applied on digitized mammograms in
Section 3. Section 4 shows obtained results. Finally, Section 5
gives conclusions of the work.

2. MARKOV RANDOM FIELDS AND
BAYESIAN SEGMENTATION

2.1. Imagemodel andMarkov randomfields

The main regions of interest in a mammogram are shown
in Figure 1. They are the pectoral muscle, the fibroglandular
and fatty tissues. Background outside the breast is not con-
sidered as a region of interest but it will be taken into account
for the segmentation process.

In this study, a statistical segmentation approach is
adopted. It consists in considering the observed mammo-
graphic image as a realization y of a random field Y . Seg-
menting regions of interest amounts to estimating the label
field X (segmented version where each pixel is assigned a la-
bel representing one of the regions described above).

Fields X and Y are defined on a rectangular lattice S of
N pixels. To each spatial location (i, j) or each site s of S is
associated a random variable X(i, j) or Xs. Random variables
Xs take their values in a set E = {0, 1, 2, . . . ,M}, where M is
the number of classes. The set of all possible realizations x of
X is denoted by ΩX .

By another way a neighborhood system Vs of a pixel s ∈ S
is defined as follows:

Vs = {t ∈ S} such that
{
s /∈ Vs, t ∈ Vs =⇒ s ∈ Vt

}
,

V = {Vs, s ∈ S
}
.

(1)

Fatty tissue

Fibroglandular tissue Background
Pectoral muscle

Figure 1: Digitized mammogram with its regions of interest.

c1 c2

c3 c4

Figure 2: Cliques induced by the eight-point nearest-neighbour
system.

Given a neighborhood system Vs, a clique c ⊂ S is either a
single site (singleton), or a subset of sites in which each pair
of distinct sites is the neighbor of each other. Cliques with
only one pixel are denoted by c1, those with 2 pixels by c2 and
so on.

For instance Figure 2 shows cliques in an eight-nearest
neighborhood system.

Then X is a Markov random field (MRF) relatively to a
neighbourhood system V if and only if

(a)∀x ∈ ΩX , P(X = x) > 0

(b)∀s ∈ S, P
(
Xs = xs|Xt = xt, t ∈ S−{s})

= P
(
Xs = xs|Xs = xt, t ∈ Vs

)
,

(2)

where P(A/B) stands for the conditional probability of the
event A given the event B. Property (b) shows that proba-
bility associated with random variable Xs depends only on
neighbours of site s. According to Hammersley-Clifford the-
orem [26], an MRF X relatively to a neighborhood system
V can equivalently be characterized by a Gibbs distribution,
that is, the probability P(X = x) can be expressed in the form

P(X = x) = 1
Z

exp

(

−
∑

c∈C
Uc(x)

)

,

Z =
∑

x∈ΩX

exp

(

−
∑

c∈C
Uc(x)

)

,

(3)

whereUc(x), known as clique potential function, denotes sta-
tistical dependence between pixels within a clique and thus
depends only on the pixels that belong to this clique c. C is
the set of all possible cliques c on S for the neighborhood
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system V under consideration.
∑

c∈C Uc(x) is an energy func-
tion. At last Z is a normalizing constant called the partition
function.

2.2. Bayesian segmentation

Image statistical segmentation schemes are generally based
on optimization of some criterion. In our approach on mam-
moghraphic images, the maximum a posteriori (MAP) esti-
mate of the label field X given the observed image y is used.

According to Bayes rule, we have

P
(
X = x|Y = y

) = P(Y = y|X = x)P(X = x)
P(Y = y)

, (4)

where P(X = x) is the prior probability given by (3) and
P(Y = y) is a constant when y is a given observed image.
The MAP estimate is found by maximizing P(Y = y|X =
x)P(X = x).

Probability P(Y = y|X = x) can be computed on the
following assumptions:

(a) random variables Ys, s ∈ S, are conditionally inde-
pendent given the label field X . In this case:

P
(
Y = y|X = x

) =
∏

s∈S
P
(
Ys = ys|Xs = xs

)
(5)

(b) conditional probabilities P(Ys = ys|Xs = xs) satisfy a
given model, for instance a Gaussian one.

Then it ensues from (3) and (5) that the a posteriori prob-
ability given by (4) may be expressed as

P
(
X = x|Y = y

)∝ exp

(
∑

s∈S
Ln
(
P
(
Ys = ys|Xs = xs

))

−
∑

c∈C
Uc(x)

)

.

(6)

Equation (6) may be also written in the form

P
(
X = x|Y = y

)∝ exp
(
−U

(
X = x|Y = y

))
(7)

with U
(
X = x|Y = y

) = −
∑

s∈S
Ln
(
P
(
Ys = ys|Xs = xs

))

+
∑

c∈C
Uc(x).

(8)

Equation (7) shows that the label field X given observed im-
age y is characterized by a Gibbs distribution and so that it
is a Markov random field too. The MAP estimate is equiv-
alently obtained by minimizing a posteriori energy U(X =
x|Y = y) (8).

3. SEGMENTATIONOFMAMMOGRAPHIC IMAGES

3.1. Statistical model used

The above method is applied to digitized mammograms with
the following assumptions:

(a) regions to be segmented and classes are denoted by
region Ri and class i, respectively;

(b) the conditional probability density function of ran-
dom variable Ys, s ∈ S P(Ys = ys|Xs = xs), is assumed to be
Gaussian, that is,

P
(
Ys = ys|Xs = xs

) = 1√
2πσi

exp
(
−
(
ys − μi

)2

2σ2
i

)
, (9)

where μi and σ2
i are the mean and the variance of class i to

which xs is associated with. On the other hand, a relatively
simple type of discrete-valued MRF called multilevel logistic
(MLL) may be used for modeling region formation in image
segmentation [27]. In our approach, the eight-nearest neigh-
bour system (Figure 2) is used, and because, cliques contain-
ing more than 2 pixels cause too much computational com-
plexity, the only nonzero potentials of the MLL are assumed
to be those corresponding to two-pixel cliques. The potential
function Uc(x) of a two-pixel clique c associated with a site s
is then defined by [28]

Uc(x) =
{

+βc if xt = xs s, t ∈ c,

−βc otherwise,
(10)

where the parameter βc is the same for every two-pixel clique,
that is to say βc = β. The value of β influences the sizes and
shapes of the resulting regions: as β increases larger clusters
are favored [29].

So the a posteriori energy U (8) becomes

U
(
X = x|Y = y

) =
∑

s∈S

((
(ys − μxs

)2

2σ2
xs

)
+ Ln

(√
2πσxs

)
)

+
∑

c∈C2

Uc(x),

(11)

where μxs and σ2
xs are the mean and the variance of the class

to which xs is associated with and C2 is the set of all two-pixel
cliques.

3.2. Initialization and parameters estimation

Mammographic image segmentation scheme is obtained
from three main steps:

(a) initialization of label field X with a choice of class
number M

(b) estimate of model parameters and label field simula-
tion using optimization methods for minimizing the a poste-
riori energy U (11);

(c) stopping condition.
The two last stages (b) and (c) are iterative processes.
In this work, three initializations are tested as follows.

(i) Equal probability quantizing [30] which splits the grey
level range of image y into several classes using the
probability cumulative function of the image accord-
ing to an iterative process. This initialization is denoted
INIT A.

(ii) Uniform quantizing of the grey-level range of image y.
This initialization is denoted by INIT B.
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(iii) An identical number of pixels per class. This initializa-
tion is denoted by INIT C.

For each initialization, the number of classes was limited to
five.

Computation of the a posteriori U energy (11) needs
mean and variance estimates for each class. These param-
eters are supposed unknown but are fixed. They were esti-
mated from the empirical Bayesian method according to the
following formulas:

μ̂(k)
i = 1

N (k)
i

∑

s∈R(k)
i

ys,

(
σ̂2
i

)(k) = 1

N (k)
i

∑

s∈R(k)
i

(
ys − μ̂(k)

i

)2
,

(12)

where Ri stands for region whose pixels belong to class i, Ni is
the number of pixels in Ri and k is used to specify the current
iteration.

Among several algorithms [31] used for U minimization,
two algorithms are proposed to find a reasonably good label-
ing: simulated annealing (SA) [32] because it is probabely
one of the best known, and the Iterated conditional modes
(ICM) [33] which is a fast deterministic version of SA and
provides good segmentation if a good initial segmentation is
available.

Simulated annealing is an algorithm dedicated to search-
ing the optimal configuration of a Gibbs field. For each site
s, a label λ is chosen at random in the label set E and the
following energy variation is evaluated:

ΔUs = Us

(
Xs = λ | V (k)

s

)
−Us

(
Xs = x(k)

s | V (k)
s

)
, (13)

where Us is computed from (11) by considering only the

site s and its neighborhood Vs, x
(k)
s and V (k)

s are the label
and neighborhood of site s at iteration k, respectively. The
β value, β = 50 used for clique potential Uc(x) evaluation
was chosen as the one yielding the best visual segmentation
on several preliminary tests. Label of site s is then updated
with label λ if ΔUs ≥ 0. Otherwise (ΔUs < 0), label of site
s takes the λ value or keeps its previous value according to
probabilities p and 1− p respectively (p = exp(−ΔUs)).

ICM is also an iterative algorithm which aims at mini-
mizing U ((11)). For each site s this method computes the
local conditional probabilities

P
(
Xs = λ | Xr = x(k)

r , r ∈ Vs
)

(14)

for every label λ of label set E. Label of site s is then updated
with the value which maximizes these probabilities, that is, at
iteration k + 1:

x(k+1)
s = Arg max

λ

P
(
Xs = λ | Xr = x(k)

r , r ∈ Vs
)
. (15)

This algorithm is faster than the SA but needs a good initial-
ization for converging.

Initialization of label field X

k = 0

Estimation of

μ(k) et σ (k)

ICM and SA algorithms Simulation of

x(k)

False
Rate > 0.5%

Ture

End
k = k + 1

Figure 3: Mammographic image segmentation scheme.

Last stage in the segmentation process concerns the stop-
ping condition. This condition is based on the rate of pixels
changing their label between two iterations, that is

rate =
∑

s∈S
(
1− δ

(
x(k+1)
s , x(k)

s
))

N
,

with δ
(
x(k+1)
s , x(k)

s

) =
⎧
⎨

⎩
1 if x(k+1)

s = x(k)
s ,

0 else,

(16)

where k stands for the current iteration, N is the number of
pixels in image y. When this rate is less than a given thresh-
old, the segmentation process stops. For this study we felt a
thresholding of 0.5% was small enough. The segmentation
scheme is summarized in Figure 3.

4. RESULTS ANDDISCUSSION

Fifty digitized mammograms of the mini-Mammographic
Image Analysis Society (MIAS) database with different
anatomical patterns were chosen with the help of radi-
ologists, for evaluating the proposed method. Images of
mini-MIAS are those of MIAS database [5] (mammo-
grams digitized at 50 μm/pixel) reduced to 200 μm/pixel and
clipped/padded so that every image is 1024 × 1024 pixels.
This database is given with a classification into three classes:
fatty (F), glandular (G), and dense (D) breasts. Only normal
cases were chosen for this study and the proportions within
each class were 16, 18, and 16 for fatty, glandular, and dense,
respectively. Radiologists were asked to define manually the
fibroglandular and the fatty regions as well as the pectoral
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Figure 4: Rating of segmentation results.

muscle on each image. This work was done by means of a
computer monitor with IDL/ENVI software.

Evaluation of segmentation results concerns only fibrog-
landular tissue. Indeed the ratio of fibroglandular region in
comparison with the whole breast region is of importance
for radiologists when interpreting mammograms. In partic-
ular, it has been noticed clinically that majority of breast can-
cers were associated with glandular rather than fatty tissues
[34].

For each mammographic image, a quality parameter ρ
and a protocol [12] were introduced for quantifying segmen-
tation results. Parameter ρ was defined as follows:

ρ =
∣
∣Aseg ∩ Amanu

∣
∣

∣
∣Aseg ∪ Amanu

∣
∣ , (17)

where Aseg is the set of pixels of the fibroglandular region
obtained by computer segmentation and Amanu is the set of
pixels of the same region by manual segmentation. |A| is the
number of elements of set A.

A score was then associated with each result according to
the description given in Table 1.

Actually, final results of iterative segmentation algo-
rithms used in this work depend mainly on the initialization
step. In theory, simulated annealing (SA) makes it possible
to reach a global minimum whatever the initialization con-
ditions are, but this goal is not always obtained and the SA
converges often to a local minimum. In the case of ICM, ini-
tialization must be close to final solution to assure a good
segmentation.

Except for some few cases, Init A (equal probability
quantizing) is the initialization method which gave the best
segmentation results for ICM and SA. Segmentations ob-
tained by both optimization methods (SA and ICM) were
similar with nevertheless higher number of iterations for
simulated annealing (SA). Results ratings related to protocol

(a) (b)

(c) (d)

Figure 5: Segmentation results: (a) original mammogram mdb041;
(b) radiologist’s manual segmentation; (c) obtained segmentation
with initialization INIT A and ICM algorithm (10 iterations); (d)
obtained segmentation compared to radiologist’s manual segmen-
tation (ρ = 0.77).

Table 1: Ranking options for evaluation of segmentation results.

Score = 3 if 60% ≤ ρ ≤ 100% Good segmentation

Score = 2 if 20% ≤ ρ ≤ 60% Average segmentation

Score = 1 if ρ ≤ 20% Failed segmentation

given in Table 1 are shown in Figure 4. This table summa-
rizes the best results obtained when combining Initialization
methods (INIT A, INIT B,s and INIT C) and optimization
algorithms (SA and ICM).

Approximately 68% of the cases (34 mammograms) were
rated as good segmentation (score 3) (agreement between
manual and computer segmentations higher than 60%).
These mammograms are those associated with D (dense) and
G (glandular) classes where the fibroglandular tissue consti-
tuted a compact region and, in most of the cases separated
from the pectoral muscle (Figure 5).

For medium scores (score 2) (agreement between man-
ual and computer segmentations is between 20% and 60%),
the segmentation method underestimated the fibroglandu-
lar regions. On these mammograms fibroglandular regions
were surrounded by fibrous structure and their edges were
not very sharp. Results obtained on such mammograms are
shown in Figure 6. Among the remaining cases (5 mammo-
grams) lowest scores (score 1) (agreement between manual
and computer segmentation lower than 20%) were obtained
for breasts with a very small fibroglandular region, which
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(a) (b)

(c) (d)

Figure 6: Segmentation results: (a) original mammogram mdb003;
(b) radiologist’s manual segmentation; (c) obtained segmentation
with initialization INIT A and SA algorithm (80 iterations); (d) ob-
tained segmentation compared to radiologist’s manual segmenta-
tion (ρ = 0.58).

(a) (b)

(c) (d)

Figure 7: Segmentation results: (a) original mammogram mdb009;
(b) radiologist’s manual segmentation; (c) obtained segmentation
with initialization INIT A and SA algorithm (78 iterations); (d) ob-
tained segmentation compared to radiologist’s manual segmenta-
tion (ρ = 0.185).

could be interpreted as fatty breasts by radiologists. More-
over, fatty tissue was observed inside the fibroglandular re-
gion of these mammograms. For these cases the segmen-
tation method underestimated the fibroglandular regions
(Figure 7).

5. CONCLUSION

In this paper, a Bayesian segmentation approach with a
Markov random field model is presented and applied to
regions of interest on digitized mammographic images.
Bayesian method was used for estimating model parameters
as well as the MAP as optimization criterion. The obtained
results are promising and lead us to consider this method as a
satisfying approach for segmenting breast regions of interest.
An evaluation of this method on a large image base is needed
now. Likewise characterization of the segmented regions by
means of some parameters in order to correlate them with
false negatives breast cancer will constitute a future step of
this work.
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