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There are a number of automatic techniques available for detecting epileptic seizures using solely electroencephalogram (EEG),
which has been the primary diagnosis tool in newborns. The electrocardiogram (ECG) has been much neglected in automatic
seizure detection. Changes in heart rate and ECG rhythm were previously linked to seizure in case of adult humans and animals.
However, little is known about heart rate variability (HRV) changes in human neonate during seizure. In this paper, we assess the
suitability of HRV as a tool for seizure detection in newborns. The features of HRV in the low-frequency band (LF: 0.03–0.07Hz),
mid-frequency band (MF: 0.07–0.15Hz), and high-frequency band (HF: 0.15–0.6Hz) have been obtained by means of the time-
frequency distribution (TFD). Results of ongoing time-frequency (TF) research are presented. Based on our preliminary results,
the first conditional moment of HRV which is the mean/central frequency in the LF band and the variance in the HF band can be
used as a good feature to discriminate the newborn seizure from the nonseizure.

Copyright © 2007 M. B. Malarvili et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Neonatal epileptic seizures are major indicators of a number
of central nervous system (CNS) disorders. A careful assess-
ment of seizures is needed at the early stage to prevent further
damages to the brain [1]. Growing attention is focused on the
development of computerized methods to automatically de-
tect newborn seizure based on the EEG. There are a number
of techniques available for detecting neonatal EEG seizures in
the time [2], frequency [3], and time-frequency [4] domains.
However, neonatal seizure recognition remains a very chal-
lenging task and lacks a reliable detection scheme for clinical
use [5]. There is a new tendency towards using information
from different physiological signals such as ECG, respiration,
and blood pressure to detect seizure [6–9]. This extra infor-
mation is expected to enhance the performance and robust-
ness of the seizure detectors. This is in line with our long-
term goal of using information from different physiological
signals such as EEG, ECG, blood pressure, respiration, and
oxygen saturation to robustly detect seizures in newborns.

Continuous monitoring of the newborn ECG and heart
rate have been successful alternative guides in detecting
seizures [10]. In [11], the authors investigated rhythmic

changes in ECG and heart rate to alert the physicians to the
presence of seizures in 9 paralyzed infants. In addition, the
authors in [6] reported that heart rate changes are an ex-
tremely common feature of complex partial seizures. Seizures
can cause extreme alteration to autonomic activity. ECG and
variation in ECG characteristics are primarily under control
of the autonomic nervous system (ANS), providing sensitive
and noninvasive means of detecting alterations in autonomic
activity. Early investigations by neurologists on animal mod-
els [7], adults [6–9], and children [12] suggest that paroxys-
mal changes in ECG, including heart rate, alteration in the
RR and QT intervals, are attributed to clinical seizure activ-
ity. The conclusions proposed by neurologists are case studies
based on the continuous monitoring of the behavior of ECG
and EEG channels simultaneously. The precise relationship
between these changes and seizures has not been specifically
determined.

The HRV is emerging as a major noninvasive tool in
monitoring the state of the ANS [13]. The ANS has sympa-
thetic and parasympathetic components. The separate rhyth-
mic contributions from sympathetic and parasympathetic
autonomic activities modulate the heart rate, and thus the
RR intervals of the QRS complex in the ECG at distinct
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frequencies. Sympathetic activity in newborn is associated
with the low-frequency (LF) range (0.03–0.15Hz) while par-
asympathetic activity is associated with the higher-frequency
(HF) range (0.15–0.6Hz) of the heart rate. The mid-freque-
ncy (MF), centered near 0.1Hz, is both parasympathetically
and sympathetically mediated. The HF corresponds to the
respiratory and the LF is mediated by a variety of different
influences [14].

The HRV characteristics have been investigated with dif-
ferent algorithms based on either time or frequency domains.
The main difficulty encountered in frequency-domain pro-
cessing is the nonstationary behavior of heart beats. Even for
a normal healthy person, the heart beats tend to be time-
variant. This is because the interbeat interval of the heart
rhythm varies markedly due to irregularities in the initiation
of the cardiac impulse in the atrium. These nonstationarities
become more severe in abnormal cardiac rhythms. TF meth-
ods have been introduced to specifically deal with such sig-
nals. They are able to provide localized time and frequency
descriptions of HRV necessary to characterize such changing
autonomic regulation [15].

In this paper, we used the first and second conditional
moments of TFD of the HRV in the three frequency bands
(LF, MF, and HF) to identify the changes in HRV during
seizures. The first conditional moment corresponds to the
mean or central frequency of the respective spectrum of in-
terest at a particular time obtained from the TFD while the
second conditional moment corresponds to the variance.
The purpose of studying these variables is to accurately de-
termine the effect of the seizure on the frequency location of
HRV components (LF, MF, and HF) in TF plane. This may
in turn allow a clear separation between seizure and non-
seizure events.

To realize this, a high-resolution and reduced-interfe-
rence TFD is needed to clearly separate between the different
components in HRV. In [16], it was reported that the TFD
conditional moments are able to improve the performance of
classification of nonstationary time series compared to those
moments based on time or frequency alone.

2. TIME-FREQUENCY DISTRIBUTIONS

The Fourier transform (FT) is well suited for the analysis of
stationary signals. It gives a representation of the frequency
components of the signal but does not allow any localization
in time. Since most real-life signals are nonstationary (i.e.,
their frequency content varies with time), a more global anal-
ysis method that represents this type of signals in both time
and frequency domain simultaneously is needed.

One of the earliest used time-frequency signal represen-
tation is the spectrogram (SP) (defined as the squaredmagni-
tude of the short-time Fourier transform (STFT)). The main
drawback of the SP is the existence of a tradeoff between time
and frequency resolutions. In order to increase the frequency
resolution, a long window is required. This choice, however,
results in a poor time resolution and also invalidates the as-
sumption of local stationarity. To overcome this limitation,
several TFDs have been proposed. One commonly used class

Table 1: TFDs and their corresponding kernels.

TFDs Kernel G(t, τ)

SPWVD h2(τ/2)g(t); h(τ) and g(t) are window functions

SP w(t + τ/2)w(t − τ/2); w(t) is an analysis window

function

CWD
√
πσ/|τ|e−π2σt2/τ2

MBD cosh−2β(t)
/∫

cosh−2β(σ)dσ

of TFDs, of which the spectrogram is a member, is the class
of the quadratic shift invariant time-frequency distributions
(TFDs) [17]. For a given real-valued signal x(t), these distri-
butions can be parameterized by means of a time-lag kernel
G(t, τ) according to the formula

ρz(t, f ) =
∫∫

G(t − u, τ)z
(
u +

τ

2

)
z
(
u− τ

2

)
e− j2π f τdu dτ,

(1)

where z stands for the complex conjugate of z, the analytic
associate of x(t) [17]. The time-lag kernel G(t, τ) determines
the characteristics of TFDs and how the signal energy is dis-
tributed in the TF plane. Unless otherwise specified, the inte-
gration limits are −∞ and +∞. The TFDs used in our inves-
tigation are the smoothed pseudo-Wigner-Ville distribution
(SPWVD), the spectrogram (SP), the Choi-Williams distri-
bution (CWD), and the modified B-distribution (MBD) dis-
tributions. The first three are widely used TFDs. The last
one is a recent addition to the quadratic class of TFDs that
showed promising results in achieving high TF resolution
and significant cross-term reduction [17]. Table 1 shows the
TFDs used along with the corresponding kernels [17].

The Wigner-Ville distribution (WVD) with the kernel
equal to 1 provides a high-resolution representation of the
signal x(t) in time and frequency [17]. The main drawback
with the WVD is the presence of cross-terms if the signal is
multicomponent such as the HRV. This could be reduced
by time and frequency averaging such as in the SPWVD
[17]. The SPWVD has separable kernel, where the window
g(t) is the smoothing window and the h(τ) is the analysis
window. The g(t) and h(τ) are chosen to suppress spurious
peaks and to obtain a high TF resolution. The suppression
of cross-term is better with a longer window. This, however,
results in the undesirable smearing of instantaneous charac-
teristics. The commonly used functions for g(t) and h(τ) are
the unit rectangular function and the Gaussian window, re-
spectively [18]. TheMBD has a lag independent kernel which
means that the filtering is only performed in the time direc-
tions [17]. β is a real parameter between 0 and 1 that de-
fines the sharpness of the cutoff between cross-terms and
autoterms present in the TFD. MBD has been found to be
highly suitable for this type of signals, that is, HRV which is
multicomponent, and their frequency content varies slowly
with time [19]. The CWD has a real parameter σ which al-
lows one to select the amount of filtering in the TF domain
[17].
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Figure 1: The HRV related to (a) nonseizure EEG and (b) seizure EEG.

The nth conditional moment of the TFD at time t is de-
fined as

fn(t) = 1
P(t)

∫

f nρz(t, f )df , (2)

where

P(t) =
∫

ρz(t, f )df . (3)

The first conditional moment corresponds to the mean or
central frequency and the second conditional moment cor-
responds to the variance. The central/mean frequency fc(t)
and variance var(t) are defined as

fc(t) = 1
P(t)

∫

f ρz(t, f )df , (4)

var(t) = 1
P(t)

∫
(
f − fc(t)

)2
ρz(t, f )df . (5)

3. METHODS

The following subsections explain the methods involved in
this study.

3.1. Data acquisition

The one-channel newborn ECG was recorded simultane-
ously along with 20 channels of EEG. The EEG was labeled as
either seizure or nonseizure by a neurologist from the Royal
Children’s Hospital, Brisbane, Australia. In the present study,
we analyzed 6 seizure events and 4 nonseizure events of 64
seconds each from 5 different newborns. The ECG was sam-
pled at 256Hz.

3.2. Preprocessing of ECG for HRV quantification

The ECG signal is preprocessed to extract the HRV using the
following two steps.

QRS detection

A QRS detection algorithm is used to extract the R points of
the ECG. This is the most sensitive parameter in obtaining
accurate RR intervals. Conventional time-domain methods,
like the ones used in [8, 20], are based on differentiation to
enhance the peaks in the ECG signal and rule-based thresh-
olding to identify the R points. However, as reported in [21],
these methods lead to inaccuracies in the identification and
detection of ECG parameters and in certain cases completely
miss the QRS waves. In this paper, we used the smoothed
nonlinear energy operator (SNEO) to extract the R point
which is treated here as a spike in ECG signal. The SNEO
has been proposed in [22, 23] for the detection of spikes in
signals. SNEO is a smoothed version of the nonlinear energy
operator (NEO). NEO also is known as the energy-tracking
operator. Only three samples are required for energy compu-
tation at each time instant. This gives a good time resolution
in capturing the energy fluctuations instantaneously.

HRV computation

The time series of RR interval is called tachogram. Errors in
peak detection are corrected based on timing analysis rather
than amplitude analysis. Missing beats were estimated and
inserted and extra beats were removed based on timing in-
formation. The unevenly sampled RR intervals were interpo-
lated using cubic splines. The instantaneous heart rate (IHR)
is the inverse of the RR interval and shows the variability of
heart rate. Figure 1 shows examples of IHR coinciding with
the nonseizure and seizure EEG from the same newborn. An
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Figure 2: TFD for HRV related to nonseizure: (a) SPWVD; (b) SP; (c) CWD and (d) MBD.

antialiasing filter with a cutoff at 1Hz was used to filter, and
the filtered signals were sampled at a sampling rate of 2Hz.
Finally, the linear trend of the time series was removed. The
outcome of the preprocessing stage constitutes the HRV used
in the analysis.

3.3. Selection of the optimal TFD to represent HRV

The TF analysis was restricted to the SPWVD, the SP, the
CWD, and the MBD. Because of the space limitation, we
present and discuss the performance analysis using only two
signals (1 nonseizure and 1 seizure) out of the 10 events stud-
ied. These can be considered as representatives of the general
characteristics observed. The TFDs of HRV for both the non-
seizure and seizure signals in Figure 1 are shown in Figures 2
and 3, respectively.

All the plots shown were obtained using the same plot
routine: the left plot represents time series of HRV and the
center figure shows the joint TFD. The sequence of plots la-
beled with (a), (b), (c), and (d) corresponds to the TFDs of
the SPWVD, SP, CWD, and MBD, respectively. For clarity of
illustration, the relevant frequency bands are labeled with LF,
MF, HF only on Figures 2(d), and 3(d). Because the relative

position of those frequencies prevails in all the sequence of
figures, the arrows are indicated in Figure 2 only.

The optimal parameters for SPWVD, SP, CW, and MBD
are the ones that achieve the best compromise between the
TF resolution and the cross-terms suppression. The parame-
ters were selected by comparing the TF plots of the signal vi-
sually for different values of parameters. For SPWV, h(τ) was
chosen as a Gaussian window of 121 samples and g(t) as rect-
angular window of 63 samples. In Figure 2(a), the dominant
frequency content can be observed in the LF, MF, and HF.
The frequency resolution is fairly satisfactory and its cross-
terms free. This result is consistent with the findings in [18].

For SP, a Hamming window with length of 111 was used.
In Figure 2(b), better defined frequency components can be
observed in the MF and HF. However, the SP lacks in time
resolution which makes the TF components smeared. The
SP smoothes away all interference terms except those occur-
ring when two signal components overlap. As mentioned in
Section 1, this smoothing has the side effect of reducing sig-
nal components resolution. The SP poorly represents rapidly
changing spectral characteristics and cannot optimally re-
solve closely spaced components. For CWD, the optimal pa-
rameter σ of its kernel was found to be 0.4. It can be seen that
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Figure 3: TFD for HRV related to seizure: (a) SPWVD; (b) SP; (c) CWD; and (d) MBD.

it is almost cross-terms free but the horizontal lines prevail,
which makes the TF components smeared. This is due to the
trade-off between suppression of the cross-terms and the res-
olution of autoterms. This makes the component in LF and
MF smeared.

For MBD, the parameter β was set to 0.01. We can see
that its cross-terms are free and have better TF resolution
compared to SP and CWD. This improvement facilitates the
identification/interpretation of the frequency components of
the HRV in nonseizure neonatal. The dominant frequency
content can be observed in the LF, MF, and HF band. The
MBD also gives a good estimation of the instantaneous fre-
quency (IF) law of each component which varies slowly with
time. This is consistent with the findings in [19]. The MBD
has high TF resolution and is effective in cross-terms reduc-
tion.

Results of the TFD analysis of the HRV for seizure baby
are presented in Figure 3. Similar patterns are observed re-
garding the TF resolution and suppression of cross-term in-
terference, as in the case of nonseizure HRV. To better ap-
preciate the performance of the MBD, we compare the fre-
quency resolution using a time slice of TFDs, taken at specific
time, t. For each TFD for the nonseizure case, a normalized

slice at time interval t = 23 seconds is taken and displayed
in Figure 4. This figure shows the normalized slices of TFDs
plotted in Figure 2.

From Figure 4(a), the SPWVD shows almost similar per-
formance as the MBD in cross-terms suppression but MBD
performs better in preserving the energy concentration for
each component and has better TF resolution. The SP too
fails to preserve the energy concentration for each compo-
nent and has poorer TF resolution compared toMBD.Mean-
while, the CWD failed to exhibit a good suppression of any
undesirable artifacts for each of the components. Thus, the
MBD is found to realize the best compromise for the class of
signals considered; it is almost cross-terms free and has high
components’ resolution in the TF plane. So for this, theMBD
will be used in the remaining part of the study.

3.4. TF feature extraction of HRV

The parameters derived from the first and second condi-
tional moments of TFD of the HRV signal in each one of
the 3 bands will be used as features in discriminating the
seizure from the nonseizure. The first conditional moment
corresponds to the mean or central frequency fc(t) of the
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Figure 4: Normalized slices (dashed) of (a) SPWVD; (b) SP; and
(c) CWD. All plots are compared against the MBD (solid).

respective spectrum of interest at a particular time and the
parameter from second conditional moment corresponds to
the variance var(t). It is worth mentioning that the fc(t) and
var(t) represent, respectively, the instantaneous frequency
(IF) and the instantaneous bandwidth (IB) for the case of
TFDs whose kernel satisfies the IF property [20]. Unfortu-

nately, this is not the case for MBD. Hence, the notions of IF
and IB are not used here.

The feature extraction procedure includes the following
steps.

(1) Bandpass filtering: FIR bandpass filters are used to
isolate the three frequency bands mentioned above;
namely LF (0.03–0.07Hz),MF (0.07–0.15Hz), andHF
(0.15–0.6Hz). This results in three filtered signals.

(2) TF mapping: the three filtered signals are mapped us-
ing MBD. This step results in three TFDs.

(3) Moment estimation: the fc(t) and the var(t) are com-
puted for each signal. The fc(t) and the var(t) related
to LF, MF, and HF are shown in Figures 5 and 6 respec-
tively.

From these figures, it can be seen that for the case of
seizure, the central frequency fc(t) related to LF, MF, and HF
occur at frequency higher than the ones appearing in non-
seizure. It is the same case for the variance. These facts will
be exploited in our seizure detection using HRV.

4. PERFORMANCE EVALUATION ANDDISCUSSION

Based on the results of the previous section, we will use
fc(t) and var(t) related to the three frequency bands LF, MF,
and HF as features to differentiate between seizure and non-
seizure. Because not enough data is available at this stage,
we opt for the leave-one-out cross-validation method [24].
Given a dataset of sizeN , this method simply consists of split-
ting the dataset in a set of N − 1 training data and one test
data. So, for 9 events (seizure and nonseizure) at a time, the
fc(t) values for seizure were compared with those from non-
seizure, and a threshold was chosen that best differentiated
the two groups. The threshold is determined using the Gaus-
sian distribution since the values of fc(t) were shown to obey
the Gaussian distribution when tested for normality [25].
Figures 7 and 8 show how the threshold is obtained. The one
fc(t) which was not included in the training group of 9 was
then compared with the obtained threshold and the classifi-
cation results are noted. The procedure was applied 10 times
for both fc(t) and var(t) related to the three frequency bands.
From Figures 7 and 8, for the case shown in Figures 5 and
6, the optimal threshold was found to be 0.0455Hz (for LF)
and 0.003Hz2 (for HF), respectively. The threshold selected
is different for the different tests (newborn-dependent). The
results of the different tests were used to calculate the sensi-
tivity Rsn and specificity Rsp.

The sensitivity Rsn and specificity Rsp are defined as

Rsn = TP
TP + FN

; Rsp = TN
TN + FP

, (6)

where TP, TN, FN, and FP, respectively represent the num-
bers of true positive, true negative, false negative, and false
positive. The Rsn is the proportion of seizure events correctly
recognized by the test (the seizure detection rate) while Rsp

is the proportion of nonseizure events correctly recognized
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Figure 5: The central frequency of the LF, MF, and HF of the HRV.

10 20 30 40 50 60

Time (s)

1

1.2

1.4

1.6

1.8

2

2.2

2.4
×10−4

f2
(H

z2
)

Non-seizure

Seizure

Variance: LF

(a)

10 20 30 40 50 60

Time (s)

0.007

0.008

0.009

0.01

0.011

0.012

0.013
f2

(H
z2
)

Non-seizure

Seizure

Variance: MF

(b)

0 10 20 30 40 50 60 70

Time (s)

1.5

2

2.5

3

3.5

4

4.5

5
×10−3

f2
(H

z2
)

Non-seizure

Seizure

Threshold = 0.0029

Variance: HF

(c)

Figure 6: The variance of the LF, MF, and HF of the HRV.
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by the test (the non-seizure detection rate). Table 2 shows
the results using fc(t) while Table 3 shows the results using
var(t).

From Table 2, it can be seen that the seizures can best
be discriminated from the nonseizure using fc(t) in the LF
band (83.33% of sensitivity and 100% of specificity). The op-
timal averaged threshold was found to be 0.0453Hz. These
results tend to indicate that the newborn seizure manifest it-
self in the LF component (sympathetic activity) of the HRV
the most. The MF component was more affected than HF
because it is both parasympathetically and sympathetically
mediated. fc(t) from the HF band shows very poor perfor-
mance. This tends to indicate that the seizures have the least
effect in the parasympathetic activity.

For the var(t), as can be seen in Table 3, the nonseizure
can be discriminated clearly from the seizure in the HF band
(83.33% of sensitivity and 100% of specificity). The optimal
averaged threshold found was 0.0026Hz2. These results show

Table 2: Results for the central/mean frequency.

Frequency band Rsn Rsp

LF 83.33% 100.00%

MF 83.33% 66.67%

HF 50.00% 16.67%

Table 3: Results for the variance.

Frequency band Rsn Rsp

LF 66.67% 66.67%

MF 83.33% 66.67%

HF 83.33% 100.00%

that var(t) related to the HF has been affected greatly dur-
ing seizure compared to those from the LF and MF. The HF
band is mediated by the respiration rate. So, these results in-
dicate that the newborn with seizure tends to have higher
respiration variation compared to the nonseizure ones. It is
worth noting while the fc(t) in the HF is less affected by
seizure, the spread of the frequency in this band shows sig-
nificant difference between them. var(t) obtained from the
LF and MF bands did not show considerable changes. Thus,
those features do not seem to be good discriminating fea-
tures. Based on the results obtained so far, it can be seen that
only the two extreme values of both fc(t) and var(t), namely
the maximum and minimum, are needed to distinguish be-
tween seizure and nonseizure. This means that the automatic
classifier is computationally very efficient.

5. CONCLUSIONS

Our aim in this paper was to show that, beside EEG, other
physiological signals such as ECG could be used as addi-
tional factors in the process of newborn seizure detection.
Our long-term goal is to combine features extracted from the
different physiological signals to realize accurate and robust
automatic seizure detection method. The results so far ob-
tained using HRV show that the first- and second-order TFD
moments are potentially good features in the discrimina-
tion between seizure and nonseizure. Currently, other time-
frequency-based features such as IF are being tested to as-
sess their performance. The identified discriminating fea-
tures will also be tested using a much larger database once
this becomes available later.
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