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This paper is concerned with reduced-complexity detection, referred to as iterative reconfigurable tree search (IRTS) detection,
with application in iterative receivers for multiple-input multiple-output (MIMO) systems. Instead of the optimum maximum a
posteriori probability detector, which performs brute force search over all possible transmitted symbol vectors, the new scheme
evaluates only the symbol vectors that contribute significantly to the soft output of the detector. The IRTS algorithm is facilitated
by carrying out the search on a reconfigurable tree, constructed by computing the reliabilities of symbols based on minimum
mean-square error (MMSE) criterion and reordering the symbols according to their reliabilities. Results from computer simula-
tions are presented, which proves the good performance of IRTS algorithm over a quasistatic Rayleigh channel even for relatively
small list sizes.
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1. INTRODUCTION

A multiple-input multiple-output (MIMO) technology, de-
ployingmultiple transmit and receive antennas, is most likely
to be the dominant solution to meet the requirement of
rapid data flow in future wireless communication systems
[1, 2]. It makes full use of random fade and multipath prop-
agation to improve transmit rate greatly without increasing
bandwidth and transmit power. To approach MIMO chan-
nel capacity, channel code is usually required to provide re-
dundancy to guard against burst fading, interference, and
noise.

It is advantageous to apply iterative receivers with space-
time bit interleaved coded modulation (ST-BICM) tech-
niques in view of performance and computational complex-
ity [3–6]. By applying “turbo processing” principle, the it-
erative receiver is divided into two stages: MIMO detec-
tor and channel decoder. These two stages iteratively ex-
change extrinsic information learned from one to the other
until the receiver converges. The design of low-complexity
MIMO detector to eliminate interference between layers to-
tally is the main challenge. Maximum a posteriori (MAP)
algorithm is the optimal in a sense of the least bit error
rate (BER) from the detector output, which performs an
exhaustive search over the complete set of all the possible

symbol vectors and has exponential complexity with the
number of transmit antennas and constellation size [6]. To
explore the tradeoff between the coding gain attained and
the computational effort expensed, some suboptimal meth-
ods are presented. By modifying the null-canceling approach
used in the Bell laboratory layered space-time (BLAST) de-
tection scheme introduced in [7], soft cancellation mini-
mum mean-squared error (SC-MMSE) detection scheme of
[3] provides soft output using priors. Most other available
schemes are essentially approximations of MAP detector, in
which transmitted symbol vectors with a relatively low like-
lihood are excluded from search space. The list sphere de-
tector (LSD) determines a list of candidate vectors for the
transmitted symbols, all of which result in a small Euclidean
distance between the received vector and the noiseless chan-
nel output corresponding to the candidate vector [6]. Gib-
bis sampling, a statistical method based on Markov chain
Monte Carlo (MCMC) simulation techniques, is an alterna-
tive method for choosing candidate list. MCMC techniques
are demonstrated to perform better than LSD with less com-
plexity [8, 9]. Via tight lower and upper bounds, branch
and bound method can considerably speed up the solu-
tion process for sphere detectors [10]. Iterative tree search
(ITS) detection of [11] performs a channel triangularization
procedure by matrix Cholesky factorization, which enables
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Figure 1: Block diagram of the coded MIMO system with iterative receiver.

a reduced search space to be selected by means of the M-
algorithm [12].

This paper presents an iterative reconfigurable tree search
(IRTS) algorithm based on the ITS scheme. By reconfiguring
the tree structure according to the symbol reliability infor-
mation, the new algorithm can further decrease the number
of sequences in the search space and attain the better bit error
performance with lower complexity.

2. SYSTEMMODEL AND ITERATIVE RECEIVER

Consider the MIMO system with Nt transmit and Nr receive
antennas. AQ×1 vector of symbols, s = [s1, s2, . . . , sQ] ∈ SQ,
is encoded by ST encoder into the Nt × T ST block C, where
the superscript T indicates transpose, S denotes the constella-
tion with 2Mc (Mc ≥ 1) possible signal points, T is the num-
ber of symbol periods in each block. The symbol transmit
rate of the ST code is Q/T symbols per channel use (pcu).
Let Y be Nr ×T received signal matrix, then it can be written
as

Y = HC +W, (1)

where H is Nr × Nt channel matrix, known perfectly to the
receiver, whose entries are assumed to be independent and
identically distributed zero-mean complex Gaussian random
variables with a common variance 0.5 per real dimension, to
remain constant within each block and to change indepen-
dently from one block to the next (i.e., quasistatic). The en-
tries ofNr×T noise matrixW are assumed to be independent
samples of zero-mean complex Gaussian random variables
with a common variance σ2 per real dimension.

To describe the decoding problem conveniently, let y =
vec(Y), w = vec(W), where vec(·) denotes stacking all the
columns of matrix into one column, (1) can be rewritten as

y = (IT ⊗H
)[
cT1 , c

T
2 , . . . , c

T
T

]T
+w, (2)

where ⊗ denotes the Kronecker matrix product, cn (n =
1, 2, . . . ,T) is the nth column of C. In this paper we only con-
sider vertical Bell labs layered ST (V-BLAST) multiplexer [7];

other ST block codes can be easily extended. In the case of V-
BLAST Q = Nt and T = 1, (2) can be represented compactly
as

y = Hs +w. (3)

Figure 1 illustrates a block diagram of the coded MIMO
system employing ST-BICM and iterative receiver. The re-
ceiver follows the structure that was first proposed in [13]
for code division multiple access (CDMA) systems and later
applied to MIMO systems [3–6]. At the transmitter, binary
information bit sequence u is encoded into the sequence v
by the predetermined error correction code; coded sequence
v is bit-interleaved by a pseudorandom permuter Π to gen-
erate x; based on constellation S, the interleaved sequence x
is mapped to symbol vectors s, and then sent by multiple an-
tennas. At the receiver, the transmitted signals are received on
Nr receive antennas, and the received signal vectors y are fed
to the MIMO detector. The optimum decoder is maximum-
likelihood (ML) decoder, which has an exponential compu-
tational complexity increasing with the length of information
bit sequence and does not lend itself to a feasible decoding
method.

Channel encoder and ST constellation mapper are sepa-
rated by an interleaver, which forms a structure of a serially
concatenated code: channel code as outer code and ST map-
per as inner code [3–6]. Based on iterative “turbo processing”
principle, the concatenated code can be decoded using a low-
complexity iterative method. The optimal decoding problem
is divided into two stages: MIMO detector (inner module)
and channel decoder (outer module). Soft-input soft-output
(SISO) algorithm is adopted at each stage and soft infor-
mation is exchanged between the two stages. Assume LD(·),
LA(·), and LE(·) denote log-likelihood ratio (LLR) of the a
posteriori information, the priori information and the ex-
trinsic information, respectively, the decoding process can be
generalized as follows.

(1) Inner module computes LE(x), conditional on y and
LA(x). LE(x) is deinterleaved to yield

LA(v) = Π−1
[
LE(x)

]
, (4)
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which is fed into outer module as the a priori informa-
tion of v.

(2) Outer module processes LA(v) based on the con-
straints imposed by channel code to yield LE(v) and
LD(u). LE(v) is interleaved to generate

LA(x) = Π
[
LE(v)

]
, (5)

which is passed to inner module as a priori informa-
tion.

The above operations (1) and (2) are repeated until pre-
defined terminal condition is satisfied. At the end of itera-
tive process the estimation of u is obtained by hard-deciding
LD(u), thus

û = sgn
{
LD(u)

}
. (6)

3. STMAP DETECTOR AND ITS ALGORITHM

At the transmitter, the use of interleavermakes the bits within
x statistically independent. Based on MAP detector the ex-
trinsic information of the coded bits, expressed as a log-
likelihood ratio [6], can be computed by

LE
(
xqk | y

) = ln

∑
x∈X+1

qk
p
(
y | x) · exp [1/2 · xT · LA(x)

]

∑
x∈X−1qk p

(
y | x) · exp [1/2 · xT · LA(x)

]

︸ ︷︷ ︸
LD(xqk|y)

− ln
p
(
xqk = +1

)

p
(
xqk = −1

)

︸ ︷︷ ︸
LA(xqk)

,

(7)

where xqk denotes the kth bit mapped onto the symbol sq,
X±1qk = x | xqk = ±1}, X+1

qk and X−1qk are sets of all possible
bit sequence x with xqk = +1 and xqk = −1, respectively. The
likelihood function p(y | x) can be deduced from (3), we
have

p
(
y | x) = p

[
y | s=map(x)

] = exp
(− (1/2σ2)‖y −Hs‖2)

(
2πσ2

)Nr
,

(8)

‖y−Hs‖2=(s−ŝ)HHHH(s−ŝ)+yH[I−H(HHH
)−1

HH
]
y,
(9)

where ŝ = [ŝ1, ŝ2, . . . , ŝNt ]
T = (HHH)−1HHy is the uncon-

strained ML solution, and the superscript H denotes Hermi-
tian transpose. The second term of the right-hand side of (9)
is independent of s and can be omitted from the metric. For

HHH is nonnegative definite matrix, it can produce LHL by
Cholesky factorization, where L is Nt × Nt lower triangular
matrix. The first term of the right-hand side of (9) can be
written as

(s− ŝ)HHHH(s− ŝ) =
Nt∑

q=1

∣∣
∣
∣
∣lqq

(
sq − ŝq

)
+

q−1∑

p=1
lqp
(
sp − ŝp

)
∣∣
∣
∣
∣

2

.

(10)

By defining

μ(s) = − 1
σ2

Nt∑

q=1

∣
∣∣
∣
∣lqq

(
sq − ŝq

)
+

q−1∑

p=1
lqp
(
sp − ŝp

)
∣
∣∣
∣
∣

2

+
Nt∑

q=1

Mc∑

k=1
xqkLA

(
xqk
)
,

(11)

the metric can be computed in a symbol-by-symbol fashion,
starting with the first symbol s1 and proceeding to sNt , by ex-
ploiting the following relations:

μ1 = − 1
σ2
∣∣l11

(
s1 − ŝ1

)∣∣2 +
Mc∑

k=1
x1kLA

(
x1k
)
,

μq = μq−1 − 1
σ2

∣∣
∣
∣
∣lqq

(
sq − ŝq

)
+

q−1∑

p=1
lqp
(
sp − ŝp

)
∣∣
∣
∣
∣

2

+
Mc∑

k=1
xqkLA

(
xqk
)
, 2 ≤ q ≤ Nt ,

μ(s) = μNt .

(12)

A symbol vector s consists of Nt symbols and can
uniquely be represented by a path through tree structure
with depth Nt , having a single symbol on each branch and
2Mc branches out of each node. A sequence of symbols
s1, s2, . . . , sq and a metric μq is associated with each path of
the tree, where q ≤ Nt denotes the symbol depth of path.
Each symbol vector s corresponds to a path with depth Nt

and has a metric μ(s) = μNt . The computational complexity
of such an optimum detector is exponential with NtMc.

M-algorithm [11, 12], a reduced complexity algorithm
based on the breadth-first sorting, is applied to the iterative
tree search of MIMO detection. M-algorithm only searches
for the best paths through the tree, that is, those correspond-
ing to the symbol vectors with the highest a posteriori proba-
bilities. At each symbol depth smaller than Nt, the algorithm
keeps a list of the best M paths and then moves forward by
extending the M paths it has retained to form new M · 2Mc

paths. For all the terminal branches to this depth, metrics
are computed, the best M paths are kept in the updated list
and the restM · (2Mc − 1) paths are deleted. Practically near-
optimum performance is often achieved when M is only a
small fraction of the full search space.
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After having obtained the M candidate symbol se-
quences, denoted by the set L, and also using max-log ap-
proximation [6], (7) can be written as

LE
(
xqk | y

)=1
2

{
max

x∈L∩X+1
qk , s=map(x)

μ(s)− max
x∈L∩X−1qk , s=map(x)

μ(s)
}

− LA
(
xqk
)
.

(13)

M-algorithm only considers a fraction of all possible
paths and the set L is not guaranteed to contain the best M
candidates, but the probability that it does increases with sig-
nal noise ratio. Moreover, all bit sequences in L might end
up having the same binary value at some positions especially
whenM is small. In such a case, (13) cannot be evaluated be-
cause either L ∩ X+1

qk or L ∩ X−1qk is empty and LE(xqk | y) is
assigned a positive or negative clipping value. The optimized
value in [11], ±3, is used in the simulations of Section 5.

4. IRTS ALGORITHM

The reconfigurable trellis (tree) search algorithm has been
employed in channel decoders [14, 15]. It achieves near-ML
performance with low complexity. The key idea is to arrange
symbol positions according to different reliabilities of sym-
bols. During the search process in the previously mentioned
ITS algorithm, the number of branches is decreased by ex-
ploring paths that are most likely to be part of the maximum-
likelihood path (MLP), while discarding those paths that are
unlikely to belong to the MLP as early in the search as pos-
sible. Few branches are needed to be explored and a reduced
search algorithm can stop any further exploration of a path
relatively early in the search without losing the MLP, if the
influence of unexplored branch metrics on the rank order
of the path metrics are insignificant. The order is only deter-
mined at the first iteration and a reconfigurable tree structure
is constructed according to the order; during the following it-
erations, the detection process is based on the reconfigurable
tree structure.

Let sk (k = 1, 2, . . . ,Nt) be the desired signal, (3) can be
denoted as [3]

y = hksk +Hksk +w, (14)

where hk is the kth column of H, Hk = [h1,h2, . . . ,hk−1,
hk+1, . . . ,hNt ], and sk = [s1, s2, . . . , sk−1, sk+1, . . . , sNt ]

T . By us-
ing a linear filter zk, an Nr×1 column vector, the decision
statistic of the kth substream is

rk = zHk y. (15)

According to (14), (15) can be rewritten as

rk = zHk hksk + zHk Hksk + zHk w, (16)

where the three terms on the right-hand side of (16) are de-
sired response obtained by the linear filter, coantenna inter-
ference and phase-rotated noise, respectively. The weights of
the linear filter should be optimized. Based on MMSE crite-
ria, ẑk is the vector such that themean-squared error between
rk and sk is the minimum:

ẑk = argmin
(zk)

E
[∥∥sk − zHk y

∥
∥2], (17)

where E denotes the expectation and ẑk can be computed as
[3, 16]

ẑHk = hHk
[
HHH + 2σ2INr

]−1
. (18)

The estimation of transmitted symbol at the kth antenna, s̃k,
can be achieved by quantizing rk. The reliability of symbol
can be computed and denoted by log-likelihood ratio

L
(
s̃k
) = ln

p
{
rk | s̃k

}

∑
sk �=s̃k p

{
rk | sk

} , (19)

where p{rk | sk
}
is the conditional probability density func-

tion of rk given sk. Here we assume that each element of zHk w
still obeys the Gaussian distribution and has the same vari-
ance σ2, and we have [17]

p
{
rk | sk

}∝ exp

(

−
(
dist

(
rk, sk

))2

2 · σ2
)

, (20)

where dist(rk, sk) denotes the Euclidean distance between rk
and sk. Using max-log approximation, (19) can be simplified
as

L
(
s̃k
) = ln

exp
(
− (dist (rk, s̃k

))2)

∑
sk �=s̃k exp

(
− (dist (rk, sk

))2)

≈ (− dist
(
rk, s̃k

))−max
sk �=s̃k

(− dist
(
rk, sk

))
.

(21)

Based on this reliability measure, the symbols within the
vector s are reordered in descending order and the columns
of channel matrix are also rearranged correspondingly. Then
the ITS algorithm is applied to this reconfigurable tree.
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Example 1. The following example with the Nt = Nr =
4QPSK-modulated MIMO system illustrates the procedure.

The system is given by

H =

⎡

⎢
⎢
⎢
⎣

0.0910 + j0.8047 −0.1856− j0.2338 0.0080− j0.3864 −0.6999− j0.6040
0.4642− j0.4838 −0.8578− j0.5965 −0.4562− j0.5987 0.9472− j0.8495
0.8258− j0.9135 −0.9330 + j0.3520 0.5697− j0.1742 0.2047− j0.0848
−0.3257− j0.0516 0.6585 + j1.0525 0.1638 + j0.4688 1.0458− j0.0462

⎤

⎥
⎥
⎥
⎦
. (22)

Table 1: Results of reliability metrics based on MMSE criterion.

k rk s̃k L
(
s̃k
)

1 0.6924− j0.2594 1− j 1.0376

2 0.2722 + j0.2224 1 + j 0.8896

3 −0.3132− j0.4420 −1− j 1.2528

4 −0.1043− j0.5477 −1− j 0.1899

Assume that the noise variance σ2 = 2.0047, and the re-
ceived symbol vector is

y = [− 0.0672 + j0.6564,−1.1688− j0.9705,

− 3.8602− j2.2125, 0.0822− j1.6471]T .
(23)

According to (15) and (18), rk (k = 1, 2, 3, 4) can be com-
puted and written as a column vector

r = [0.6924− j0.2594, 0.2722 + j0.2224,

− 0.3132− j0.4420,−0.1043− j0.5477]T .
(24)

By quantizing rk and using (21), s̃k and L(s̃k) can be com-
puted and are listed in Table 1.

According to the computed reliability metrics, the search
sequence can be arranged as k = 3, 1, 2, and 4. Observing
(21), we can find that if real and imaginary components of rk
are separated, the reliability metric by the exact computation
is the tradeoff between the two components; while the reli-
ability metric by the max-log approximation computation is
mainly decided by the unreliable one between real and imagi-
nary components. In both cases the higher reliability compo-
nent is influenced by the lower one. The example also proves
such a result.

For QPSK or QAM modulations because of the inde-
pendence between real and imaginary components of
each constellation symbol, the real and imaginary
components can be processed separately. By defining
y = [y1R, y2R, . . . , yNrR, y1I , y2I , . . . , yNrI]

T , s = [s1R, s2R, . . . ,
sNtR, s1I , s2I , . . . , sNtI]

T , w = [w1R,w2R, . . . ,wNrR,w1I ,w2I , . . . ,

wNrI]
T , and H = [ real(H) −imag(H)

imag(H) real(H)

]
, where real(·) and

imag(·) indicate the real and imaginary components of a
complex matrix, respectively, (3) can be written as

y = Hs +w. (25)

Using (25) in IRTS algorithm, since the real and imag-
inary components can be separated, the order for the de-
tection of the real and imaginary components can be deter-
mined separately. Based on their respective reliability met-
rics, the performance of the algorithm can be further im-
proved.

5. COMPLEXITY ANALYSIS AND
SIMULATION RESULTS

In the section of complexity analyses, complexity orders es-
timation of MMSE detection, LSD, exact MAP detection is
provided, and then the number of basic operations for ex-
act MAP detection, ITS detection, and IRTS detection is
counted. Complexity analysis of the detectors is based on
an iteration of the detection/decoding loops. The matrix in-
version performed by the MMSE-based detector constructs
the bulk of the total complexity, whose complexity is O(N3

r )
[4]. The complexity of the LSD scheme is dependent on the
noise. There exist different viewpoints for the complexity of
sphere decoder. References [10, 18] indicate that the expected
complexity of sphere decoder is subjected to polynomial de-
pendence on Nt , that is, O(N3

t ) when SNR is high, and the
complexity is predicted as exponential when SNR is low. Ref-
erence [19] indicates that the complexity of sphere decoder
is exponential and the rate of the exponential function de-
pends on the SNR. It is quite small for high SNR. As to the
exact MAP detection, the total number of symbol vectors
needed to be processed is 2Nt·Mc and has the complexity order
of O(2Nt·Mc).

ITS detection, compared with the metric update proce-
dures associated by (12), other complexities associated with
the computation of the unstrained ML symbol estimation,
the detection output (13) with the aid of themax-log approx-
imation, and the Cholesky factorization of HHH , is negligi-
ble, and therefore not considered in the analysis. Based on
the ITS detection, the IRTS detection scheme introduces the
extra complexity of the computation ofMMSE preprocessing
and the symbol reliabilities for the first iteration. For the fol-
lowing iterations, only some symbol position permutations
need to be performed, whose complexity can be ignored.
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Table 2: Operation counts for ITS, IRTS, and exact MAP detection, per symbol period (NtMc bits).

1st iteration Each of the following iterations

ITS, additions M · 2Mc
(
2N2

t + 4Nt +NtMc − 1
)

M · 2Mc
(
2N2

t + 4Nt +NtMc − 1
)

ITS, multiplications M · 2Mc
(
2N2

t + 5Nt

)
M · 2Mc

(
2N2

t + 5Nt

)

IRTS, additions
8N2

r Nt + 4N3
r − 6N2

r + 2NrNt + 2Nr − 2Nt M · 2Mc
(
2N2

t + 4Nt +NtMc − 1
)

+4Nt2Mc +M · 2Mc
(
2N2

t + 4Nt +NtMc − 1
)

IRTS, multiplications
8N2

r Nt + 4N3
r + 4NrNt + 4Nt M · 2Mc

(
2N2

t + 5Nt

)

+2Nt2Mc +M · 2Mc
(
2N2

t + 5Nt

)

Exact MAP, additions 2NtMc
(
4NrNt + 2Nr +NtMc − 1

)
2NtMc

(
4NrNt + 2Nr +NtMc − 1

)

Exact MAP, multiplications 2NtMc
(
4NrNt + 2Nr

)
2NtMc

(
4NrNt + 2Nr

)
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Figure 2: Bit error performance of the 4× 4 ST-BICMMIMO sys-
tem.

The numbers of floating-point additions and multiplications
involved in ITS detection, IRTS detection, and exact MAP
detection of the NtMc code bits transmitted during a single
symbol period are listed in Table 2.

Table 2 shows that the complexity of the ITS detection is
O(M2McN2

t ), and IRTS detection only introduces the addi-
tional complexity of O(N3

r ) for the first iteration, which may
be ignored.

In the simulations, the channel code is a parallel concate-
nated (turbo) code with rate R = 1/2, whose constituent con-
volutional codes both have memory 2, with feedback poly-
nomial Gr(D) = 1 + D + D2 and feedforward polynomial
Gf (D) = 1 + D2. Frames of 1024 information bits are fed to
the channel encoder and interleaver, QPSK modulated and
subsequently transmitted over a quasistatic fading channel.
There are eight iterations over MIMO detector/turbo de-
coder loop, and four iterations within turbo decoder. All the
interleavers are pseudorandom, and no attempt was made
to optimize their design. Figures 2 and 3 show the perfor-
mance of iterative detection and decoding for Nt = Nr = 4

100

10�1

10�2

10�3

10�4

10�5

10�6

B
E
R

1 1.5 2 2.5 3 3.5

Eb/N0 (dB)

LSD L = 64
MMSE
ITSM = 16
IRTSM = 16 complex

IRTSM = 16 real
ITSM = 32
IRTSM = 32 complex
IRTSM = 32 real

Figure 3: Bit error performance of the 8× 8 ST-BICMMIMO sys-
tem.

and Nt = Nr = 8 transmit/receive antennas, respectively.
For IRTS detection discussed in Section 5, the performance
of the following two cases are given: the case with separating
real and imaginary components, denoted as “IRTS Real,” and
the case without separating real and imaginary components,
denoted as “IRTS Complex.”

For the 4 × 4 MIMO system, exact MAP detection is
performed, which computes soft a posteriori value based on
all the 256 symbol vectors. Performance of IRTS detection
with M = 16, which is better than that of MMSE detection,
LSD and ITS detection, is shown to have achieved near exact
MAP performance. At BER = 10−4, “IRTS Real” detection
has achieved more than 0.3 dB coding gains over ITS detec-
tion. For the 8×8MIMO system, the exhaustive search space
is composed of 216 symbol vectors. Because of the relatively
small number of searched symbol vectors, the performance
of LSD with L = 64 and ITS detection withM = 16 is worse
than that of MMSE detection. The IRTS detection is shown
to have the excellent ability to find the MLP, and “IRTS Real”
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detection withM = 16 even performs better than ITS detec-
tion withM = 32.

The simulation results have also demonstrated the per-
formance improvement by separating real and imaginary
components. For the 4×4MIMO system, Figure 2 shows that
about 0.2 dB gain has been achieved at BER = 10−5. For the
8× 8 MIMO system, Figure 3 shows that the performance of
“IRTS Real” detection withM = 16 even equals that of “IRTS
Complex” detection withM = 32.

6. CONCLUSIONS

This paper has proposed a novel reduced-complexity detec-
tion scheme for iterative ST-BICM MIMO receivers, named
iterative reconfigurable tree search detection. An important
improvement of this scheme is using the reliability metrics
computed by MMSE criterion to order the transmitted sym-
bols, constructing a reconfigurable tree structure and apply-
ingM-algorithm to the reconfigurable tree. The IRTS detec-
tion scheme, whose complexity per bit is almost linear in the
number of transmit antennas, offers the possibility of trad-
ing off lower complexity for improved performance. And it
has been demonstrated that such a scheme is capable of ap-
proaching MAP performance at considerably reduced com-
plexity.

We have focused primarily on the reduced-complexity
detection schemes. Some possible ways that we have not con-
sidered to improve performance include optimizing the de-
sign of interleaver to have a good minimum distance and im-
proving constellation shaping [6], and so forth.
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