
Hindawi Publishing Corporation
EURASIP Journal on Advances in Signal Processing
Volume 2007, Article ID 52105, 13 pages
doi:10.1155/2007/52105

Research Article
Robust Sparse Component Analysis Based on
a Generalized Hough Transform

Fabian J. Theis,1 Pando Georgiev,2 and Andrzej Cichocki3, 4

1 Institute of Biophysics, University of Regensburg, 93040 Regensburg, Germany
2ECECS Department and Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
3BSI RIKEN, Laboratory for Advanced Brain Signal Processing, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
4Faculty of Electrical Engineering, Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warsaw, Poland

Received 21 October 2005; Revised 11 April 2006; Accepted 11 June 2006

Recommended by Frank Ehlers

An algorithm called Hough SCA is presented for recovering the matrix A in x(t) = As(t), where x(t) is a multivariate observed
signal, possibly is of lower dimension than the unknown sources s(t). They are assumed to be sparse in the sense that at every
time instant t, s(t) has fewer nonzero elements than the dimension of x(t). The presented algorithm performs a global search for
hyperplane clusters within the mixture space by gathering possible hyperplane parameters within a Hough accumulator tensor.
This renders the algorithm immune to the many local minima typically exhibited by the corresponding cost function. In contrast
to previous approaches, Hough SCA is linear in the sample number and independent of the source dimension as well as robust
against noise and outliers. Experiments demonstrate the flexibility of the proposed algorithm.
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1. INTRODUCTION

One goal of multichannel signal analysis lies in the detec-
tion of underlying sources within some given set of obser-
vations. If both the mixture process and the sources are un-
known, this is denoted as blind source separation (BSS). BSS
can be applied in many different fields such as medical and
biological data analysis, broadcasting systems, and audio and
image processing. In order to decompose the data set, dif-
ferent assumptions on the sources have to be made. The
most common assumption currently used is statistical in-
dependence of the sources, which leads to the task of inde-
pendent component analysis (ICA); see, for instance, [1, 2]
and references therein. ICA very successfully separates data
in the linear complete case, when as many signals as un-
derlying sources are observed, and in this case the mixing
matrix and the sources are identifiable except for permu-
tation and scaling [3, 4]. In the overcomplete or underde-
termined case, fewer observations than sources are given.
It can be shown that the mixing matrix can still be recov-
ered [5], but source identifiability does not hold. In or-
der to approximately detect the sources, additional require-
ments have to be made, usually sparsity of the sources [6–
8].

Recently, we have introduced a novel measure for spar-
sity and shown [9] that based on sparsity alone, we can still
detect both mixing matrix and sources uniquely except for
trivial indeterminacies (sparse component analysis (SCA)). In
that paper, we have also proposed an algorithm based on ran-
dom sampling for reconstructing the mixing matrix and the
sources, but the focus of the paper was on the model, and the
matrix estimation algorithm turned out to be not very ro-
bust against noise and outliers, and could therefore not eas-
ily be applied in high dimensions due to the involved com-
binatorial searches. In the present manuscript, a new algo-
rithm is proposed for SCA, that is, for decomposing a data
set x(1), . . . , x(T) ∈ Rm modeled by an (m × T)-matrix X
linearly into X = AS, where the n-dimensional sources S =
(s(1), . . . , s(T)) are assumed to be sparse at every time in-
stant. If the sources are of sufficiently high sparsity, the mix-
tures are clustered along hyperplanes in the mixture space.
Based on this condition, the mixing matrix can be recon-
structed; furthermore, this property is robust against noise
and outliers, which will be used here. The proposed algo-
rithm denoted byHough SCA employs a generalization of the
Hough transform in order to detect the hyperplanes in the
mixture space, which then leads to matrix and source identi-
fication.
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The Hough transform [10] is a standard tool in image
analysis that allows recognition of global patterns in an image
space by recognizing local patterns, ideally a point, in a trans-
formed parameter space. It is particularly useful when the
patterns in question are sparsely digitized, contain “holes,”
or have been taking in noisy environments. The basic idea
of this technique is to map parameterized objects such as
straight lines, polynomials, or circles to a suitable parame-
ter space. The main application of the Hough transform lies
in the field of image processing in order to find straight lines,
centers of circles with a fixed radius, parabolas, and so forth
in images.

The Hough transform has been used in a somewhat
ad hoc way in the field of independent component anal-
ysis for identifying two-dimensional sources in the mix-
ture plot in the complete [11] and overcomplete [12] cases,
which without additional restrictions can be shown to have
some theoretical issues [13]; moreover, the proposed algo-
rithms were restricted to two dimensions and did not pro-
vide any reliable source identification method. An applica-
tion of a time-frequency Hough transform to direction find-
ing within nonstationary signals has been studied in [14]; the
idea is based on the Hough transform of the Wigner-Ville
distribution [15], essentially employing a generalized Hough
transform [16] to find straight lines in the time-frequency
plane. The results in [14] again only concentrate on the two-
dimensional mixture case. In the literature, overcomplete
BSS and the corresponding basis estimation problems have
gained considerable interest in the past decade [8, 17–19],
but the sparse priors are always used in connection with the
assumption of independent sources. This allows for prob-
abilistic sparsity conditions, but cannot guarantee source
identifiability as in our case.

The paper is organized as follows. In Section 2, we in-
troduce the overcomplete SCA model and summarize the
known identifiability results and algorithms [9]. The follow-
ing section then reviews the classical Hough transform in two
dimensions and generalizes it in order to detect hyperplanes
in any dimension. This method is used in section Section 4
to develop an SCA algorithm, which turns out to be highly
robust against noise and outliers. We confirm this by exper-
iments in Section 5. Some results of this paper have already
been presented at the conference “ESANN 2004” [20].

2. OVERCOMPLETE SCA

We introduce a strict notion of sparsity and present identifi-
ability results when applying the measure to BSS.

A vector v ∈ Rn is said to be k-sparse if v has at least k
zero entries. An n×T data matrix is said to be k-sparse if each
of its columns is k-sparse. Note that v is k-sparse, then it is
also k′-sparse for k′ ≤ k. The goal of sparse component analy-
sis of level k (k-SCA) is to decompose a givenm-dimensional
observed signal x(t), t = 1, . . . ,T , into

x(t) = As(t) (1)

with a real m × n-mixing matrix A and an n-dimensional

k-sparse sources s(t). The samples are gathered into corre-
sponding data matrices X := (x(1), . . . , x(T)) ∈ Rm×T and
S := (s(1), . . . , s(T)) ∈ Rn×T , so the model is X = AS. We
speak of complete, overcomplete, or undercomplete k-SCA if
m = n, m < n, or m > n, respectively. In the following, we
will always assume that the sparsity level equals k = n−m+1,
which means that at any time instant, fewer sources than
given observations are active. In the algorithm, we will also
consider additive white Gaussian noise; however, the model
identification results are presented only in the noiseless case
from (1).

Note that in contrast to the ICA model, the above prob-
lem is not translation invariant. However, it is easy to see that
if instead of A we choose an affine linear transformation,
the translation constant can be determined from X only, as
long as the sources are nondeterministic. Put differently, this
means that instead of assuming k-sparsity of the sources we
could also assume that at any fixed time t, only n − k source
components are allowed to vary from a previously fixed con-
stant (which can be different for each source). In the fol-
lowing without loss of generality we will assume m ≤ n:
the easier undercomplete (or underdetermined) case can be
reduced to the complete case by projection in the mixture
space.

The following theorem shows that essentially the mixing
model (1) is unique if fewer sources than mixtures are active,
that is, if the sources are (n−m + 1)-sparse.

Theorem 1 (matrix identifiability). Consider the k-SCA
problem from (1) for k := n − m + 1 and assume that every
m ×m-submatrix of A is invertible. Furthermore, let S be suf-
ficiently rich represented in the sense that for any index set of
n −m + 1 elements I ⊂ {1, . . . ,n} there exist at least m sam-
ples of S such that each of them has zero elements in places with
indexes in I and each m − 1 of them are linearly independent.
Then A is uniquely determined by X except for left multiplica-
tion with permutation and scaling matrices.

So if AS = ̂ÂS, then A = ̂APL with a permutation P and
a nonsingular scaling matrix L. This means that we can re-
cover the mixing matrix from the mixtures. The next the-
orem shows that in this case also the sources can be found
uniquely.

Theorem 2 (source identifiability). LetH be the set of all x ∈
Rm such that the linear systemAs = x has an (n−m+1)-sparse
solution, that is, one with at least n −m + 1 zero components.
If A fulfills the condition from Theorem 1, then there exists a
subsetH0 ⊂H with measure zero with respect toH , such that
for every x ∈ H \H0 this system has no other solution with
this property.

For proofs of these theorems we refer to [9]. The above
two theorems show that in the case of overcomplete BSS us-
ing k-SCA with k = n −m + 1, both the mixing matrix and
the sources can uniquely be recovered from X except for the
omnipresent permutation and scaling indeterminacy. The es-
sential idea of both theorems as well as a possible algorithm is
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Figure 1: Visualization of the hyperplanes in the mixture space {x(t)} ⊂ R3. Due to the source sparsity, the mixtures are generated by only
two matrix columns ai, a j , and are hence contained in a union of hyperplanes. Identification of the hyperplanes gives mixing matrix and
sources.

Data: samples x(1), . . . , x(T)
Result: estimated mixing matrix ̂A

Hyperplane identification.

(1) Cluster the samples x(t) in
(

n
m−1
)

groups such that the span
of the elements of each group produces one distinct
hyperplane Hi.

Matrix identification.

(2) Cluster the normal vectors to these hyperplanes in the
smallest number of groups Gj , j = 1, . . . ,n (which gives the
number of sources n) such that the normal vectors to the
hyperplanes in each group Gj lie in a new hyperplane ̂Hj .

(3) Calculate the normal vectors â j to each hyperplane
̂Hj , j = 1, . . . ,n.

(4) The matrix ̂A with columns â j is an estimate of the mixing
matrix (up to permutation and scaling of the columns).

Algorithm 1: SCA matrix identification algorithm.

illustrated in Figure 1: by assuming sufficiently high sparsity
of the sources, the mixture space clusters along a union of
hyperplanes, which uniquely determine both mixing matrix
and sources.

The matrix and source identification algorithm from [9]
are recalled in Algorithms 1 and 2. We will present a mod-
ification of the matrix identification part—the same source
identification algorithm (Algorithm 2) will be used in the ex-
periments. The “difficult” part of the matrix identification
algorithm lies in the hyperplane detection; in Algorithm 1, a
random sampling and clustering technique is used. Another
more efficient algorithm for finding the hyperplanes contain-
ing the data has been developed by Bradley and Mangasar-
ian [21], essentially by extending k-means batch clustering.
Their so-called k-plane clustering algorithm in the special case
of hyperplanes containing 0 is shown in Algorithm 3. The

Data: samples x(1), . . . , x(T) and estimated mixing matrix ̂A
Result: estimated sources ŝ(1), . . . , ŝ(T)

(1) Identify the set of hyperplanesH produced by taking the
linear hull of every subsets of the columns of ̂A withm− 1
elements
for t ← 1, . . . ,T do

(2) Identify the hyperplane H ∈H containing x(t), or, in
the presence of noise, identify the one to which the
distance from x(t) is minimal and project x(t) onto H
to x̃.

(3) If H is produced by the linear hull of column vectors
âi1 , . . . , âim−1 , find coefficients λi( j) such that
x̃ =∑m−1

j=1 λi( j)âi( j).
(4) Construct the solution ŝ(t): it contains λi( j) at index i( j)

for j = 1, . . . ,m− 1, the other components are zero.
end

Algorithm 2: SCA source identification algorithm.

finite termination of the algorithm is proven in [21, Theorem
3.7]. We will later compare the proposed Hough algorithm
with the k-hyperplane algorithm. The k-hyperplane algo-
rithm has also been extended to a more general, orthogonal
k-subspace clustering method [22, 23] thus allowing a search
not only for hyperplanes but also for lower-dimensional sub-
spaces.

3. HOUGH TRANSFORM

The Hough transform is a classical method for locating
shapes in images, widely used in the field of image process-
ing; see [10, 24]. It is robust to noise and occlusions and is
used for extracting lines, circles, or other shapes from im-
ages. In addition to these nonlinear extensions, it can also be
made more robust to noise using antialiasing techniques.
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Data: samples x(1), . . . , x(T)
Result: estimated k hyperplanes Hi given by the normal
vectors ui

(l) Initialize randomly ui with |ui| = 1 for i = 1, . . . , k.
do

Cluster assignment.

for t ← 1, . . . ,T do
(2) Add x(t) to cluster Y(i), where i is chosen to

minimize |u�i x(t)| (distance to hyperplane Hi).
end

(3) Exit if the mean distance to the hyerplanes is smaller
than some preset value.

Cluster update.

for i← 1, . . . , k do
(4) Calculate the i-th cluster correlation C := Y(i)Y(i)�.
(5) Choose an eigenvector v of C corresponding to

a minimal eigenvalue.
(6) Set ui ← v/|v|.

end
end

Algorithm 3: k-hyperplane clustering algorithm.

3.1. Definition

Its main idea can be described as follows: consider a param-
eterized object

Ma := {x ∈ Rn | f(x, a) = 0} (2)

for a fixed parameter set a ∈ U ⊂ Rp—here U ⊂ Rp is the
parameter space, and the parameter function f : Rn × U →
Rm is a set of m equations describing our types of objects
(manifolds) Ma for different parameters a. We assume that
the equations given by f are separating in the sense that if
Ma ⊂ Ma′ , then already a = a′. A simple example is the
set of unit circles in R2; then f (x, a) = |x − a| − 1. For a
given a ∈ R2, Ma is the circle of radius 1 centered at a. Ob-
viously f is separated. Other object manifolds will be dis-
cussed later. A nonseparated object function is, for example,
f (x, a) := 1−1[0,a](x) for (x, a) ∈ R×[0,∞), where the char-
acteristic function 1[0,a](x) equals 1 if and only if x ∈ [0, a]
and 0 otherwise. Then M1 = [0, 1] ⊂ [0, 2] = M2 but the
parameters are different.

Given a separating parameter function f(x, a), its Hough
transform is defined as

η[f] : Rn −→ P (U),

x 
−→ {a ∈ U | f(x, a) = 0}, (3)

whereP (U) denotes the set of all subsets of U . So η[f] maps
a point x onto the set of all parameters describing objects
containing x. But an objectMa as a set is mapped onto a sin-
gle point {a}, that is,

⋂

x∈Ma

η[f](x) = {a}. (4)

This follows because if
⋂

x∈Ma
η[f](x) = {a, a′}, then for all

x ∈Ma we have f(x, a′) = 0, whichmeans thatMa ⊂Ma′ ; the

parameter function f is assumed to be separating, so a = a′.
Hence, objects Ma in a data set X = {x(1), . . . , x(T)} can be
detected by analyzing clusters in η[f](X).

We will illustrate this concept for line detection in the
following section before applying it to the hyperplane iden-
tification needed for our SCA problem.

3.2. Classical Hough transform

The (classical) Hough transform detects lines in a given two-
dimensional data space as follows: an affine, nonvertical line
in R2 can be described by the equation x2 = a1x1 + a2 for
fixed a = (a1, a2) ∈ R2. If we define

fL(x, a) := a1x1 + a2 − x2, (5)

then the above line equals the setMa from (2) for the unique
parameter a, and f is clearly separating. Figures 2(a) and 2(b)
illustrate this idea.

In practice, polar coordinates are used to describe the line
in Hessian normal form; this allows to also detect vertical
lines (θ = π/2) in the data set, and moreover guarantees for
an isotropic error in contrast to the parametrization (5). This
leads to a parameter function

fP(x, θ, ρ) = x1 cos(θ) + x2 sin(θ)− ρ = 0 (6)

for parameters (θ, ρ) ∈ U := [0,π)×R. Then points in data
space are mapped to sine curves given by f ; see Figure 2(c).

3.3. Generalization

The mixing matrix A in the case of (n −m + 1)-sparse SCA
can be recovered by finding all 1-codimensional subvector
spaces in the mixture data set. The algorithm presented here
uses a generalized version of the Hough transform in order
to determine hyperplanes through 0 as follows.

Vectors x ∈ Rm lying on such a hyperplane H can be
described by the equation

fh(x,n) := n�x = 0, (7)

where n is a nonzero vector orthogonal to H . After normal-
ization |n| = 1, the normal vector n is uniquely determined
by H if we additionally require n to lie on one hemisphere
of the unit sphere Sn−1 := {x ∈ Rn | |x| = 1}. This means
that the parametrization fh is separating. In terms of spheri-
cal coordinates of Sn−1, n can be expressed as

n =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

cosϕ sin θ1 sin θ2 · · · sin θm−2
sinϕ sin θ1 sin θ2 · · · sin θm−2

cos θ1 sin θ2 · · · sin θm−2
...

. . .
...

cos θ1 cos θ2 · · · cos θm−2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(8)

with (ϕ, θ1, . . . , θm−2) ∈ [0, 2π) × [0,π)m−2 uniqueness of n
can be achieved by requiring ϕ ∈ [0,π). Plugging n in spher-
ical coordinates into (7) gives

cot θm−2 = −
m−1
∑

i=1
νi(ϕ, θ1, . . . , θm−3)

xi
xm

(9)
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for x ∈ Rm with xm �= 0 and

νi :=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

cosϕ
m−3
∏

j=1
sin θj , i = 1,

sinϕ
m−3
∏

j=1
sin θj , i = 2,

i−2
∏

j=1
cos θj

m−3
∏

j=i−1
sin θj , i > 2.

(10)

With cot(θ + π/2) = − tan(θ) we finally get θm−2 = arctan
(
∑m−1

i=1 νixi/xm) + π/2. Note that continuity is achieved if we
set θm−2 := 0 for xm = 0.

We can then define the generalized “hyperplane detecting”
Hough transform as

η[ fh] : Rm −→ P
(

[0,π)m−1
)

,

x 
−→
{

(ϕ, θ1, . . . , θm−2)

∈ [0,π)m−1 | θm−2 = arctan

(m−1
∑

i=1
νi
xi
xm

)

+
π

2

}

.

(11)

The parametrization fh is separating, so points lying on the
same hyperplane aremapped to surfaces that intersect in pre-
cisely one point in [0,π)m−1. This is demonstrated in the case
m = 3 in Figure 3. The hyperplane structures of a data set
X = {x(1), . . . , x(T)} can be analyzed by finding clusters in
η[ fh](X).

Let RPm−1 denote the (m − 1)-dimensional real projec-
tive space, that is, themanifold of all 1-dimensional subspaces
of Rm. There is a canonical diffeomorphism between RPm−1

and the Grassmanian manifold of all (m − 1)-dimensional
subspaces of Rm, induced by the scalar product. Using this
diffeomorphism, we can reformulate our aim of identifing
hyperplanes as finding elements of RPm−1. So, the Hough
transform η[ fh] maps x onto a subset of RPm−1, which is
topologically equivalent to the upper hemisphere in Rm with
identifications along the boundary. In fact, in (11) we simply
have constructed a coordinate map of RPm−1 using spherical
coordinates.

4. HOUGH SCA ALGORITHM

The SCA matrix detection algorithm (Algorithm 1) consists

of two steps. In the first step, d :=
(

n
m−1
)

hyperplanes given

by their normal vectors n(1), . . . ,n(d) are constructed such
that the mixture data lies in the union of these hyperplanes—
in the case of noise this will hold only approximately. In the
second step, mixture matrix columns ai are identified as gen-

erators of the n lines lying at the intersections of
(

n−1
m−2
)

hy-
perplanes. We replace the first step by the following Hough
SCA algorithm.
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Figure 2: Illustration of the “classical” Hough transform: a point
(x1, x2) in the data space (a) is mapped (b) onto the line {(a1, a2) |
a2 = −a1x1 + x2} in the linear parameter space R2 or (c) onto a
translated sine curve {(θ, ρ) | ρ = x1 cos θ + x2 sin θ} in the polar
parameter space [0,π) × R+

0 . The Hough curves of points belong-
ing to one line in data space intersect in precisely one point a in
the Hough space—and the data points lie on the line given by the
parameter a.

4.1. Definition

The idea is to first gather the Hough curves η[ fh](x(t))
corresponding to the samples x(t) in a discretized param-
eter space, in this context often called Hough accumulator.
Plotting these curves in the accumulator is sometimes de-
noted as voting for each bin, similar to histogram generation.
According to the previous section, all points x from some
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Figure 3: Illustration of the “hyperplane detecting” Hough transform in three dimensions: a point (x1, x2, x3) in the data space (a) is mapped
onto the curve {(ϕ, θ) | θ = arctan(x1 cosϕ + x2 sinϕ) + π/2} in the parameter space [0,π)2 (b). The Hough curves of points belonging to
one plane in data space intersect in precisely one point (ϕ, θ) in the Hough space and the points lie on the plane given by the normal vector
(cosϕ sin θ, sinϕ sin θ, cos θ).

hyperplane H given by a normal vector with angles (ϕ, θ)
are mapped onto a parameterized object that contains (ϕ, θ)
for all possible x ∈ H . Hence, the corresponding angle bin
will contain votes from all samples x(t) lying in H , whereas
other bins receive much less votes. Therefore, maxima analy-
sis of the accumulator gives the hyperplanes in the parameter
space. This idea corresponds to clustering all possible normal
vectors of planes through x(t) on RPm−1 for all t. The result-
ingHough SCA algorithm is described in Algorithm 4.We see
that only the hyperplane identification step is different from
Algorithm 1, the matrix identification is the same.

The number β of bins is also called the grid resolution.
Similar to histogram-based density estimation the choice of
β can seriously effect the algorithm performance—if chosen
too small, possible maxima cannot be resolved, and if chosen
too large, the sensitivity of the algorithm increases and the
computational burden in terms of speed and memory grows
considerably; see next section. Note that Hough SCA per-
forms a global search hence it is expected to be much slower
than local update algorithms such as Algorithm 3, but also
much more robust. In the following, its properties will be
discussed; applications are given in the example in Section 5.

4.2. Complexity

We will only discuss the complexity of the hyperplane esti-
mation because the matrix identification is performed on a
data set of size d being typically much smaller than the sam-
ple size T .

The angle θm−2 has to be calculated Tβm−2 times. Due to
the fact that only discrete values of the angles are of interest,
the trigonometric functions as well as the νi can be precal-
culated and stored in exchange for speed. Then each calcu-
lation of θm−2 involves 2m − 1 operations (sum and prod-
uct/division). The voting (without taking “lookup” costs in
the accumulator into account) costs an additional opera-
tion. Altogether the accumulator can be filled with 2Tβm−2m

Data: Samples x(1), . . . , x(T) of the random vector X
Result: Estimated mixing matrix ̂A

Hyperplane identification.

(1) Fix the number β of bins (can be separate for each angle).
(2) Initialize the β× · · ·β (m− 1 terms) array α ∈ Rβm−1 with

zeros (accumulator).
for t ← 1, . . . ,T do

for ϕ, θ1, . . . , θm−3 ← 0,π/β, . . . , (β − 1)π/β do
(3) θm−2 ← arctan(

∑m−1
i=1 νi(ϕ, . . . , θm−3)xi(t)/xm(t)) + π/2

(4) Increase (vote for) the accumulator value of α in
bin corresponding to (ϕ, θ1, . . . , θm−2) by one.

end
end

(5) The d :=
(

n
m−1
)

largest local maxima of α correspond to the
d hyperplanes present in the data set.

(6) Back transformation as in (8) gives the corresponding
normal vectors n(1), . . . ,n(d) to those hyperplanes.

Matrix identification.

(7) Clustering of hyperplanes generated by (m− 1)-tuples in
{n(1), . . . ,n(d)} gives n separate hyperplanes.

(8) Their normal vectors are the n columns of the estimated
mixing matrix ̂A.

Algorithm 4: Hough SCA algorithm for mixing matrix identifica-
tion.

operations. This means that the algorithm depends linearly
on the sample size and is polynomial in the grid resolu-
tion and exponential in the mixture dimension. The max-
ima search involves O(βm−1) operations, which for small to
medium dimensions can be ignored in comparison to the ac-
cumulator generation because usually β� T .

So the main part of the algorithm does not depend on
the source dimension n but only on the mixture dimension
m. This means for applications that n can be quite large but
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hyperplanes will still be found if the grid resolution is high
enough. Increase of the grid resolution (in polynomial time)
results in increased accuracy also for higher source dimen-
sions n. The memory requirement of the algorithm is domi-
nated by the accumulator size, which is βm−1. This can limit
the grid resolution.

4.3. Resolution error

The choice of the grid resolution β in the algorithm induces
a systematic resolution error in the estimation of A (as trade-
off for robustness and speed). This error is calculated in this
section.

Let A be the unknown mixing matrix and ̂A its estimate,
constructed by the Hough SCA algorithm (Algorithm 4)
with grid resolution β. Let n(1), . . . ,n(d) be the normal vec-
tors of hyperplanes generated by (m − 1)-tuples of columns
of A and let n̂(1), . . . , n̂(d) be their corresponding estimates.
Ignoring permutations, it is sufficient to only describe how
n̂(i) differs from n(i).

Assume that the maxima of the accumulator are cor-
rectly estimated, but due to the discrete grid resolution, an
average error of π/2β is made when estimating the precise
maximum position, because the size of one bin is π/β. How
is this error propagated into n̂(i)? By assumption each es-

timate ϕ̂, ̂θ1, . . . , ̂θm−2 differs from ϕ, θ1, . . . , θm−2 maximally
by π/2β. As we are only interested in an upper boundary, we
simply calculate the deviation of each component of n̂(i) from
n(i). Using the fact that sine and cosine are bounded by one,

(8) then gives us estimates |n̂(i)j − n(i)j | ≤ (m− 1)π/(2β) for
coordinate j, so altogether

∣

∣n̂(i) − n(i)
∣

∣ ≤ (m− 1)
√
mπ

2β
. (12)

This estimate may be improved by using the Jacobian of the
spherical coordinate transformation and its determinant, but
for our purpose this boundary is sufficient. In summary, we
have shown that the grid resolution contributes to a β−1-
perturbation in the estimation of A.

4.4. Robustness

Robustness with regard to additive noise as well as outliers
is important for any algorithm to be used in the real world.
Here an outlier is roughly defined to be a sample far away
from other observations, and indeed some researchers define
outliers to be sample further away from the mean than say
5 standard deviations. However, such definitions do neces-
sarily depend on the underlying random variable to be esti-
mated, so most books only give examples of outliers, and in-
deed no consistent, context-free, precise definition of outliers
exists [25]. In the following, given samples of a fixed random
variable of interest, we denote a sample as outlier if it is drawn
from another sufficiently different distribution.

Data fitting of only one hyperspace to the data set can
be achieved by linear regression namely by minimizing the
squared distance to such a possible hyperplane. These least

squares fitting algorithms are well known to be sensitive to
outliers, and various extensions of the LS method such as
least median of squares and reweighted least squares [26]
have been developed to overcome this problem. The break-
down point of the latter is 0.5, which means that the fit pa-
rameters are only stably estimated for data sets with less
than 50% outliers. The other techniques typically have much
lower breakdown points, usually below 0.3. The classical
Hough transform, albeit no regression method, is compa-
rable in terms of breakdown with robust fitting algorithms
such as the reweighted least squares algorithm [27]. In the ex-
periments we will observe similar results for the generalized
method presented above. Namely, we achieve breakdown lev-
els of up to 0.8 in the low-noise case, which considerably de-
crease with increasing noise.

From amathematical point of view, the “classical” Hough
transform as an estimator (and extension of linear regres-
sion) as well as regarding algorithmic and implementational
aspects has been studied quite extensively; see, for example,
[28] and references therein. Most of the presented theoretical
results in the two-dimensional case could be extended to the
more general objective presented here, but this is not within
the scope of this manuscript. Simulations giving experimen-
tal evidence that the robustness also holds in our case are
shown in Section 5.

4.5. Extensions

The following possible extensions to the Hough SCA algo-
rithm can be employed to increase its performance.

If the noise level is known, smoothing of the accumulator
(antialiasing) will help to give more robust results in terms of
noise. For smoothing (usually with a Gaussian), the smooth-
ing radius must be set according to the noise level. If the
noise level is not known, smoothing can still be applied by
gradually increasing the radius until the number of clearly
detectable maxima equals d.

Furthermore, an additional fine-tuning step is possible:
the estimated plane norms are slightly deteriorated by the
systematic resolution error as shown previously. However, af-
ter application of Hough SCA, the data space can now be
clustered into data points lying close to corresponding hy-
perplanes. Within each cluster linear regression (or some
more robust version of it; see Section 4.4) can now be ap-
plied to improve the hyperplane estimate—this is actually
the idea used locally in the k-hyperplane clustering algorithm
(Algorithm 3). Such a method requires additional computa-
tional power, but makes the algorithm less dependent on the
grid resolution, which is only needed for the hyperplane clus-
tering step. However, it is expected that this additional fine-
tuning step may decrease robustness especially against biased
noise and outliers.

5. SIMULATIONS

We give a simulation example as well as batch runs to analyze
the performance of the proposed algorithm.
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(d) Hough accumulator with labeled maxima

Figure 4: Example: (a) shows the 2-sparse, sufficiently rich represented, 4-dimensional source signals, and (b) the randomly mixed, 3-
dimensional mixtures. The normalized mixture scatter plot {x(t)/|x(t)| | t = 1, . . . ,T} is given in (c), and the generated Hough accumulator
in (d); note that the color scale in (d) was chosen to be nonlinear (γnew := (1 − γ/max)10) in order to visualize structure in addition to the
strong maxima.

5.1. Explicit example

In the first experiment, we consider the case of source di-
mensions n = 4 and mixing dimension m = 3. The
4-dimensional sources have been generated from i.i.d. sam-
ples (two Laplacian and two Gaussian sequences) followed
by setting some entries to zero in order to fulfill the spar-
sity constraints; see Figure 4(a). They are 2-sparse and con-
sist of 1000 samples. Obviously all combinations (i, j), i <
j, of active sources are present in the data set; this con-
dition is needed by the matrix recovery step. The sources
were mixed using a mixing matrix with randomly (uni-
form in [−1, 1]) chosen coefficients to give mixtures as
shown in Figure 4(b). The mixture density clearly lies in
6 disjoint hyperplanes, spanned by pairs (ai, a j), i < j, of
mixture matrix columns, as indicated by the normalized
scatter plot in Figure 4(c), similar to the illustration from
Figure 1(c).

In order to detect the planes in the data space, we apply
the generalized Hough transform as explained in Section 3.3.
Figure 4(d) shows the Hough image with β = 360. Each sam-
ple results in a curve, and clearly 6 intersection points are
visible, which correspond to the 6 hyperplanes in question.
Maxima analysis retrieves these points (in Hough space) as
shown in the same figure. After transforming these points
back into R3 with the inverse Hough transform, we get 6
normalized vectors corresponding to the 6 planes. Consider-
ing intersections of the hyperplanes, we notice that only 4 of
them intersect in precisely 3 planes, and these 4 intersection
lines are spanned by the matrix columns ai. For practical rea-
sons, we recover these combinatorially from the plane norm
vectors; see Algorithm 4. The deviation of the recoveredmix-
ing matrix ̂A from the original mixing matrix A in the over-
complete case can be measured by the generalized crosstalk-
ing error [8] defined as E(A, ̂A) := minM∈Π ‖A− ̂AM‖, where
the minimum is taken over the group Π of all invertible real
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n × n-matrices where only one entry in each column differs
from 0; ‖·‖ denotes a fixedmatrix norm. In our case the gen-
eralized crosstalking error is very low with E(A, ̂A) = 0.040.
This essentially means that the two matrices, after permuta-
tion, differ only by 0.04 with respect to the chosen matrix
norm, in our case the (squared) Frobenius norm. Then, the
sources are recovered using the source recovery algorithm
(Algorithm 2) with the approximated mixing matrix ̂A. The
normalized signal-to-noise ratios (SNRs) of the recovered
sources with respect to the original ones are high with 36,
38, 36, and 37 dB, respectively.

As a modification of the previous example, we now con-
sider also additive noise. We use sources S (which have unit
covariance) and mixing matrix A from above, but add 1%
random white noise to the mixtures X = AS + 0.01N where
N is a normal random vector. This corresponds to a still high
mean SNR of 38 dB. When considering the normalized scat-
ter plot, again the 6 planes are visible, but the additive noise
deteriorates the clear separation of each plane. We apply the
generalized Hough transform to the mixture data; however,
because of the noise we choose a more coarse discretiza-
tion (β = 180 bins). Curves in Hough space corresponding
to a single plane do not intersect any more in precisely one
point due to the noise; a low-resolution Hough space how-
ever fuses these intersections in one point, so that our sim-
ple maxima detection still achieves good results. We recover
the mixing matrix similar to the above to get a low gener-
alized crosstalking error of E(A, ̂A) = 0.12. The sources are
recovered well with mean SNRs of 20 dB, which is quite sat-
isfactory considering the noisy, overcomplete mixture situa-
tion.

The following example demonstrates the good perfor-
mance in higher source dimensions. Consider 6-dimensional
2-sparse sources that aremixed again bymatrixAwith coeffi-
cients drawn uniformly from [−1, 1]. Application of the gen-
eralized Hough transform to the mixtures retrieves the plane
norm vectors. The recovered mixing matrix has a low gener-
alized crosstalking error of E(A, ̂A) = 0.047. However, if the
noise level increases, the performance considerably drops be-
cause many maxima, in this case 15, have to be located in the
accumulator. After recovering the sources with this approx-
imated matrix ̂A, we get SNRs of only 11, 8, 6, 10, 12, and
11 dB. The rather high source recovery error is most proba-
bly due to the sensitivity of the source recovery to slight per-
turbations in the approximated mixing matrix.

5.2. Outliers

We will now perform experiments systematically analyzing
the robustness of the proposed algorithmwith respect to out-
liers in the sense of model-violating samples.

In the first explicit example we consider the sources from
Figure 4(a), but 80% of the samples have been replaced by
outliers (drawn from a 4-dimensional normal distribution).
Due to the high percentage of outliers, the mixtures, mixed
by the same random 3 × 4 matrix A as before, do not obvi-
ously exhibit any clear hyperplane structure. As discussed in

Section 4.4, the Hough SCA algorithm is very robust against
outliers. Indeed, in addition to a noisy background within
the Hough accumulator, the intersectionmaxima are still no-
ticeable, and local maxima detection finds the correct hy-
perplanes (cf. Figure 4(d)), although 80% of the data is cor-
rupted. The recovered mixing matrix has an excellent gener-
alized crosstalking error of E(A, ̂A) = 0.040. Of course the
sparse source recovery from above cannot recover the out-
lying samples. Applying the corresponding algorithms, we
get SNRs of the corrupted sources with the recovered ones
of around 4 dB; source recovery with the pseudo-inverse of
̂A corresponding to maximum-likelihood recovery with a
Gaussian prior gives somewhat better SNRs of around 6 dB.
But the sparse recovery method has the advantage that it can
detect outliers by measuring distance from the hyperplanes.
So outlier rejection is possible. Note that we get similar re-
sults when the outliers are not added in the source space but
only in the mixture space, that is, only after the mixing pro-
cess.

We now perform a numerical comparison of the num-
ber of outliers versus the algorithm performance for vary-
ing noise level; see Figure 5. The rationale behind this is that
already small noise levels in addition to the outliers might
be enough to destroy maxima in the accumulator thus de-
teriorating the SCA performance. The same (uncorrupted)
sources and mixing matrix from above are used. Numeri-
cally, we get breakdown points of 0.8 for the no-noise case,
and values of 0.5, 0.3, and 0.1 with increasing noise levels of
0.1% (58 dB), 0.5% (44 dB), and 1% (38 dB). Better perfor-
mances at higher noise levels could be achieved by applying
antialiasing techniques beforemaxima detection as described
in Section 4.5.

5.3. Grid resolution

In this section we will demonstrate numerical examples
to confirm the linear dependence of the algorithm perfor-
mance with the inverse grid resolution β−1. We consider 4-
dimensional sources S with 1000 samples, in which for each
sample two source components were drawn out of a distribu-
tion uniform in [−1, 1], and the other two were set to zero,
so S is 2-sparse. For each grid resolution β we perform 50
runs, and in each run a new set of sources is generated as
above. These are then mixed using a 3 × 4 mixing matrix A
with random coefficients uniformly out of [−1, 1]. Applica-
tion of the Hough SCA algorithm gives an estimated matrix
̂A. In Figure 6 we plot themean generalized crosstalking error
E(A, ̂A) for each grid resolution. With increasing β the accu-
racy increases—a logarithmic plot indeed confirms the linear
dependence on β−1 as stated in Section 4.3. Furthermore we
see that for example for β = 360, among all S and A as above
we get a mean crosstalking error of 0.23± 0.5.

5.4. Batch runs and comparisonwith
hyperplane k-means

In the last example, we consider the case of m = n = 4,
and do compare the proposed algorithm (now with a
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Figure 5: Performance of Hough SCA with increasing number of outliers. Plotted is the percentage of outliers in the source data versus the
matrix recovery performance (measured by the generalized crosstalking error). For each 1%-step one calculation was performed; in (b) the
plots have been smoothed by taking average over ten 1%-steps. In the no-noise case 360 bins were used, 180 bins in all other cases.
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Figure 6: Dependence of Hough SCA performance (a) on the grid resolution β; mean has been taken over 50 runs. With a logarithmic y-axis
(b), a least squares line fit confirms the linear dependence of performance and β−1.

three-dimensional accumulator) with k-hyperplane clus-
tering algorithm (Algorithm 3). For this, random sources
with T = 105 samples are uniformly drawn from [−1, 1]
uniform distribution, and a single coordinate is randomly
set to zero, thus generating 1-sparse sources S. In 100 batch
runs, a random 4 × 4 mixing matrix A with coefficients
uniformly drawn from [−1, 1], but columns normalized to
1 are constructed. The resulting mixtures X := AS are then
separated both by the proposed Hough k-SCA algorithm
as well as the Bradley-Mangasarian k-hyperplane clustering
algorithm (with 100 iterations, and without restart).

The resulting median crosstalking error E(A, ̂A) of the
Hough algorithm is 3.3 ± 2.3, and hence considerably lower
than the k-hyperplane clustering result of 5.5 ± 1.9. This
confirms the well-known fact that k-means and its extension
exhibit local convergence only and are therefore susceptible
to local minima, as seems to be the case in our example. A
possible solution would be to use many restarts, but global
convergence cannot be guaranteed. For practical applica-
tions, we therefore suggest using a rather rough (low grid
resolution β) global search by Hough SCA followed by a finer
local search using k-hyperplane clustering; see Section 4.5.
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Figure 7: Application to speech signals: (a) shows the original speech sources (“peace and love,” “hello, how are you,” and “to be or not to
be”), and (b) the Hough accumulator when trained to mixtures of (a) with 20% outliers. A nonlinear gray scale γnew := (1− γ/max)10 was
chosen for better visualization. (c) and (d) present the recovered sources, without and with outlier removal. They coincide with (a) up to
permutation (reversed order) and scaling.

5.5. Application to the separation of speech signals

In order to illustrate that the SCA assumptions are also valid
for real data sets, we shortly present an application to audio
source separation, namely, to the instantaneous, robust BSS
of speech signals—a problem of importance in the field of
audio signal processing. In the next section, we then refer to
other works applying the model to biomedical data sets.

We consider three speech signals S of length 2.2s, sampled
at 22000Hz; see Figure 7(a). They are spoken by the same
person, but may still be assumed to be independent. The sig-
nals are mixed by a randomly chosen mixing matrix A (coef-
ficients uniform from [−1, 1]) to yield mixtures X = AS, but
20% outliers are introduced by replacing 20% of the samples
of X by i.i.d. Gaussian samples. Without the outliers, more
classical BSS algorithms such as ICA would have been able to
perfectly separate themixtures; however, in this noisy setting,
ICA performs very poorly: application of the popular fastICA
algorithm [29] yields only a poor estimate ̂A f of the mixing

matrix A, with high crosstalking error of E(A, ̂A f ) = 3.73.
Instead, we apply the complete-case Hough-SCA algo-

rithm to this model with β = 360 bins—the sparseness
assumption now means that we are searching for sources,

which have samples with at least one zero (quiet) source
component. The Hough accumulator exhibits very nicely
three strong maxima; see Figure 7(b). And indeed, the
crosstalking error of the corresponding estimated mixing
matrix ̂Awith the original one is very low at E(A, ̂A) = 0.020.
This experimentally confirms that speech signals obey an
(m−1)-sparse signal model, at least ifm = n. An explanation
for this fact is that in typical speech data sets, considerable
pauses are common, so with high probability we may find
samples in which at least one source vanishes, and all such
permutations occur—which is necessary for identifying the
mixing matrix according to Theorem 1. We are dealing with
a complete-case problem, so inverting ̂A directly yields re-
covered sources ̂S. But of course due to the outliers, the SNR
of ̂S with the original sources is low with only −1.35 dB. We
therefore apply a simple outlier removal scheme by scanning
each estimated source using a window of size w = 10 sam-
ples. An adjacent sample to the window is identified as outlier
if its absolute value is larger than 20% of the maximal sig-
nal amplitude, but the window sample variance is lower than
half of the variance when including the sample. The outliers
are then replaced by the window average. This rough outlier-
detection algorithmworks satisfactorily well, see Figure 7(d);
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the perceptual audio quality increased considerably, see also
the differences between Figures 7(c) and 7(d), although the
nominal SNR increase is only roughly 4.1 dB. Altogether, this
example illustrates the applicability of the Hough SCA algo-
rithm and its corresponding SCA model to audio data sets
also in noisy settings, where ICA algorithms perform very
poorly.

5.6. Other applications

We are currently studying several biomedical applications of
the proposed model and algorithm, including the separation
of functional magnetic resonance imaging data sets as well as
surface electromyograms. For results on the former data set,
we refer to the detailed book chapters [22, 23].

The results of the k-SCA algorithm applied to the lat-
ter signals are shortly summarized in the following. An elec-
tromyogram (EMG) denotes the electric signal generated by
a contracting muscle; its study is relevant to the diagnosis of
motoneuron diseases as well as neurophysiological research.
In general, EMGmeasurements make use of invasive, painful
needle electrodes. An alternative is to use surface EMGs,
which are measured using noninvasive, painless surface elec-
trodes. However, in this case the signals are rather more dif-
ficult to interpret due to noise and overlap of several source
signals. When applying the k-SCA model to real recordings,
Hough-based separation outperforms classical approaches
based on filtering and ICA in terms of a greater reduction
of the zero-crossings, a common measure to analyze the un-
known extracted sources. The relative sEMG enhancement
was 24.6± 21.4%, where the mean was taken over a group of
9 subjects. For a detailed analysis, comparing various sparse
factorization models both on toy and on real data, we refer
to [30].

6. CONCLUSION

We have presented an algorithm for performing a global
search for overcomplete SCA representations, and experi-
ments confirm that Hough SCA is robust against noise and
outliers with breakdown points up to 0.8. The algorithm em-
ploys hyperplane detection using a generalized Hough trans-
form. Currently, we are working on applying the SCA algo-
rithm to high-dimensional biomedical data sets to see how
the different assumption of high sparsity contributes to the
signal separation.
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