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First-stage feature computation and data rate reduction play a crucial role in an efficient visual information processing system.
Hardware-based first stages usually win out where power consumption, dynamic range, and speed are the issue, but have severe
limitations with regard to flexibility. In this paper, the local orientation coding (LOC), a nearest neighborhood grayscale operator,
is investigated and enhanced for hardware implementation. The features produced by this operator are easy and fast to compute,
compress the salient information contained in an image, and lend themselves naturally to various medium-to-high-level postpro-
cessing methods such as texture segmentation, image decomposition, and feature tracking. An image sensor architecture based
on the LOC has been elaborated, that combines high dynamic range (HDR) image aquisition, feature computation, and inherent
pixel-level ADC in the pixel cells. The mixed-signal design allows for simple readout as digital memory.
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1. INTRODUCTION

In today’s integrated vision systems, their speed, accuracy,
power consumption, and complexity depend primarily on
the first stage of visual information processing. The task
for the first stage is to extract relevant features from an
image such as textures, lines, and their angles, edges, cor-
ners, intersections, and so forth. These features have to be
extracted robustly with respect to illumination, scale, rel-
ative contrast, and so forth. Several integrated pixel sen-
sors operating in the digital domain have been proposed,
for example, Tongprasit et al. [1] report a digital pixel sen-
sor which carries out convolution and rank-order filter-
ing up to a mask size of 5 X 5 in a serial-parallel man-
ner. However, in [2], implementations of a low-level im-
age processing operator realized either as a mixed-signal
CMOS computation, dedicated digital processing on-chip,
or as a standard CMOS sensor coupled to FPGA process-
ing are compared. A case is made that a fast, low-power
consumption implementation is best achieved by a par-
allel, mixed-signal implementation. However, the down-
side of coding the feature extraction in hardware are se-
vere limitations as to flexibility of the features with regard

to changing applications [3], whereas software-based fea-
ture extractions could simply be partially reprogrammed
to suit various applications [4]. Several architectures of
mixed-signal CMOS preprocessing sensors have been im-
plemented recently [3, 5, 6] that achieve a compromise
in the form of a sensor which extracts a very general yet
high-quality set of features, with the higher-level process-
ing done in software or on a second IC [2, 5]. One op-
erator which is very apt to this kind of implementation is
the local orientation coding (LOC), which encodes the near-
est neighbor grayscale texture and orientation information
[7].

This paper is organized as follows: first, we will restate
the basic tenets of the LOC, its origin, and the modifica-
tions realized to aid in hardware implementation and re-
sultant feature quality. Second, we will give some of the re-
sults obtained with the operator for image decomposition
and quality inspection. Third, we will document the hard-
ware implementation using a high dynamic range (HDR)
sensor and continuous analog circuits. As a last point, an
outlook on future work is presented, especially the cur-
rent efforts to design a neural, pulse-based version of this
Sensor.
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F1GURE 1: Binary scaled N, and Ng neighborhood coefficients k(i, j).

2. LOCOPERATOR

The LOC operator was introduced by Goerick and Brauck-
mann [7] as a simple method to code localized textures and
orientation in a 3 X 3 pixel neighborhood based on grayscale
comparisons. It is very modest with regard to its computa-
tional demands, as no multiplication is required.

2.1. Basic tenets modifications

The outcome of the LOC operator constitutes a unique
topology-specific feature number b'(m,n) for every pixel
b(m, n), with (m, n) denoting image coordinates:

b'(m,n) = emnli, ). (1)

i,j

This feature number b’ (m, n) is composed of a sum of the
coefficients &, (7, j), specific for the pixels neighboring pixel
(m, n). The computation of ¢,,,(i, j) and the neighborhood
(i - j),in which this computation is carried out, is defined in

(2):

.. k(i,j), b(m+i,n+j) < b(m,n)— (i, j),
emn(h j) = {0 else

(i, ) € {(0,-1),(-1,0),(1,0),(0,1)}  for Ny,

(i,j) € {(-=1,-1),(=1,1),(1,-1),(1,1) U Ny}  for Ng.
(2)

The pixel gray value b(m,n) of the middle pixel in a
3 X 3 neighborhood minus a directional threshold t(i, j) is
compared to each gray value of the four (eight) neighbors
b(m+i,n+j).If the result of the comparison in (2) is positive,
that is, the neighboring pixel deviates significantly from the
middle pixel, &y, (7, j) constitutes the direction-dependent
coefficient k(i, j), otherwise zero is returned. Binary scaling
of the coefficients k(i, j) is of course the logical choice to
make the feature number b’ (m, n) uniquely separable into its
components, so for Ny and Ns neighborhoods, the codings
in Figure 1 were chosen in [7].

To give an example, for an image coordinate system ori-
gin in the upper left corner, an Ns neighborhood and (i, j) =
(—1,0), k(i, j) would be 8.

The threshold t(i, j) is derived from the first significant
minimum in a directional histogram of the complete im-
age. The reasoning behind this is to suppress susceptibility
to noise and code significant image features. If a neighbor-
ing pixel was compared directly to b(m, n), noise in the 3 x 3
neighborhood could cause b(m +i, 1+ j) to be slightly below
the gray value of the middle pixel even though they might
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FI1GURE 2: Possible N, neighborhood features.

belong to the same feature in the image, thus giving a false
response. We will not treat this directional threshold in more
detail, since it will be exchanged for a more localized, omni-
directional threshold in (3) through (5). For details on the
directional threshold, please see [7].

For an N4 neighborhood, all possible operator outcomes
and their respective feature numbers are given in Figure 2. As
can be seen, a variety of local grayscale texture information
is captured by the operator, ranging from single significant
points (feature 15), continuous lines (6,9), terminated lines
(7,11,13,14), corners (3,5,10,12), T-sections (1,2,4,8) to
complete intersections (0).

As can be seen from (1) and (2), only simple mathemati-
cal operations like addition, subtraction, and comparison are
needed to compute the operator, making it an ideal choice
for a low-power, optimized parallel-analog VLSI implemen-
tation. Even the feature number in a single pixel cell can be
computed in parallel, by using four or eight comparators at
the same time. The outcome of these analog computations,
namely, the final comparison, could then be stored digitally,
making for early image information extraction and conden-
sation, as well as easy readout and feature manipulation, that
is, histogram computation.

However, the LOC operator in its present form still poses
some severe obstructions to a hardware implementation, es-
pecially that the image-wide directional grayscale histogram
used for finding the directional threshold (i, j) in [7] does
not lend itself easily to a fully integrated, parallel implemen-
tation, since such a histogram could only be computed with
global connectivity. One of the objectives for the modifica-
tion of the LOC operator had to be then to replace this global
threshold with some kind of locally computed one. The ba-
sic idea employed in designing this modified threshold is to
extract weak differences (textures), if the local pixel envi-
ronment has limited change in grayscale value, that is, con-
trast, but to only look for strong textures if the local contrast
is high. Also, directional dependency has been discarded in
favor of a unidirectional significance measure, using the LOC
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FIGURE 3: Sample image from car overtake monitoring system with (clockwise, from top left) original image and results for feature numbers

14, 10, and 5, respectively.

not so much for orientation extraction but rather texture
and localized structure coding. This is expressed by chang-
ing from threshold (i, j), which is the same for every pixel
b(n, m), but differs according to direction (i, j) of the neigh-
boring pixel, to t(m, n), which is not direction dependent,
but is different for every pixel b(m, n) to reflect a local sig-
nificance measure. Since the term feature generally denotes
a large-scale object in an image, the terms structure and tex-
ture are used interchangeably in the following to denote the
kind of localized pixel interdependency extracted by the LOC
operator.

Several different thresholds were implemented in a soft-
ware version of the operator, for example, the local stan-
dard deviation, or the absolute difference between average
local grayscale and the pixel under consideration. Best results
were obtained for t(m,n) equal to the absolute difference
(5) between the pixel grayscale value b(m, n) and a Gaussian
smoothing g(m, n) of the picture (3), with the normalization
for the Gaussian convolution mask provided by the sum of
its coefficients (4). Please note that a significance assessment
based on this measure is not marginal (i.e., only judges based
on the same 8 pixels evaluated by the LOC), since the Gaus-
sian smoothing has a catchment area up to the whole image,
depending on its ¢. The radius r used for the convolution
mask has been kept to 2 X ¢ for the simulations.

g(m, n) = Z [b(m + i,n+j) X %6_(i2+j2)/20'2:|, (3)
ij
r r ) )
Z=3 > et (4)
i=—r j=—r

=— ] —
t(m,n) = C x |b(m,n) — g(m,n)|. (5)

The scaling factor C has been introduced in (5) to facil-
itate adapting the LOC structures to different applications,
as experiments indicate that the type of LOC structure ex-
tracted from an image has to be adjusted to the application,
that is, its noise levels, brightness variation in a localized

context, or how much variation across pixel gray values is al-
lowable for a texture. The second parameter used for adjust-
ing LOC structures to the application at hand is the extension
of the smoothing ¢. For example, to extract LOC structure
from a natural image, 0 would be set to a narrow smoothing,
because lighting conditions vary widely across the image, and
C could then be used at a low setting of, for example, 0.5 to
extract textures with very similar gray value, to, for example,
find an edge with only gradually changing reflective proper-
ties along its length. On the other hand, a C of, for example, 3
would allow for discontinuities in reflective properties, with
the penalty of extracting pseudotextures/structures not justi-
fied by underlying image objects, where dissimilar pixels are
counted as belonging to a single LOC structure because of the
wider (and in this case erroneous) catchment range. Adapt-
ing the LOC operator to an application via C and ¢ captures
the spirit of a general yet parametrizable hardware prepro-
cessing sensor mentioned in the introduction.

2.2. Results for software implementation

A C++ implementation of the operator and its modifications
has been carried out based on a software tool for image analy-
sis and classification [8]. The software implementation offers
two output formats, either feature numbers as single-frame
images (used for higher-level image processing) or feature
histograms, which can be directly employed for classification
purposes. A sample for the former output format is given in
Figure 3.

Notice how differently oriented lines show up selectively
on the resulting images. Also, the features are selective to the
direction of the contrast, with features 10 and 5 showing only
the upper, respectively, lower edge of the midline of the street.
Since the LOC operator itself does not use global dependen-
cies in our modified version, the output is somewhat noisy.
However, this can be cleaned up efficiently based on a near-
est neighborhood majority decision. The basic assumption is
that feature responses based on noise will tend to be isolated,
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FIGURE 4: Sample image from car overtake monitoring system,
comparison of original feature number 10 image (a) and denoising
via neighborhood majority decision (b).
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FIGURE 5: Sample histogram of original image Figure 2, 16 coded
feature numbers plus flags for low- and high-local contrast (16,
resp., 17).

while those comprising real image structure will be clustered.
The best performance was found for a “simple majority,” that
is, at least 4 of the surrounding 8 pixels exhibit the same fea-
ture. An example for this denoising is given in Figure 4 (fea-
ture number 10 with smaller ¢, leading to more noise in the
bright sky area, but improved reproduction of the border sky
greenery).

This denoising, while not part of the hardware imple-
mentation discussed in Section 2.3, could be incorporated
very easily on the sensor, since it also depends only on lo-
cal image information. The histogram output mode for the
above image is shown in Figure 5.

Two additional features were introduced for the LOC
modification discussed herein, low- and high-local contrast,
both based on thresholding the significance criterion #(m, n)
(normalized by local grayvalue) to achieve a measure of pic-
ture contrast, shown in Figure 5 as feature numbers 16 and
17, respectively. This was done basically to have a “measure
of quality” for the LOC features produced by a certain pixel,
which could be used by subsequent processing stages. The
reason is that a high-local variability indicates significant fea-
tures, while low-local variability would indicate that the fea-
tures are mostly computed from random variations in pixel
current (i.e., noise).

The feature histogram of the street image reveals a lot of
uniform image areas (regular feature number 0 and extended
feature number 16), comprising for instance the sky, the uni-
form areas of the street, and some of the greenery on both
sides. Vertical features have also been found (features 2,4,
and 6), but with a notable difference in left-right contrast
(features 2 and 4), since vertical structures occur primarily
on the left side of the picture caused by the recording vehi-
cle, with a contrast oriented in only one direction. As well,
the various diagonal structures in the image can be found
in the histogram count of features 3,5,10, and 12. Termi-
nated line features like 7 and 13 also show a noticeable differ-
ence to their counterparts 14, respectively, 11, elaborating on
the images’ tendency for left-right and up-down bright-dark
contrasts. Figures 3-5 show that this feature computation
method extracts relevant image information.

Using the feature histogram output mode, a reduced
nearest neighbor (RNN) classifier [5, 8] has been trained
to recognize eye shapes. Figure 6 shows the trainings and
test class spaces, left half, respectively, right half, reduced to
two dimensions using Sammon’s mapping [8]. Axis captions
are omitted because they are a nonlinear, adaptive function
of the input-feature vector, and would carry little meaning
with respect to the original features. The insets in the up-
per corners show samples for the darker class space (eye ex-
istent, EE), respectively, the lighter class space (eye not ex-
istent, ENE). The RNN classifier was trained for separat-
ing the two classes EE and ENE with 14 examples of eye
regions as indicated in the inset in the upper left corner,
and 27 examples of class ENE, captured from random loca-
tions of the full-head images that the eye regions were ex-
tracted from, similar to the image underlying Figure 7. Af-
ter learning, the RNN classifier has been tested with a sam-
ple set including 43 examples for the ENE class and 15 ex-
amples for the EE class. The recall and precision rates are
equal to 100%, that is, there are zero instances for EE clas-
sified as ENE and vice versa, although the EE class space
is not as coherent in the test case (right half picture, dark
area).

This example uses a feature histogram vector composed
of the 16 vertical/horizontal features shown in Figure 1. An
automated feature selection has been employed to single out
the features having the most impact on correct classifica-
tion [5, 8], thus improving classification quality and speed,
since classifiers trained on very high-dimensional data tend
to “learn” the training sample set, while not being able to
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FIGURE 6: Trainings and test class spaces for eye sample data using
LOC features.

FIGURE 7: Image from visual telephone image sequence “Claire”
with detected eye regions marked in black or white.

generalize well. This is also evinced by the fact that if the fea-
tures produced by the complete Ng neighborhood are pre-
sented to the classifier, its classification quality decreases to
87.3%, evidently not able to cope with generalization in the
context of the resultant increase in search space dimension-
ality. A more complete description of the experiment and
comparison with results achieved, for example, for Gabor jet
feature, can be found in [5]. The slight difference in classifi-
cation results for LOC in [5] compared to the one reported
herein is caused by the nondeterministic approach of the fea-
ture selector mentioned above.

As a real-world test of this classifier, a complete human
passport image (Figure 7) has been scanned by the classifier
using a scanning window of approximately eye size.

Center pixels which have elicited a positive eye response
in their corresponding scanning window are marked in black
or white, dependent on the local contrast so as to be best vis-
ible. Figure 7 shows that the eye regions have been detected
robustly, with especially the left eye (right half of the im-
age) having a large number of positive identifications. Faulty
classifications are reported for the lower lip and part of the
collar. This classification could be reached with a two IC
hardware-based version of the classifier and LOC operator,
with possibly a low-performance microprocessor to do a

final model-based geometric analysis and select the correct
eye locations. Thus, the goal of computing high-quality fea-
tures and reducing data rate for subsequent high-level pro-
cessing stages could easily be achieved in this image anal-
ysis/segmentation application. The operator has also been
tested in a similar classification testbench with sample im-
ages of a production line for circuit breakers. The aim was
quality inspection, that is, discerning and discarding faulty
breakers. Testing of the LOC operator in this application also
brought comparably high-classification results, proving the
efficacy of the computed features for a task of quite differ-
ent scope, as well as indicating the broad range of tasks the
modified operator could be used on.

Even though the discussed image operator is not a very
recent development [7], when compared to state-of-the-art
image operators for texture and local orientation analysis
[3, 6], it can be reasoned that LOC gives qualitatively simi-
lar results. As mentioned in the introduction, the aim of this
research is not to develop a hardware sensor dedicated (and
limited!) to one single application, but one that produces a
selection of salient features comprising local image structures
in such a way that subsequent software-based processing
stages have a greatly reduced work load while still being able
to extract high-level image information such as the examples
mentioned above. Macroscopic textures/features such as the
ones analyzed in [4] are characterized by a distinct local mix-
ture of microscopic, that is, LOC texture features. Local his-
tograms of the LOC features would thus be sufficient to sep-
arate macroscopic textures. Macroscopic image orientation
could also be computed from the LOC features, with 8 main
directions (in the case of an Ny neighborhood LOC) instantly
available from the increased local occurrence of single, elon-
gated features such as feature 6 of Figure 2 (compare lines in
Figure 3). Intermediate image orientations are characterized
by a mix of the LOC features closest in orientation to the one
exhibited by the image, which also makes them discernible in
localized histograms. Even if subsequent stages need to oper-
ate on the raw image data, they could still use the hardware
LOC sensor as a region-of-interest (ROI) selector, choosing
to do high-level image analysis only on the regions denoted
by LOC features, which indicate relevant image information
(Figures 3 and 4).

Please note that the two applications shown in Figures 3,
4, and 7 are of course only basic examples for usage of the
LOC sensor. Especially the eye finder is limitedly scale in-
variant and not at all rotation invariant, and the histogram
output is prone to produce the same histogram for differ-
ent image contents, as is evident from the erroneous classi-
fications around the collar and lip. However, we believe that
the two examples show the efficacy of the modified opera-
tor through their very simplicity coupled with the good re-
sults of the classification in Figures 6 and 7. Both spatial fea-
ture relationships and rotational invariance could, for exam-
ple, be achieved by using the raw LOC features of Figures 3
and 4 as input for a classifier such as [4]. Spatial information
could be used by training a cascaded RNN on parts of eye
shapes, thus improving classification results by eliminating
structures with identical overall histograms.
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2.3. Hardware implementation

A hardware implementation of the adjusted LOC operator
has been carried out in a 1P3M 0.6 yum CMOS process, using
the maximum current range available from the photo diode
to achieve a true high dynamic range (HDR) design [3, 6].
The feature computation process is carried out entirely with
a current-based representation of the grayscale value, start-
ing with the photo current itself, in order to keep the original
dynamic range of the photo sensor. Thus, LOC features de-
pending only on current differences can be computed with-
out adjusting the sensor to surrounding illumination levels.

Circuits to achieve these computations were adapted
from [9-11], with the normalization for local-contrast char-
acterization carried out in a standard translinear circuit [10].
However, because of accuracy and dynamic range require-
ments, the variable current scaling (5) has been implemented
in a somewhat modified translinear circuit, using fixed cur-
rent multiplication in current mirrors and subsequent vari-
able current splitting in a differential amplifier [12].

In Figure 8, the circuit for computing an absolute value
current is shown, as adapted from [9]. A biasing current
for P1 and P4 is derived from the (reduced) current output
flowing through N2, with N1 having about one tenth of the
W/L of N2. P1 and P4 in turn bias their counterparts P2 and
P5. If a current is drawn from I;, to ground/VSSA, pMOS
transistors P2 and P3 act as current mirror, and the voltage
node at input [, is drawn to ground because of the increased
Vs of P2 compared to P1 (with its smaller biasing current
relative to Iiy), thus turning off P5. Current [, is then simply
forwarded through P2 and P3 to N2, where it can be used as
a gate voltage Vequiou: for nMOS transistors matched to N2 to
distribute ;. In the second case, that is, a current is flowing
into Ijy from the supply rail VDDA, the Vs of P5 will in-
crease, thus increasing the potential at node Ii, and turning
of P2, because the gate voltage of P5 is defined (i.e., fixed) by
P4. In this case, P5 acts as a current conveyor or pass tran-
sistor, forwarding I;, to N2. Hence, irrespective of the direc-
tion of the current into I;, (source/sink), it will always flow
through N2 in the same direction.

The complete pixel cells consist of the following (com-
pare to Figures 9 and 10, which depict the layout and block
diagram, resp.):

(i) the photo diode (1),
(ii) time-continuous diffusion network (2) for the ad-
justable averaging of local light levels (3),

(iii) absolute current value circuit (3) to compute the ab-
solute difference between local average and photo cur-
rent of the cell (5),

(iv) the current amplifier (4) for scaling the absolute dif-
ference to achieve different feature sensitivity [12] (5),

(v) the current mirrors (5) to compute the reference com-
posed of the difference between photo current and
scaled absolute difference ((1), modified with t(m, n)
of (5)),

(vi) the current comparators (8) to compare the reference
to the neighbor photo currents (1),

VDDA
P1 P2 P3
Lin
P4 P5
Vequlout
N1 I @ I N2
VSSA

FiGure 8: Circuit for computing the absolute value of a current.
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FIGURE 9: Layout of the pixel cell implementation.

(vii) atranslinear circuit to normalize the reference with the
photo current and compare the normalized result to an
external threshold to achieve a measure for the vari-
ability in local photo currents (6),

(viii) the SRAMs to store the comparison results (9 Bit) (7),
(ix) digital readout circuitry (9),
(x) equation (2) is performed implicitly by reading each
single comparison bit off-chip, rather than computing
a feature sum in the pixel cell itself.

The block diagram shows the computational flow and de-
pendencies of the image information processing units listed
above. Also, the IO connectivity of the pixel cell is given, tak-
ing input from its own photo diode, from the photo diodes
of the neighbors, and from the diffusion network. Global ex-
ternal adjustments are also fed to the cell, governing analog
aspects such as the adjustment of the properties of the com-
puted features to the postprocessing carried out on them, and
parts of the computation process of the two extended features
(high- and low-local contrast), such as normalization. Also,
digital control signals are fed to the cell, selecting the relevant
neighborhood and number of digital features computed, as
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F1GURrk 10: Block diagram of the pixel cell implementation.

well as defining the readout sequence for the tristate digital
feature bus.

Figure 11 illustrates the temporal performance of a pixel
cell. The photo current for the middle pixel is 20 pA and the
output of the current comparators after a stimulus change at
the sensor input for three selected neighbors at t = 20 ms is
shown. The reference value as illustrated in Figure 10 (step
(5)) is 8.3 pA, as computed from the middle pixel photo cur-
rent, the output of the resistive network of 11.6 pA, and a
scaling C equal to 1. The stimuli change from uniform 0 pA
to (from top to bottom) 50, 10, 5 pA.

The computation times (6.8, 14.4, resp., 24.2ms) are
comparable to the ones reported in [6]. However, because of
the time-continuous nature of the analog computation in the

pixel cell, the LOC features can be read from the pixel cells at
any given time, there is no hardware reset or integration time
needed [6], changes to lower-light levels simply take more
time to propagate to the LOC feature output. Hence, there
is no “frame rate” per second. The frame rate reported in
Table 1 has been chosen to represent standard room lighting,
with the lowest light level generating about 50 pA photo cur-
rent. The entire analog feature extraction has been simulated
over 4 decades of photo current, that is, 1 pA to 10nA (13
Bit), equivalent to an operability of the sensor and feature
extraction ASIC over a range from bright daylight to dark
twilight.

Monte-Carlo simulations of the pixel cell have been
carried out to verify the accuracy of the analog computa-
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TasLe 1: (Simulated) characteristics of the LOC pixel cell/sensor ar-
ray.
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tions, establishing a 25 dB accuracy at low photo currents of
10pA, and 28dB at 10nA with a confidence of 90%. Two
counteracting effects have been observed which act to keep
accuracy almost constant over the whole dynamic range. On
the one hand, translinear circuits work best at low-current
levels, where all transistors are operating firmly in subthresh-
old [10], on the other hand, current mirrors, which are em-
ployed in various stages of the analog computation, are sub-
ject to statistical variations at low currents, improving pro-
gressively with higher current levels [9].

While the software implementation is primarily intended
as a stand-alone tool in the framework of the system dis-
cussed in [8], it has also been used to verify the LOC
pixel cell. The software LOC can be operated in an HDR
mode with 16 Bit resolution, which has been used to show
validity of the modified LOC concept, especially the new
significance threshold introduced in (5), in an HDR con-
text. Correspondingly, the radius r of the convolution mask
in (3) and (4) has been extended to cover the whole im-
age, to account for the larger dynamic range of the input
image being able to influence more distant pixels. Second,
a more realistic response of the resistive diffusion network,
that is, “decaying exponential” [11] instead of Gaussian,
has been used with the software LOC, with little change in
LOC structure extraction. For example, the EE/ENE classi-
fication discussed in Section 2.2 still gives 100% classifica-
tion result with “decaying exponential” smoothing. Third,
the accuracy numbers obtained from the Monte-Carlo sim-
ulation have been used in the form of an artificially in-
troduced 5% (= 26dB) error (uniform distribution) on
the right-hand side of (1), that is, b(n,m) — t(n, m). While
this represents a rather crude approximation of the Monte-
Carlo outcomes, it also reflects an upper bound, since the
real error is more centered around a mean. Incorporating
this error in the EE/ENE classification results in one er-
roneous classification of an eye sample (EE class) as ENE
class.

The pixel cell has been realized with a size of (83 x
80) yum?. The corresponding ASIC with additional analog
and digital interface and control circuitry has been manu-
factured, but measurement results are not yet available. It is
operating in a simple scan mode, with all LOC feature latches
connected to the same bus via tristate gates. The digital
power consumption given in Table 1 reflects the power con-
sumed by the latches when charging bus and bondpad capac-
ity, as well as the power consumed by the pixel address coun-
ters and decoders, and address lines, at the indicated frame
rate. Simulated performance characteristics for the pixel cell
are given in Table 1.

The fill factor of the pixel cell is comparable to the one
reported in [6], which carries out processing of similar com-
plexity. Dynamic range and absolute accuracy are less, but
have proven to be adequate to the application. Massari et
al. [3] report a higher fill factor and smaller pixel cell size,
but this is due at least partially to the smaller technology
used, and the computation is somewhat simpler, relying only
on the absolute value of pixel photo current differences. Ad-
justing for array size, (simulated) power consumption is still
lower by at least an order of magnitude, due to the subthresh-
old working regime in our sensor. Power consumption com-
pares even more favorably to [6]. As has been shown in [2],
an analog/mixed signal implementation at this stage of tech-
nological advancement is a very competitive alternative to a
purely digital feature extraction process. However, since ana-
log circuits do not scale well with advancing technologies,
power consumption and size will not shrink as rapidly as in
a digital version, so a more digitally-centric LOC realization
would be desirable.
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2.4. Future developments

Current research work deviates from the continuous time
analog implementation described herein. While the opera-
tor is quite successful and comparably easy to implement in
hardware in the modified fashion, still simpler variants of it
could be explored. An especially promising avenue of explo-
ration is the field of pulse-based image processing. Given a
pulsing pixel cell as an input, whose pulse rate is equivalent
to the grayscale value of the pixel, it has been found that
a simple rank order coding theorized from biological evi-
dence of pulse computation is capable of producing very sim-
ilar features to the ones discussed herein [13]. This rank or-
der coding can be achieved using digital variants of synapses
and neurons. Error-prone analog normalization, scaling, ad-
dition, and subtraction can all be eliminated from the pixel
cell, resulting in a predominantly digital and more robust im-
plementation, as well as reducing the design time. Also, the
output signal can be easily represented in a pulse form and
fed to, for example, a pulse-based clustering algorithm, or be
used for various digital processing stages, since pulse com-
putations of this nature are very similar to digital informa-
tion representations. In contrast to the conventional digital
image filtering discussed in [1], this processing would still be
fully parallel and can be incorporated into the pixel cell in the
same manner as the analog computation discussed herein.

3. CONCLUSION

We have presented a scheme for fast, computationally inex-
pensive, massively parallel and flexible hardware-based fea-
ture extraction. Quality of the feature extraction has been
documented using a sample eye finder application as well as
sample images from an early feasibility study of a car overtake
monitoring system. In both cases, highly significant points
of the ROI have been extracted and their efficacy in distin-
guishing target shapes, that is, eyes, is shown. The original
image operator has been adjusted with respect to connec-
tivity, parameters, and computational requirements for the
ease of the analog/mixed-signal hardware implementation.
An HDR CMOS sensor design has been carried out to take
full advantage of the analog dynamic ranges and computa-
tional domains possible on a modern CMOS process while
still achieving a digitally coded, data rate reduced feature out-
put. This feature output can be used on-chip, that is, with a
digital histogram computation over a selected ROI, to extract
a feature vector for that ROI which can be fed directly into a
classifier network or be used for further computations off-
chip.
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