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language independent. Once the speech signals are divided into frames with selected lengths, then each frame sequence Xi(n) is
reconstructed by means of the mathematical form Xi(n) = CiEK (n)SR(n). In this representation, Ci is called the gain factor, SR(n)
and EK (n) are properly assigned from the predefined signature and envelope sets, respectively. Examples are given to exhibit the
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1. INTRODUCTION

Transmission and storage of speech signals are widespread in
modern communications systems. The field of speech rep-
resentation or compression is dedicated to finding new and
more efficient ways to reduce transmission bandwidth or
storage area while maintaining high quality of hearing [1].

In the past, a number of new algorithms based on the
use of numerical, mathematical, statistical, and heuristic
methodologies were proposed in order to represent, code,
or compress the speech signals. For example, in the con-
struction of speech signals, linear predictive coding (LPC)
techniques such as LPC-10E (FS1015) utilize low bit rates at
2.4 kbps with acceptable hearing quality. Pulse code modula-
tion (PCM) techniques such as G.726 (ADPCM) yield much
better hearing quality over LPC-10E but demand higher bit
rates of 32 or 16 kbps [1–3].

In our previous work [4–7], efficient methods to model
speech signals with low bit rates and acceptable hearing qual-
ity were introduced. In these methods, one would first exam-
ine the signals in terms of their physical features, and then
find some specific waveforms to best describe the signals,
called signature functions. Signature functions of speech sig-

nals are obtained by using energy compaction property of the
principal component analysis (PCA) [8–14]. PCA also pro-
vides optimal solution via minimization of the error in the
least mean square (LMS) sense. The new method presented
in this paper significantly improves the results of [4–7] by
introducing the concept of “signal envelope” in the represen-
tation of speech signals. Thus, the newmathematical form of
the frame signal Xi is proposed as Xi ≈ CiEKSR where Ci is a
real constant called the gain factor, SR and EK are properly ex-
tracted from the so-called predefined signature set S = {SR}
and predefined envelope set E = {EK} or in short PSS and
PES, respectively. It is exhibited that PSS and PES which are
generated as the result of this work are independent of the
speaker and the language spoken. It is also worth mentioning
that if the proposedmodeling technique is employed in com-
munication, it results in substantial reductions in transmis-
sion bandwidth. If it is used for digital recording, it provides
great savings in the storage area. In the following sections
theoretical aspects of the proposed modeling technique are
presented and the implementation details are discussed. Im-
plementation results are summarized. Possible applications
and directions for future research are included in the conclu-
sion. It is noted that the initial results of the newmethodwere
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introduced in [15–17]. In this paper however, results of [15–
17] are considerably enhanced by creating almost complete
PSS and PES for different languages utilizing the Phonetics
Handbook prepared by the International Phonetics Associa-
tion (IPA) [18].

2. THE PROPOSEDMETHOD

It would be appropriate to extract the statistical features of
the speech signals over a reasonable length of time. For the
sake of practicality, we present the new technique on the dis-
crete time domain since all the recordings are made with dig-
ital equipment. Let X(n) be the discrete time domain repre-
sentation of a recorded speech piece with N samples.

Let this piece be analyzed frame by frame. In this rep-
resentation, Xi(n) denotes a selected frame as shown in
Figure 1. Then, the following main statement and the re-
lated definitions are proposed which constitute the basis of
the new modeling technique.

2.1. Main statement

Referring to Figure 1, for any time frame i, the sampled
speech signal which is given by the vector Xi of length LF can
be approximated as

Xi
∼= CiEKSR, (1)

where

(i) Ci is a real constant and it is called the gain factor,
(ii) K , R, NE, and NS are integers such that K ∈

{1, 2, . . . ,NE}, R ∈ {1, 2, . . . ,NS},
(iii) the signature vector STR = [sR1 sR2 . . . sRLF ] is gener-

ated utilizing the statistical behavior of the speech sig-
nals and the term CiSRcontains almost full energy of Xi

in the LMS sense,
(iv) EK is (LF by LF) diagonal matrix such that

EK =

⎡
⎢⎢⎢⎢⎢⎢⎣

eK1 0 0 . . . 0
0 eK2 0 . . . 0
0 0 eK3 . . . 0
...

...
...

. . .
...

0 0 0 . . . eKLF

⎤
⎥⎥⎥⎥⎥⎥⎦

(2)

and acts as an envelope term on the quantity CiSR
which also reflects the statistical properties of the
speech signal under consideration,

(v) the integer LF designates the total number of samples
in the ith frame.

Now, let us verify the main statement.

2.2. Verification of themain statement

The sampled speech signal sequence x(n) can be written as

x(n) =
N∑

i=1
xiδi(n− i). (3)

In (3), δi(n) represents the unit sample; xi designates the
measured value of the sequence x(n) at the ith sample. x(n)
can also be expressed in vector form as

XT =
[
x(1) x(2) . . . x(N)

]
=
[
x1 x2 . . . xN

]
. (4)

In this representation, X is called the main frame vector
(MFV) and it may be divided into frames with equal lengths,
having, for example, 16, 24, 32, 64, or 128 samples and so
forth. In this case, MFV which is also designated by MF is
obtained by means of the frame vectors {X1,X2, . . . ,XNF}

MF =

⎡
⎢⎢⎢⎢⎣

X1

X2
...

XNF

⎤
⎥⎥⎥⎥⎦
, MT

F =
[
XT
1 XT

2 . . . XT
NF

]
, (5)

where

Xi =

⎡
⎢⎢⎢⎢⎣

x(i−1)LF+1
x(i−1)LF+2

...
xiLF

⎤
⎥⎥⎥⎥⎦
, i = 1, 2, . . . ,NF. (6)

NF = N/LF denotes the total number of frames in X . Obvi-
ously, integers N and LF must be selected in such a way that
NF also becomes an integer.

As it is given by [7], each frame sequence or vector Xi

can be spanned in a vector space formed by the orthonormal
vectors1 {φik} such that

Xi =
LF∑

k=1
ckφik, k = 1, 2, . . . ,LF , (7)

where the frame coefficients ck are obtained as

ck = φT
ikXi, k = 1, 2, . . . ,LF (8)

and {φik} are generated as the eigenvectors of the frame cor-
relation matrix Ri

Ri = E
[
XiX

T
i

]

=

⎡
⎢⎢⎢⎢⎢⎢⎣

ri(1) ri(2) ri(3) . . . ri
(
LF
)

ri(2) ri(1) ri(2) . . . ri
(
LF − 1

)

ri(3) ri(2) ri(1) . . . ri(LF − 2)
...

...
...

. . .
...

ri
(
LF
)

ri
(
LF − 1

)
ri
(
LF − 2

)
. . . ri(1)

⎤
⎥⎥⎥⎥⎥⎥⎦

(9)

constructed with the entries;

ri(d + 1) = 1
LF

[i·LF−d]∑

j=[(i−1)·LF+1]
xjxj+d, d = 0, 1, 2, . . . ,LF − 1.

(10)

1 It is noted that orthonormal vector φik satisfies φ
T
ikφik = 1.
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Figure 1: Segmentation of speech signals frame by frame.

In (9) E [·] designates the expected value of a random vari-
able. Obviously, Ri is real, symmetric, positive semidefinite,
and Toeplitz which in turn yields real, distinct, and nonneg-
ative eigenvalues λik satisfying the relation Riφik = λikφik.
Let the eigenvalues be sorted in descending order such that
(λi1 ≥ λi2 ≥ λi3 ≥ · · · ≥ λiLF ) with corresponding eigenvec-
tors {φik}. Then, the total energy of the frame i is given by
XT
i Xi:

XT
i Xi =

LF∑

k=1
x2ik =

LF∑

k=1
c2ik. (11a)

In the mean time, the expected value of this energy is ex-
pressed as

E

[ LF∑

k=1

[
c2ik
]] =

LF∑

k=1
φT
ikE
[(
XiX

T
i

)]
φik =

LF∑

k=1
φT
ikRiφik =

LF∑

k=1
λik.

(11b)

In (11), contributions of the higher order terms become
negligible, perhaps after p terms. In this case, (7) may be
truncated. The simplest form of (7) is obtained by setting
p = 1.

As an example, let us consider a randomly selected 16 se-
quential voice frames formed with LF = 16 samples. In this
case, one would end up with 16 distinct positive-real eigen-
values in descending order for each frame. If one plots all
the eigenvalues on a frame basis then, Figure 2 follows. This
figure shows that the eigenvalues become drastically smaller
after the first one. Moreover, if one varies the frame length
LF as a parameter to further reduce the effect of the second-
and higher-order terms then, almost full energy of the signal
frame is captured within the first term of (7). Hence,

Xi
∼= c1φi1. (12)

That is why φi1 is called the signature vector since it contains
most of the useful information of the original speech frame
under consideration. Once (12) is obtained, it can be con-
verted to an equality by means of an envelope term Ei which
is a diagonal matrix for each frame. Thus, Xi is computed as

Xi = CiEiφi1. (13)
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Figure 2: Plot of the 16 distinct eigenvalues in a descending order
for 16 adjacent speech frames.

In (13), diagonal entries eir of the matrix Ei are determined
in terms of the entries of φT

i1 = [φi11 · · · φi1r · · · φi1LF ]
and XT

i = [xi1 · · · xir · · · xiLF ] by simple division.

eir = xir
Ciφi1r

,
(
r = 1, 2, . . . ,LF

)
. (14)

In essence, the quantities eir of (14) somewhat absorb the
remaining energy of the terms eliminated by truncation pro-
cess of (7). This approach constitutes the basis of the new
speech modeling technique as follows.

In this research, several tens of thousands of speech pieces
were investigated frame by frame and several thousands of
“signature and envelope sequences” were generated. It was
observed that patterns obtained by plotting the envelope
ei(n) (eir versus frame index-n = 1, 2, . . .,LF) and signature
sequences φi1(n) (φi1r versus frame index-n = 1, 2, . . .,LF) ex-
hibit similarities. Some of these patterns are shown in Fig-
ures 3 and 4, respectively. It is deduced that these similar
patterns are obtained due to the quasistationery behavior of
the speech signals. In this case, one can eliminate the sim-
ilar patterns and thus, constitute the so-called “predefined
signature sequence” and “predefined envelope sequence” sets
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Figure 3: Some selected eigenvectors which exhibit similar patterns (LF = 16).

constructed with one of a kind, or unique patterns. All the
above groundwork leads one to propose “a novel systematic
procedure tomodel speech signals bymeans of PSS and PES.”
In short, the new numerical procedure is called “SYMPES”
and it is outlined in the following section.

2.3. A novel systematic procedure tomodel
speech signals via predefined envelope and
signature sets: SYMPES

SYMPES is a systematic procedure to model speech signals in
four major steps described as follows.

Step 1. Selection of speech pieces to create signature and en-
velope sequences.

(i) For a selected frame length LF , investigate variety of
speech pieces frame by frame which describe the ma-
jor characteristics of speakers and languages to deter-

mine signature and envelope sequences. This step may
result in hundreds of thousand of signature and enve-
lope sequences for different languages. However, these
sequences exhibit too many similar patterns subject to
elimination.

Step 2. Elimination of similar patterns.

(i) Eliminate the similar patterns of signature and en-
velope sequences to end up with unique shapes. Then,
form the PSS and PES utilizing the unique patterns.

Step 3. Reconstruction of speech frame by frame.

(i) Once PSS and PES are formed, one is ready to syn-
thesize a given speech piece X(n) of length N frame by
frame. In this case, divide X(n) into frames of length
LF in a sequential manner to form the MFV of (5).
Then, for each frame Xi, find the best approximation
XAi = CiEKSR by computing the real coefficient Ci,
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Figure 4: Some selected envelope vectors which exhibit similar patterns (LF = 16).

pulling EK from PES and SR from PSS to minimize the
frame error defined by εi(n) = Xi(n) − CiEKSR, in the
LMS sense.

(ii) Eventually, sequences XAi are collected under the
approximated main frame vector

MAF =

⎡
⎢⎢⎢⎢⎣

XA1

XA2
...

XANF

⎤
⎥⎥⎥⎥⎦

to reconstruct the speech as

XA(n) =
{
XA1,XA2, . . . ,XANF ; NF = N/NLF

} ≈ X(n).

(15)

Step 4. Elimination of the background noise due to the re-
construction process by using a moving average post-filter.

(i) At the end of the third step, the reconstructed sig-
nal may contain unexpected spikes in merging process

of the speech frames in sequential order. These spikes
may cause unexpected background noise which may
be classified as the musical noise. It was experienced
that the musical noise can significantly be reduced by
means of a moving average post-filter. In this regard,
one may utilize a simple moving average finite impulse
response filter. Nevertheless, an optimum filter can be
selected by trial and error depending on the environ-
mental noise, and the operational conditions.

In the following section, an elimination process of similar
patterns of signature and envelope sequences are described
[19]. At this point, it should be noted that the modeler
is free to employ any other elimination or vector reduc-
tion technique to enhance the quality of hearing. In this re-
gard, one may even wish to utilize the LBG vector quanti-
zation technique with different varieties to reduce the signa-
ture and the envelope sets as desired [20]. Essentials of the
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sample selection to generate PSS and PES are introduced in
Section 4. Computational details to construct PSS and PES
are presented by Algorithm 1. The numerical aspects of the
speech reconstruction process are given by Algorithm 2.

2.4. Elimination of similar patterns

One of the useful tools to measure the similarities between
two sequences is known as the Pearson correlation coefficient
(PCC). PCC is designated by ρYZ and given as [19]

ρYZ

=
∑L

i=1
(
yizi
)−
[∑L

i=1 yi
∑L

i=1 zi
]/

L
√[∑L

i=1 y
2
i −
(∑L

i=1 yi
)2/

L
][∑L

i=1 z
2
i −
(∑L

i=1 zi
)2/

L
] .

(16)

In the above formula Y = [y1 y2 . . . yL] and Z =
[z1 z2 . . . zL] are two sequences subject to comparison.
Clearly, (16) indicates that ρYZ is always between −1 and +1.
ρYZ = 1 indicates that two vectors are identical. ρYZ = 0 cor-
responds to completely uncorrelated vectors. On the other
hand, ρYZ = −1 refers to perfectly opposite pair of vectors
(i.e., Y = −Z). For the sake of practicality, it is assumed
that the two sequences are almost identical if 0.9 ≤ ρYZ ≤ 1.
Hence, similar patterns of signature and envelope sequences
are eliminated accordingly. Thus, the signature vectors which
have unique patterns are combined under the set called pre-
defined signature set PSS = {Sns(n); ns = 1, 2, . . . ,NS}. The
integerNS designates the total number of elements in this set.
Similarly, reduced envelope sequences are combined under
the set called predefined envelope set PES = {Ene(n); ne =
1, 2, . . . ,NE}. The integer NE designates the total number of
unique envelope sequences in PES. At this point, it should be
noted that members of PSS are not orthogonal. They are just
the unique patterns of the first eigenvectors of various speech
frames obtained from thousands of different experiments. In
Figures 5 and 6, some selected one of a kind signature and en-
velope sequences are plotted point by point against their en-
try indices resulting in the signature and envelope patterns,
respectively.

All of the above explanations endorse the phrasing of the
main statement that any speech frame Xi can be modeled in
terms of the gain factor Ci, predefined signature SR, and en-
velope EK terms as Xi ≈ CiEKSR. In the following section,
algorithms are summarized to generate PSS and PES.

3. GENERATION OF PSS AND PES AND THE
RECONSTRUCTION PROCESS OF SPEECH

The heart of the newly proposed method to model speech
signals is based on the generation of the PSS and PES. There-
fore, in this section first an algorithm is outlined to construct
PSS and PES (Algorithm 1) then, synthesis or reconstruction
process of speech signals is detailed (Algorithm 2).

3.1. Algorithm 1: generation of the predefined
signature and envelope sets

Inputs

(i) Main frame sequence of the speech piece {X(n),n =
1, 2, . . . ,N}.
Herewith, sample speech pieces given by the IPA
Handbook were utilized [18]. This handbook in-
cludes phonetics properties (vowels, consonants,
tones, stress, conventions, etc.) of many different lan-
guages used by both genders.

(ii) LF : total number of samples in each frame under con-
sideration.
In this work, different values of LF (such as LF =
8, 16, 32, 64, 128) were selected to investigate the effect
of the frame length to the quality of the reconstructed
speech by means of the absolute category rating-mean
opinion score (ACR-MOS) and the segmental signal-
to-noise ratio (SNRseg). Details of this effort are given
in the subsequent section.

Computational steps

Step 1. Compute the total number of frames NF = N/LF .

Step 2. Divide the speech piece X into frames Xi. In this case,
the original speech is represented by the main frame vector
MT

F = �XT
1 XT

2 · · · XT
NF
� of (5).

Step 3. For each frameXi, compute the correlationmatrix Ri.

Step 4. For each Ri, compute the eigenvalues λik in descend-
ing order with the corresponding eigenvectors.

Step 5a. Store the eigenvector which is associated with the
maximum eigenvalue λir = max{λi1, λi2, λi3, . . . , λiLF} and
simply refer to this signature vector with the frame index,
as Si1.
Step 5b. Compute the gain factor Ci1 in the LMS sense to ap-
proximate Xi ≈ Ci1Si1.

Step 6. Repeat Step 5 for all the frames (i = 1, 2, . . . ,NF).
At the end of this loop, eigenvectors, which have maximum
energy for each frame, will be collected.

Step 7. Compare all the collected eigenvectors obtained in
Step 6 with an efficient algorithm. In this regard, Pear-
son correlation formula may be employed as described in
Section 2.4. Then, eliminate the ones which exhibit similar
patterns. Thus, generate the predefined signature set PSS =
{Sns(n); ns = 1, 2, . . . ,NS} with reduced number of eigen-
vectors Si1. Here, NS designates the total number of one of
a kind signature patterns after the elimination. Remark: the
above steps can be repeated for many different speech pieces
to augment PSS.

Step 8. Compute the diagonal envelope matrix (Ei) for each
Ci1Si1 such that eir = xir /(Ci1si1r); r = 1, 2, . . . ,LF .
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Figure 5: Unique patterns of some selected signature sequences (LF = 16).

Step 9. Eliminate the envelope sequences which exhibit sim-
ilar patterns with an efficient algorithm as in Step 7, and
construct the predefined envelope set PES = {Ene(n); ne =
1, 2, . . . ,NE}; Here, NE denotes the total number of one of a
kind unique envelope patterns.

Once PSS and PES are generated, then any speech sig-
nal can be reconstructed frame by frame (XAi = CiEKSR) as
implied by the main statement. It can be clearly seen that in
this approach, the frame i is reconstructed with three ma-
jor quantities, namely, the gain factor Ci, the index R of the
predefined signature vector SR pulled from PSS, and the in-
dex K of the predefined envelope sequence EK pulled from
PES. SR and EK are determined to minimize the LMS error
which is described by means of the difference between the
original frame piece Xi and its model XAi = CiEKSR. Details
of the reconstruction process are given in the following algo-
rithm.

3.2. Algorithm 2: reconstruction of speech signals

Inputs

(i) Speech signal {X(n),n = 1, 2, . . . ,N} to be modeled.
(ii) LF : number of samples in each frame.
(iii) NS and NE; total number of the elements in PSS and

in PES, respectively. These integers are determined by
Step 7 and Step 9 of Algorithm 1, respectively.

(iv) The predefined signature set PSS = {SR;R = 1, 2, . . .,
NS} created utilizing Algorithm 1.

(v) The predefined envelope set PES = {EK ;K = 1, 2, . . . ,
NE} created utilizing Algorithm 1.

Computational steps

Step 1. Divide X into frames Xi of length LF as in Algorithm
1. In this case, the original speech is represented by the main
frame vectorMT

F = �XT
1 XT

2 · · · XT
NF
� of (5).
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Figure 6: Unique patterns of some selected envelope sequences (LF = 16).

Step 2a. For each frame i pull an appropriate signature vector
SR from PSS such that the distance or the total error δR̃ =
‖Xi − CR̃SR̃‖2 is minimum for all R̃ = 1, 2, . . . ,R, . . . ,NS.
This step yields the index R of the SR. In this case, δR =
min{‖Xi − CR̃SR̃‖2} = ‖Xi − CRSR‖2.

Step 2b. Store the index number R that refers to SR, in this
case, Xi ≈ CRSR.

Step 3a. Pull an appropriate envelope sequence (or diagonal
envelope matrix) EK from PES such that the error is fur-
ther minimized for all K̃ = 1, 2, . . . ,K , . . . ,NE. Thus, δK =
min{‖Xi − CREK̃SR‖2} = ‖Xi − CREKSR‖2. This step yields
the index K of the EK .

Step 3b. Store the index number K that refers to EK . It should
be noted that at the end of this step, the best signature vector

SR and the best envelope sequence EK are found by appropri-
ate selections. Hence, the frame Xi is best described in terms
of the patterns of EK and SR. That is, Xi ≈ CREKSR.

Step 4. Having fixed EK and SR, one can replace CR by com-
puting a new gain factor Ci = (EKSR)TXi/(EKSR)T(EKSR) to
further minimize the distance between the vectors Xi and
CREKSR in the LMS sense. In this case, the global mini-
mum of the error is obtained and it is given by δGlobal =
‖Xi − CiEKSR‖2. At this step, the frame sequence is approxi-
mated by XAi = CiEKSR.

Step 5. Repeat the above steps for each frame to reconstruct
speech asMT

AF = �XT
A1 XT

A2 . . . XT
ANF
� ≈MT

F .

In the following section, the newmethod of speech mod-
eling is implemented for the frame lengths LF = 16 and 128
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to exhibit the usage of Algorithms 1 and 2 and the resulting
speech quality are compared with the results of commercially
available speech coding techniques G.726, LPC-10E, and also
with our previous work [7].

4. INITIAL RESULTS ON THE IMPLEMENTATION
OF THE NEWMETHODOF SPEECH
REPRESENTATION

In this section, the speech reconstruction quality of the new
method is compared with those of G.726 at 16 kbps and LPC-
10E at 2.4 kbps providing (1 to 4) and (1 to 26.67) compres-
sion ratio, respectively. In this regard, the compression ratio
(CR) is defined as CR = borg/brec; where borg designates the
total number of bits in representing the original signal and
brec is the total number of bits which refers to the compressed
version of the original. Finally, SYMPES is compared with the
speech modeling technique presented in [7].

4.1. Comparisonwith G.726 (ADPCM) at 16 kbps

In order to make a fair comparison between G.726 at 16 kbps
and the newly proposed technique, the input parameters of
Algorithm 1 are arranged in such a way that Algorithm 2 of
the reconstruction process yields CR = 4. In this case, one
only needs tomeasure the speech quality of the reconstructed
signals as described below. In this regard, the speech pieces,
which were given by the IPA Handbook and sampled with
8KHz sampling rate were utilized to generate PSS and PES
with LF = 16 samples. In the generation process, all the avail-
able characteristic sentences (total of 253) from five different
languages (English, French, German, Japanese, and Turkish)
were employed. These sentences include consonants, conven-
tions, introduction, pitch-accent, stress and accent, vowels
(nasalized and oral), and vowel-length. Details are given in
Table 1.

In this case, employing Algorithm 1, PSS was constructed
with NS = 2048 unique signature patterns. Similarly, PES
was generated with NE = 57422 unique envelopes. As de-
scribed in Section 2.4 and step 7 of Algorithm 1, Pearson’s
similarity measure of (16) with 0.9 ≤ ρYZ ≤ 1 was used
in the elimination process. As a result of the above compu-
tations, NS and NE are represented with 11 and 16 bits, re-
spectively. It was experienced that 5 bits were good enough
to code the Ci. In conclusion, one ends up with a total num-
ber of NBF = 5 + 11 + 16 = 32 bits to reconstruct the
speech signals for each frame employing the newly proposed
method. On the other hand, the original signal, coded with
standard PCM (8 bits, 8 KHz sampling rate) is represented by
NB(PCM) = 8 × 16 = 128 bits. Hence, both G.726 at 16 kbps
and the new method provide CR = 4 as desired. Under the
given conditions, it is meaningful to compare the average
ACR-MOS and the SNRseg, obtained for both G.726 and
the new method. In the following section, ACR-MOS and
SNRseg test results are presented.

It should be remarked that ideally one would expect to
construct the universal predefined signature and envelope
sets which are capable of producing all the existing sounds
of languages. In this case, one may question the speech

reproduction capability of PSS and PES derived using 253
different sound phrases mentioned above. Actually, we tried
to enhance PSS and PES employing the other languages avail-
able in IPA. However, under the same elimination process
implemented in Algorithm 1, we were not able to further in-
crease the number of signature and the envelope patterns.
Therefore, 253 sound phrases are good enough for the speech
reproduction process of SYMPES. As a matter of fact, as it
is shown by the following examples, the hearing quality of
the new method (MOS ≈ 4.1) is much better than G.726
MOS ≤ 3.5). Hence, we confidently state that PSS and PES
obtained for LF = 16 provide good quality of speech repro-
duction.

4.1.1. MOS and SNR assessment results:
newmethod SYMPES versus G.726

In this section, mean opinion score and segmental signal-
to-noise ratio results of SYMPES are presented and they are
compared with those of G.726.

Mean opinion score tests: once PSS and PES are gener-
ated, the subjective test process contains three stages; collec-
tion of original speech samples, speech modeling or recon-
struction, and the hearing quality evaluation of the recon-
structed speech.

The original speech samples were collected from OGI,
TIMIT, and IPA corpus databases [18, 21–23]. In this regard,
we had the freedom to work with five languages namely; En-
glish, French, German, Japanese, and Turkish. Furthermore,
for each language, we picked 24 different sentences or phrases
which were uttered by 12male and 12 female speakers. At this
point, it is important to mention that PSS and PES should be
universal (speaker and language independent) for any sound
to be synthesized. Therefore, for the sake of fairness, we were
careful not to use the same speech samples which were uti-
lized in the construction PSS and PES. In the second stage
of the tests, one has to model the selected speech samples us-
ing Algorithm 2. In the last stage, reconstructed speech pieces
for both the new method and G.726 are evaluated by means
of the subjective (ACR-MOS) and the objective (SNRseg)
speech quality assessment techniques [24, 25].

Specifically, for subjective evaluation, we implemented
the absolute category rating—mean opinion score (ACR-
MOS) test procedure. In this process, firstly, the recon-
structed speech pieces and then the originals are listened by
several untrained listeners. Then, these listeners are asked to
rate the overall quality of the reconstructed speech using five
categories (5.0: excellent, 4.0: good, 3.0: fair, 2.0: poor, 1.0:
bad). Eventually, one takes the average of the opinion scores
of the listeners for the speech sample under consideration.
An advantage of the ACR-MOS test is that subjects are free
to assign their own perceptual impression to the speech qual-
ity. However, these freedom posses numerous disadvantages
since the individual subject’s goodness scales vary greatly.
This variation can be a biased judgment. This bias could be
avoided by using a large number of subjects. Therefore, as
recommended by [26–29], we employed 40 (20 male and 20
female) subjects to come up with reliable ACR-MOS values.
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Table 1: Language-based speech property distribution of the complete sample set provided by IPA utilized to form PSS and PES for LF = 16.

Languages

English French German Japanese Turkish

Speaker gender Female Female Male Male Male

Consonants 25 21 25 20 22

Conventions 17 — 18 21 4

Introduction — — 4 — —

Pitch-accent — — — 6 —

Stress-and-accent — — 1 — 3

Vowels
Nasalized

15
3

19 5 8
Oral 12

Vowel-length — — — 4 —

Subtotal number of words 57 36 67 56 37

Total number of words 253

In order to assess the objective quality of the recon-
structed speech signals, the SNRseg is utilized. Here, in this
work, each segment is described over 10 frames of length
LF = 16 or equivalently each segment consists of KF = 160
samples. Then, SNRseg is given by

SNRseg = 1
TF

TF−1∑

j=0
10 log10

[ ∑mj

n=mj−KF+1

[
x(n)

]2
∑mj

n=mj−KF+1

[
x(n)− x̂(n)

]2
]
.

(17)

Let N be the total number of samples in the speech piece
to be reconstructed. Then, in (17) TF = N/KF ; j desig-
nates the frame index; n is the sample number in frame j;
m0 = KF ; mj = jKF . It should be noted that the indices
m0, m1, . . . ,mTF−1 refer to the “end points” of each segment
placed in the speech piece to be reconstructed.

The ACR-MOS test results and computed values of
SNRseg for the reconstructed speech pieces are summarized
in Table 2.

If we compute the average ACR-MOS and SNRseg values
over the languages, one can clearly see that the new method
provides much better speech quality over G.726. In this case,
we can say that the proposed method yields almost toll qual-
ity (MOS ≈ 4.1) whereas G.726 is considered to yield com-
munication quality (MOS ≈ 3.5). To provide visual compre-
hension, the original and the reconstructed waveforms of the
five speech waveforms corresponding to five different sen-
tences in five languages uttered by male speakers are depicted
in Figure 7. Similarly, in Figure 8, speech waveforms uttered
by female speakers are shown.

As it can be deduced from Figure 7, the visual difference
between the original and the reconstructed waveforms are
negligible, which verifies the superior results presented in
Table 2 for the newly proposed speech modeling technique.
This completes the comparison at the low compression rate
(CR = 4).

It should be mentioned that similar comparisons were
also made with G.726 at 24, 32, and 48 kbps. For these cases

proposedmethod yields slightly better results over G.726. For
example, the new method with LF = 8 corresponds to G.726
at 32 kbps. In this case, while G.726 results in SNRG.726−32 ≈
25dB, the new method gives SNR ≈ 26dB. Since the differ-
ence is negligible, details are omitted here.

Let us now comment on the noise robustness of SYMPES.

4.1.2. Comments on the noise robustness of SYMPES

SYMPES directly builds a mathematical model for the speech
signal regardless it is noisy or not. Therefore, one expects
to end up with a similar noise level in the reconstructed
speech as in the original. In fact, a subjective noise test
was run to observe the effect of the noisy environment
to the robustness of SYMPES. In this regard, a noise free
speech piece was mixed with 1.2 dB white noise; then it
was reconstructed using SYMPES of LF = 16. The test
was run among 5 male and 5 female untrained listen-
ers. They were asked to rate the noise level of the recon-
structed speech relative to the original, under three cate-
gories namely “no change in the noise level,” “reduced noise
level,” and “increased noise level”. Seven of the listeners
confirmed that the noise level of the reconstructed speech
was not changed. Two of the female subjects said that the
noise level was slightly reduced, and one of the male lis-
tener asserted that noise level was slightly increased. In this
case, we can safely state that “SYMPES is not susceptible
to the noise level of the environment.” Furthermore, any
noise level which is built on the original signal can be re-
duced by post-filtering the reconstructed signal. As a mat-
ter of fact it was experienced that both the background noise
due to reconstruction process and the environmental noise
were reduced significantly by using a moving average post-
filter.

At this point, it may be meaningful to make a further
comparison at high compression rates such as CR = 25 or
higher. For this purpose, voice excited LPC-10E which yields
CR = 26.67 may be considered as outlined in the following
section.
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Table 2: Subjective and objective speech quality scores for G726 and the new method.

Language
Speaker Number of

Bit rate [kbps]
ACR-MOS SNRseg [dB]

gender speech pieces (G.726) ADPCM SYMPES (G.726) ADPCM SYMPES

English
Male 12

16
3.417 4.124 7.4014 12.4033

Female 12 3.419 4.109 7.4289 12.1969

French
Male 12

16
3.413 4.111 7.3513 12.2083

Female 12 3.422 4.099 7.4396 12.0518

German
Male 12

16
3.386 4.051 6.9072 11.4075

Female 12 3.371 4.036 6.6886 11.2053

Japanese
Male 12

16
3.422 4.167 7.4599 12.9719

Female 12 3.668 4.272 11.1795 14.4533

Turkish
Male 12

16
3.453 4.040 7.9029 11.2603

Female 12 3.433 4.010 7.6134 10.8320

Average
3.440 4.102 8.000 12.000

scores

4.2. Comparisonwith voice excited LPC-10E (2.4 kbps)

Standard voice excited LPC-10E employs 20msec speech
frames coded with 48 bits which corresponds to 2.4 kbps.
On the other hand, using standard PCM, these time frames
contain 160 samples represented by 1280 bits. Thus, the
compression rate of LPC-10E is CRLPC = 1280/48. = 26.67.
In order to make a fair comparison, parameters of the new
method have to match to that of LPC-10E. First of all, PSS
and PES must be regenerated accordingly. In this regard, we
can say that one needs to deal with a multitudinous vari-
ety of many “signature and envelope” sets to enhance the
language & speaker independency for the long speech frame
lengths such as LF = 128. However, it should be recalled
that this was not the case for LF = 16. So, as described in
Section 4.1, we utilized the rich speech samples collection of
IPA [18] with 890 different characteristic sentences in 17 dif-
ferent languages (English, French, German, Japanese, Turk-
ish, Amharic, Arabic, Irish, Sindhi, Cantonese, Czech, Bul-
garian, Dutch, Hebrew, Catalan, Galician, and Croatian) (see
Table 3). Choosing LF = 128 and 0.9 ≤ ρYZ ≤ 1, Algorithm
1 returns with NS = 32768 signature and NE = 131072 en-
velope patterns of one kind. Clearly, it is sufficient to repre-
sent NS and NE with 15 and 17 bits, respectively. As was the
case before, the gain factor Ci is also represented with 5 bits.
In this case, each frame of 128 samples is represented by total
number ofNBF = 5+15+17 = 37 bits. Thus, the compression
ratio of the new method becomes CR = 128× 8/37 = 27.68
which is even higher than CRLPC = 26.67. In the follow-
ing section it is shown that the new method yields superior
speech quality over voice excited LPC-10E.

4.2.1. MOS test results: SYMPES versus voice
excited LPC-10E

As described in Section 4.1.1, after the formation of PSS and
PES with LF = 128 samples, we run the ACR-MOS test with
the same speech set given by Table 2. The test results are sum-
marized in Table 4.

A close examination of Table 4 reveals that SYMPES re-
sults in superior speech quality over voice excited LPC-10E
for all the languages under consideration.

Just for the sake of visual inspection an original and a re-
constructed speech signals are depicted in Figure 9 for com-
parison. A close examination of Figure 9 validates the su-
perior reconstruction ability of SYMPES over voice excited
LPC-10E.

4.2.2. Comparison of SYMPES with CS-ACELP

It is important to mention that one may conceptually link
SYMPESwith the other code excited linear predictive (CELP)
methods such as conjugate structure-algebraic CELP (CS-
ACELP) at 8 kbps (or G.729 at 8 kbps).

CS-ACELP utilizes two stage LBG vector quantization
with fixed2 and adaptive3 codebooks [30]. In this regard,
each speech frame of 10msec is described in terms of the
indices of the fixed and adaptive codes and the gain factor
and they are represented with a total of 80 bits which cor-
responds to a compression ratio of CRCS-ACELP = 8. This
process may resemble the procedure described by SYMPES.
Fixed and adaptive codes of CS-ACELP may be related to
the signature and the envelope sequences of SYMPES respec-
tively; but it should be kept in mind that SYMPES does not
include any adaptive quantity beyond the gain factor. Fur-
thermore, CS-ACELP is an LPC technique which takes the
error or the residual into account in an additive manner
whereas SMYPES literally produces a simple but a nonlin-
ear frame model by multiplying three major quantities so
that XAi = f (Ci,EK , SR) = CiEKSR. In this representation,
the envelope matrix EK works on the signature vector SR
as a multiplier to reduce the modeling error in a nonlin-
ear manner. Clearly, it is not possible to find a one-to-one
correspondence between the SYMPES and the CS-ACELP,

2 Voice excitations.
3 Line spectral pairs (LSP) envelope parameters.
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Figure 7: Original and reconstructed speech waveforms using the newmethod for English, French, German, Japanese, and Turkish sentences
uttered by male speakers.

since they differ in nature with respect to both model4 and
domain5. On the other hand, the gain factor Ci of SYM-
PES plays the same role as in CS-ACELP to further reduce

4 Linear model of CS-ACELP versus nonlinear model of SYMPES.
5 Transform domain of CS-ACELP versus discrete time domain of SYM-
PES.

the error between the original and the approximated speech
frames in the LMS sense. Similar MOS tests of Section 4.2.1
were also run to compare SYMPES at LF = 326 with CS-
ACELP at 8 kbps. It was found that SYMPES yields the

6 SYMPES LF = 32 with 8KHz sampling rate yields the compression ration
of CR = 8 as in CS-ACELP at 8 kbps.
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Figure 8: Original and reconstructed speech waveforms using the newmethod for English, French, German, Japanese, and Turkish sentences
uttered by female speakers.

average MOSSYMPES = 3.72 in contrast with CS-ACELP giv-
ing the averageMOSCS-ACELP = 3.70. Details are omitted here
since the hearing quality difference between the twomethods
is negligible.

Based on the experimental results of this research, we
conclude that SYMPES provides much better hearing qual-
ity than that of commercially available G.726 and CELP cod-
ing techniques at high compression rates (CR 
 8). At low
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Table 3: Language-based speech property distribution of the complete sample set provided by IPA utilized to form PSS and PES for LF = 128.

Language
Speaker

gender
Consonant Convention Vowels

Stress and

accent
Introduction

Pitch-

accent

Vowel-

length
Assimilation Geminatives

English Female 25 17 15 — — — — — —

French Female 21 —
Nasalized 3 — — — — — —

Oral 12

German Male 25 18 19 1 4 — — — —

Japanese Male 20 21 5 — — 6 4 — —

Turkish Male 22 4 8 3 — — — — —

Amharic Male 35 — 11 — — — — — —

Arabic Male 29 — 8 — — — — — —

Irish Female 44 — 14 — — — — — —

Sindhi Male 46 — 10 — — — — — —

Cantonese Male 19 —
Diphthongs 11

— — — — — 9
Monophthongs 32

Czech Female 25 — 13 5 — — 3 —

Bulgarian Female 22 — 8 2 — — — — —

Dutch Female 23 — 22 4 — — — — —

Hebrew Male 22 — 5 2 — — — — —

Catalan Male 23 21

Diphthongs 8

7 — — — — —Stressed 7

Unstressed 3

Galician Male 21 22 7 23 — — — — —

Croatian Female 25 10

1

20 3 — — — —Long 7

Short 5

Subtotal

number of

words

447 113 234 62 12 6 4 3 9

Total number

of words
890

Table 4: Subjective speech quality scores for LPC-10E and the new method.

Language Speaker gender Number of speech pieces
ACR-MOS

LPC-10E 2.4 kbps SYMPES 2.3125 kbps

English
Male 12 2.490 3.384

Female 12 2.395 3.455

French
Male 12 2.520 3.374

Female 12 2.409 3.435

German
Male 12 2.540 3.363

Female 12 2.410 3.411

Japanese
Male 12 2.460 3.359

Female 12 2.427 3.603

Turkish
Male 12 2.610 3.396

Female 12 2.452 3.418

Average scores 2.471 3.420
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Figure 9: Original and the reconstructed speech signals for visual
inspection and comparison of the new method of speech modeling
SYMPES with LPC-10E.

compression rates (CR ≤ 8) however, SYMPES yields either
slightly better or almost the same speech quality like the oth-
ers.

4.3. Comparison of SYMPESwith our
previous results given by [7]

First of all in [7], the results were given on the predefined sig-
nature set which was generated based on selected 500 words
from Turkish Language, which in turn makes the speech
model very restricted; whereas in this work, complete speech
pieces of OGI, TIMIT, and IPA Handbook were utilized to
generate predefined signature and envelope sets which are
supposed to yield rather universal results and make SYMPES
speaker and language independent.

Moreover, in [7], envelope sequences which improve the
hearing quality tremendously were not used at all. Hence,
here in this work, results of [7] were pretty much general-
ized and hearing quality of the reconstructed speech signals
is significantly enhanced. As a matter of fact, no matter what
the frame length and the compression ratio is, in the recon-
struction process, mean opinion scores presented in [7] were
below 2.8 out of 5, whereas in this work, in all the examples,
they are well above 3.4. Therefore, we can simply state that
SYMPES is the generalized and the improved version of the
speech model method presented in [7].

5. CONCLUSIONS

In this paper, a novel systematic procedure referred to as
“SYMPES” is presented to model speech signals frame by
frame by means of the so-called predefined “signature and
envelope” patterns. In this procedure, the reconstructed
speech frame XAi is described by multiplying three major
quantities, namely, the gain factor Ci, the frame signature
vector SR, and the diagonal envelope matrix EK or in short
as XAi = CiEKSR. Signature and envelope patterns are se-
lected from the corresponding PSS and PES that are formed
through the use of a variety of speech samples included in the
IPAHandbook. These sets are almost universal. That is to say,
they are speaker and language independent. In the synthesis
process, each speech frame is fully identified with the gain
factor Ci and the indices R and K of the predefined signature
and the envelope patterns, respectively.

The subjective and objective test assessments reveal that
the hearing quality of SYMPES is slightly better at low com-
pression rates (CR ≤ 8) than that of G.726 (16, 24, 32,
and 48 kbps) and CS-ACELP (8 kbps). At higher compres-
sion rates (CR 
 8), SYMPES results in superior hearing
quality over G.726 and LPC techniques. One should note
that this high rate of compression is purchased at the expense
of the computational efforts to determine the gain factors as
well as to identify the proper signature and envelope patterns
in the search process. In this regard, computational lag may
be disregarded by an appropriate buffering operation.

As far as digital communication systems are concerned,
SYMPES may be considered as a coding scheme. In this case,
once the PSS and PES are created and stored, one only needs
to transmit the Ci with the relevant indices R and K . For ex-
ample, if SYMPES with LF = 128 is used, then a substan-
tial saving in the transmission-bandwidth (CR = 27.68) with
good quality of speech is achieved.

It is interesting to note that the new method of speech
modeling presented in this paper may be employed for
speech recognition purposes as described in [31]. It may be
used to model biomedical signals such as electrocardiograms
and electromyograms as well. Initial results of these works are
given in [32, 33]. In future research, we hope to improve the
results of [31–33] and the computational efficiency of SYM-
PES.
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[31] Ü. Güz, H. Gürkan, and B. S. Yarman, “A new speech signal
modeling and word recognition method by using signature
and envelope feature spaces,” in Proceedings of the IEEE Euro-
pean Conference on Circuit Theory and Design, vol. 3, pp. 161–
164, Cracow, Poland, September 2003.

[32] B. S. Yarman, H. Gürkan, Ü. Güz, and B. Aygün, “A new mod-
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