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This paper discusses and presents a different perspective for classifying single and multiple disturbances in electric signals, such
as voltage and current ones. Basically, the principle of divide to conquer is applied to decompose the electric signals into what we
call primitive signals or components from which primitive patterns can be independently recognized. A technique based on such
concept is introduced to demonstrate the effectiveness of such idea. This technique decomposes the electric signals into three main
primitive components. In each primitive component, few high-order-statistics- (HOS-) based features are extracted. Then, Bayes’
theory-based techniques are applied to verify the ocurrence or not of single or multiple disturbances in the electric signals. The
performance analysis carried out on a large number of data indicates that the proposed technique outperforms the performance
attained by the technique introduced by He and Starzyk. Additionally, the numerical results verify that the proposed technique is
capable of offering interesting results when it is applied to classify several sets of disturbances if one cycle of the main frequency is
considered, at least.
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1. INTRODUCTION

Recently, a great deal of attention has been drawn to the effi-
cient and appropriate use of signal processing and computa-
tional intelligence techniques for the development of power-
ful tools to characterize, analyze, and evaluate the quality of
power systems as well as the behavior of their loads. From a
signal processing standpoint, the power quality (PQ) analysis
could be listed in the following foremost topics: (i) distur-
bance detection, (ii) disturbance classification, (iii) source of
disturbance identification, (iv) source of disturbance local-
ization, (v) signal compression, (vi) parameters estimation,
(vii) signal representation or decomposition, and (viii) sig-
nal and system behavior predictions.

The classification or recognition topic is an important is-
sue for the development of the next generation of PQ mon-
itoring equipment. Basically, it refers to the use of signal
processing-based technique to extract as few as possible and,
at the same time, representative features from the powerline
signals, which are supposed to be voltage and current ones,
followed by the use of a powerful and a simple technique to
classify the detected disturbances.

As far as the use of pattern recognition technique for PQ
applications has been concerned, the main reasons for de-
veloping techniques to classify disturbances are [1] (i) im-
provements in the tracking performance of abnormal be-
haviors of the monitored powerlines and electrical machines
and (ii) the feasible detection of disturbance sources respon-
sible for causing the disturbances in the monitored power-
lines or electrical machines. To succeed in this aim, several
techniques have been widely applied to analyze single dis-
turbances in electric signals [2-28] in the past two decades.
However, it is well recognized that during an abnormal be-
havior of a power system, the powerline signals are corrupted
not only by single disturbance, but also by multiple ones. As
a result, the majority of techniques developed so far to clas-
sify single disturbances have limited applicability in moni-
toring equipment since they will have to deal with multiple
disturbances, even though they have not been designed to do
so. Recently, in [2, 3] wavelet-based classification techniques
capable of classifying single and two kinds of multiple dis-
turbances have been proposed. The results reported in [2]
surpass those presented in [3] and reveal that there is a room
for the development of powerful, simple, and efficient tech-
niques to classify other sets of multiple disturbances.
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The purposes of this contribution are (i) the discussion
of a formulation that facilitates the classification of single
and multiple disturbances in voltage and current signals; we
argue that this formulation allows the development of pow-
erful and efficient pattern recognition techniques to classify
a large number of sets of disturbances; basically, the princi-
ple of divide to conquer, which inspired the detection tech-
nique introduced in [29], is applied to decompose the electric
signals into what we call primitive signals or primitive com-
ponents from which primitive patterns can be recognized
easily; and (ii) the discussion of a new disturbance classifi-
cation technique that makes use of the proposed formula-
tion to classify single and multiple disturbances in electric
signals. This technique decomposes the electric signals into
three main primitive components. In each primitive compo-
nent, few high-order-statistics- (HOS-)based features are ex-
tracted. Then, effortless Bayesian classifier, which makes use
of normal density function and draws on the HOS-based fea-
tures, can be designed to come to light single as well as mul-
tiple disturbances. The rationale behind is that each prim-
itive component is associated to a reduced and disjoint set
of disturbances. Numerical results indicate that the proposed
technique not only outperforms previous techniques, such as
[2, 3], but also provides very interesting results in case of the
frame length corresponds to at least one-cycle of the main
frequency. This contribution was initially reported in [1] and
partially presented in [30, 31].

The paper is organized as follows. Section 2 formu-
lates the problem of single and multiple disturbances clas-
sification. Section 3 discusses the proposed technique, de-
rived from the formulation presented in Section 2. Section 4
presents computational results indicating the improved clas-
sification performance offered by the proposed technique.
Finally, concluding remarks are stated in Section 5.

2. PROBLEM FORMULATION:
SINGLE AND MULTIPLE DISTURBANCES

The discrete version of monitored powerline signals can be
divided into nonoverlapped frames of N samples. The dis-
crete sequence in a frame can be expressed as an additive
contribution of several types of phenomena:

x(n) =x()|i=n1, := f(n)+h(n)+i(n)+t(n)+v(n), (1)

wheren = 0,...,N — 1, T; = 1/ f; is the sampling period, the
sequences { f(n)}, {h(n)}, {i(n)}, {t(n)}, and {v(n)} denote
the power supply signal (or fundamental component), har-
monics, interharmonics, transient, and background noise,
respectively. Each of these signals is defined as follows:

f(n) := Ag(n) cos [Zﬂ@n + 90(11)], (2)
M

h(n) := > hu(n), (3)
m=1
J

i(n) == > i;(n), (4)

=1
t(n) := timp(n) + tnot (1) + teas (1) + Ldae (1), (5)

and v(n) is independently and identically distributed (i.i.d.)
noise as normal A (0,02) and independent of {f(n)},
{h(n)}, {i(n)}, and {t(n)}.

In (2), Ao(n), fo(n), and Oy(n) refer to the magnitude,
fundamental frequency, and phase of the power supply sig-
nal, respectively. In (3) and (4), h,,(n) and i;(n) are the mth
harmonic and the jth inter-harmonic, respectively, which are
defined as

fo(n)
fs

Jrj(n)

fs

In (6), Am(n) is the magnitude and 6,,(n) is the phase of
the mth harmonic. In (7), A j(n), f1,j(n), and 0 j(n) are the
magnitude, frequency, and phase of the jth interharmonic,
respectively. In (5), timp(7), thot(n), and tes(n) represent im-
pulsive transients named spikes, notches, decaying oscilla-
tions. t4ae(n) refers to oscillatory transient named damped
exponentials. These transients are expressed by

hy(n) := A,.(n) cos [an n+ Gm(n)], (6)

ij(n) := Ap;j(n) cos [27‘[ n+01,j(n)]. (7)

Nimp

timp(n) = Z timp,i(”)r (8)
i=1
Niot

tnot(”) = Z tnot,i(”): (9)

i=1
Nec
tdec(n) = Z Adec,i(n) cos [wdec,i(n)n + Gdec,i(n)]
i-1 (10)
X exp [ - “dec,i(” - ndec,i)];
Ndam

tdam(n) 1= Z Adam,i(n) exp [ - “dam,i(” - ndam,i)]> (11)
i-1

respectively, where fimp,i(n) and timp,i(1) are the nth samples
of the ith transient named impulsive transient or notch. Note
that (10) refers to the capacitor switchings as well as signals
resulted from faulted waveforms. Equation (11) defines the
decaying exponential as well as direct current (DC) compo-
nents (agam = 0) generated by geomagnetic disturbances,
and so forth.

The following definition is used in this contribution: (i)
the vector x = [x(n)---x(n — N + 1)]T is composed of
samples from the signal expressed by (1), the vector f =
[f(n)---f(n—N+1)]" constituted by estimated samples
of the signal given by (2), the vector h = [h(n) - - -h(n —
N + 1)]T is composed of estimated samples of the signal
defined by (3), the vector i = [i(n)---i(n — N + 1)]T is
constituted by estimated samples of the signals defined by
(4), the vector timp = [timp(n) - - - timp(n — N + 1)]7 is con-
stituted by estimated samples of the signals defined by (8),
the vector thor = [tnot(7) * - - tnot(n — N + 1)]T is consti-
tuted by estimated samples of the signals defined by (9),
the vector tgec = [taec(n) * * * taec(n — N + 1)]7 is composed
of estimated samples of the signals defined by (10), and
the vector tgam = [fdam(7) - - - tdam(n — N + 1)]7T is consti-
tuted by estimated samples of the signals defined by (11).
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FIGURE 1: (a) Monitored voltage signal, {x(n)}, (b) fundamen-
tal component, {f(n)}, (c) harmonic and transient components,

{h(n)} + {u(n)}.

v = [v(n)---v(n — N+ 1)]7 is constituted by samples of
the additive noise.

It is worth mentioning that low- , medium- , and high-
voltage electrical networks present different sets of single and
multiple disturbances. As a result, the design of classification
technique for each voltage level has to take into account the
information and characteristics of these networks to attain a
high classification performance. For instance, the sets of dis-
turbances in the high-voltage transmission and low-voltage
distribution systems differ considerably.

The majority of classification techniques developed so
far are for single disturbances. For these techniques, the
feature extraction, as well as classification techniques, has
been investigated and researchers in this field have achieved
a great level of development [3-28]. As a result, the cur-
rent classification techniques are capable of classifying sin-
gle disturbances achieving classification ratio from 90% to
100%. A recent technique introduced in [32] attains classi-
fication ratio very close to 100% if single disturbances are
considered. The main advantage offered by this technique
is the use of simple feature extraction technique along with
support vector machine (SVM) technique. Nevertheless, one
can note that the incidence of multiple disturbances, at the
same time interval, in electric signals, is an ordinary situa-
tion owing to the presence of several sources of disturbances
in the power systems. Figures 1 and 2 expose this problem
very well. One can note that Figure 1(a) shows the signal
{x(n)} = {f(n)}+{h(n)}+{u(n)}+{v(n)} while Figures 1(b)
and 1(c) depict the sequences {f(n)} and {x(n)} — {f(n)},
respectively. This voltage measurement was obtained from
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FIGURE 2: (a) Monitored voltage signal, {x(n)}, (b) fundamen-
tal component, {f(n)}, (c) harmonic and transient components,

{h(n)} + {u(n)}.
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FiGure 3: Standard paradigm for the classification of single and
multiple disturbances.

IEEE working group P1159.3 website. In Figure 1(c), the sig-
nal {z(n)} = {h(n)} + {t(n)} + {v(n)} is composed of 3rd
harmonic, transient signal that can be a priori assumed to be
a decaying oscillation, and, maybe, other disturbances very
difficult to be a priori categorized. Another illustrative ex-
ample of multiple disturbances in voltage signals is shown in
Figure 2. One can note the incidence of short-duration volt-
age variation named sag, see Figure 2(b), harmonic compo-
nents and, short-transient intervals associated with the volt-
age sag as is pictured in Figure 2(c).

Presupposing that electric signals are represented by (1),
the recognition of disturbance patterns composed of multi-
ple disturbances cannot be an easy task to be accomplished
as in the case of single disturbance ocurrence. In fact, the
incidence of more than one disturbance in the electric sig-
nals can lead to techniques attaining reduced classification
performance due to the complexity of classification region if
the standard paradigm, which is depicted in Figure 3, is con-
sidered. It refers to the fact that in the standard paradigm,
the feature vector p, is extracted directly from the vector
x =f+h+i+tinp + tde + taam + v and the vector py can be
unfavorable for disturbance classification purpose because
the vector x is composed of several components, which are
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associated with disjoint disturbances sets. As a result, the de-
sign of pattern recognition technique for classifying multiple
disturbances is a very difficult task to be accomplished [5, 7].
One can state that this is true because the electric signals
are in the majority of cases composed of complex patterns,
which is constituted by multiple primitive patterns. There-
fore, the surfaces among the classification regions that are
associated with different types of single and multiple distur-
bances in the feature vector space, which is defined by the
set of feature vectors py, can be very complex and difficult to
attain, even though powerful feature extraction and classifi-
cation techniques are applied. As a result, the design of pat-
tern recognition techniques offer low performance if (1) is
composed of multiple disturbances; see [2, 3] and reference
therein. References [2, 3] are the first contributions propos-
ing pattern recognition techniques to classify one or two si-
multaneous disturbances in voltage signals. The attained re-
sults with synthetic data is lower than 95%, see [2]. These
results illustrate that a lot of efforts have to be put in for the
development of powerful pattern recognition techniques ca-
pable of achieving high performance.

To overcome the weakness and reduced performance of
the standard paradigm, in the following a paradigm based on
the principle of divide to conquer is presented, which has been
widely and succeessfully applied to many engineering appli-
cations, to design powerful and efficient disturbance classifi-
cation techniques for PQ applications. In this paradigm, the
vector x is decomposed into what we call primitive compo-
nents from which individual disturbances or, as defined here,
primitive patterns can be easily classified. Here, primitive
components are defined as those components from which
only single disturbances can be straightforwardly classified.
The primitive components are the vectors separately consti-
tuted by samples of signals expressed by (2), (3), (4), (8), (9),
(10), and (11). Figure 4 illustrates the whole new paradigm.

As it can be seen, the main idea is to divide the powerline
signals into several primitive components in which simple
pattern recognition techniques can be designed easily and
applied. The motivations for decomposing the vector x into
vectors £, h, i, timp, frot> tdec, and tgam are as follows.

(i) From vector f, several disjoint disturbances that are
mainly related to the fundamental component can classify
easily. For the vector f, the primitive patterns are named
sag, swell, interruption, sustained interruption, undervolt-
age, and overvoltage. As a result, the classification of distur-
bances in the fundamental component can be formulated as
the decision between four hypotheses [33-35]:

Jff,l f = fhorm tvy,
Hro  f = funder + V5,
His  f = fover + vy,
Hia:f = finer + vy,

(12)

where v/ is the noise vector associated with the fundamental
component. The vectors fuorm, funder> fover> and finer denote
a normal condition of fundamental component, an under-
voltage or sag, a disturbance called overvoltage or swell, and
a disturbance named sustained interruption or interruption,
respectively. One has to note that the hypothesis expressed
by (12) can be split into four simple hypotheses which are
expressed by

Rf,i,o f = Vi, (13)

Hiin £ =i + vy,
where dist denotes norm, under, over, and inter if i =
1,...,4, respectively.

(ii) From vector h, one can recognize the occurrence of
distortions generated by the harmonic sources which mainly
are nonlinear loads connected to power systems. Here the
primitive pattern is called harmonic distortion. By extracting
the vector h from the vector x, the problem related to classi-
tying the disturbances as harmonic distortion in voltage and
current signals can be formulated as follows [33, 34]:

H1,0 +hy = Vi,
(14)
Hn1y:hy =h+wy,

where v;, is the noise vector associated with the harmonic
components. One can see that this allows the use of simple
detection technique to recognize the presence of harmonics.
(iii) The vector i is related to the incidence of interhar-
monic components in the electric signals. These components
appear due to the occurrences of flicker as well as power
electronic-based equipment. Here, the primitive pattern is
just called interharmonic. This primitive pattern can be fur-
ther decomposed into other primitive patterns if one needs to
analyze some specific groups of interharmonic components.
Note that flicker is a very specific class of interharmonic in
which the frequency is in the range 0 < f < f, [36]. The clas-
sification of the interharmonic components in voltage and
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current signals can then be formulated as a decision between
two simple hypotheses [33, 34]:

Hiro 11 = vi, (15)
Higg i =i+,
where v; is the noise vector associated with the inter-hamonic
components.

(iv) The use of tiymp vector provides us with the means
to detect the occurrence of impulsive transients in the pow-
erline signals. Then, the classification of primitive pattern
as impulsive transient in voltage and current signals can
be formulated as a decision between two simple hypotheses
(33, 34]:

%hmp)lﬂ : ttimp = Vimp> (16)
}(timpylxl t i, = timp + Vimp,

where Vi, is the noise vector associated with the disturbance
named impulsive transient.

(v) The use of t, vector allows the identification of
primitive pattern called notch in the powerline signals and,
consequently, the presence of power electronic devices. Re-
garding the use of vector tyy, this classification problem can
be formulated as a decision between two simple hypotheses
(33, 34]:

thnolylyo : ttnol = Vnot> (17)
J(tnm,l,l : tinm = tnOt + Vhot»

where Vi, is the noise vector associated with the disturbance
called notch.

(vi) The use of t4ec vector offers a means to recognize the
so-called oscillatory transient (primitive pattern) that is de-
fined as sudden, nonpower frequency changes in the steady-
state condition of voltage and/or current that include both
positive and negative polarity values. By extracting the vector
tdec from the vector x, the problem related to classifying the
disturbances as decaying oscillations in voltage and current
signals can be formulated as a decision between two simple
hypotheses [33, 34]:

Rfdcc,l,o Pty = Vdeo (18)
J{tdec,l,l . ttdec = tdec T Vdeo>

where v4e. 1s the noise vector associated with the disturbance
called decaying oscillation.

(viii) The use of tq.m vector offers us the means to ver-
ify the incidence of the primitive pattern characterized as a
sudden, nonpower frequency change in the steady-state con-
dition of voltage, current, or both, that is unidirectional in
polarity (primarily either positive or negative). The use of
tdam allows one to recognize damped exponentials from a de-
cision between two simple hypotheses [33, 34]:

Hotganr1,0 ¢ Uy, = Vdams (19)
Hpgo 1,1+ by, = tdam + Vdam,

where vyam is the noise vector associated with the disturbance
called damped decaying.

From all reasons and motivations stated before, it is clear
that improved performance can be attained for the classifi-
cation of single and multiple disturbances in electric signals,
if the electric signals can be decomposed into several primi-
tive components. By using such a very simple and powerful
idea, which is named the principle of divide to conquer, the
design of a very complex classification technique is broken
in several simple ones that can be developed easily. The re-
sult derived from this paradigm is very interesting because
the incidence of several sets of classes of disturbances can
be identified easily. In fact, each of the vectors f, h, i, timp,
thot> tdec, and tg,m are related to disjointed classes of distur-
bances and their recognition in parallel can be performed
easily.

From a PQ perspective, the advantages and opportunities
offered by this paradigm is very appealing and promising to
completely characterize the behavior of electric signals not
only for classification purpose, but also for other very de-
manding issues listed at the beginning of Section 1. To make
this strategy successful, one has to develop signal processing
techniques capable of decomposing the vector x into the vec-
tors £, h, i, timp, frot tdee, and tgam to allow the further extrac-
tion of simple and powerful feature extraction and the use of
simple classifiers.

This is a very hard and difficult problem to be solved so
that it should be deeply investigated by signal processing re-
searchers interested in this field. In fact, the decomposition
of vector x into the vectors f, h, i, timp; taot> tdec, and tgam is
not a simple task to be accomplished with simple signal pro-
cessing techniques. However, if one assumes that the vector x
is given by

x=f+vi+h+v,+u+v, (20)
where v = v; + v, +v, and
u=i+ timp + thot + tdec + tdam> (21)

then some signal processing techniques can be applied to de-
compose X into the vectors f, h, and u. And, as a result, high-
performance pattern recognition technique for a limited and
very representative set of disturbances in electric signals can
be designed. In fact, the decomposition of the vector x into
the vectors f, h, and u allows one to design classification tech-
niques for disjoint sets of disturbances associated with the
primitive components named fundamental, harmonic, and
transient, respectively. Section 3 introduces a pattern recog-
nition technique for single and multiple disturbances that
makes use of (20)-(21) and attains an interesting improve-
ment.

3. PROPOSED TECHNIQUE

The scheme of the proposed technique is portrayed in
Figure 5. Note that in the signal processing block, algo-
rithms responsible for extracting the vectors f, h, and u are
implemented.
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FIGURE 6: Scheme of the signal processing block.

This signal processing block is illustrated in Figure 6,
where the blocks NF;, i = 0,...,M — 1, implement second-
order notch filter with notch frequency w, = 2mn(fo/f;).
These filters are responsible for the estimations of { f(n)},
{h(n)}, and {u(n)}. The z-transform of the second-order
notch filter is expressed by

1+anz ' +2z72
L+ pmamz=! + p2,z72’

Hy(z) = (22)

where

Ay, = —2 oS mwy, (23)

and 0 < p,, < 1 is the notch factor. One should note that
the notch filter has some drawbacks regarding the choice of
the parameter p,,, and also its output is, by definition, a con-
tribution of information of its own internal state and the in-
put. As a result, the notch filter can produce transient signals
that reflect the changes at the input and in its states. This
could be a problem if the aim is to estimate the parameters
of the primitive components. For this problem, the use of
high-order notch filter, such as 4th order or higher ones, can
be used to reduce the transient at the output of the notch
filter [37]. Although, these transients can contribute to dis-
tort the primitive components, we point out that such be-
havior does not minimize the classification performance. In
fact, the transients at the output of the notch filter shows a
typical parttern for each disturbance, then a neglible loss of
performance has been verified for disturbance detection, see
[1, 38]. An advantage regarding the use of notch filter is that
its implementation with finite word length in the §-operator
domain is very robust against the effects of finite precision,
then it can be implemented in a cheap digital signal processor

(DSP)-based equipment running with finite-precision. The
notch filter in §-operator domain is given by [39, 40]

L4 0107 + apad 2

Hm(8) = Hm(Z) | z=14A8 = 1 +ﬁm,18_1 +ﬁm)26_2) (24)
where
U1 = 2(1 — €OS mwy)
m,l = A 0)>
_ 2
Ao = E(l — cos mwy),
) (25)
Bm1 = K(l — P COS Mwy),
1+ p2, — 2P cos wy
ﬁm,Z = A2 >

where 0 < A < 1 is carefully chosen to minimize roundoff
error effects. Although the implementation of a filter in the §
operator domain demands more computational complexity,
it is very robust to the quantization effects when the sampling
rate is at least 10 times higher than the frequency band of
interest.

The vectors f, h, and u provided at the processing block
output are expressed by

f=fp,
M

h= > h,, (26)
m=2

u = Xy,

respectively, where f = [f(n) .. -f(n ~N+D]T, h, =
(1) « + + hyu(n = N+ 1)]7, and xys = [xur(n) - - - xpa(n
N + 1)]T. If we assume Pm>m = 0,1,..., M, are very close to
a unity, then

x(n+dy) — | Ho(e/™) | Ag(n)
X cos (nwy(n) + Oy(n) + Aby(n))
ifi=0,

xilm) =1 Xict(n+dimy) = g | H (e | Ay(n)
X cos (nmwgy(n) + 6,,(n) + Ab,, (1))
| otherwise,
(27)
where
Ay (n) = > ZHy(mawo(n)),
kin (28)
oi(n) = af(l =[] | Hk(mawo(n)) |2>
k=0

The technique implemented in the feature extraction
blocks is responsible for extracting reduced and represen-
tative vectors of features p;, i = f,h,u, from the vectors f,
h, and u, respectively. Sections 3.1, 3.2, and 3.3 deal with
feature extraction, feature selection, and classification tech-
niques that are considered in this contribution. Once the fea-
ture vectors p;, i = f,h,u, are extracted, the blocks named
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Fi1GURe 7: Scheme of the classification block.

classifier, which implement the algorithms that decide by the
incidence or not of disturbances in the vectors f, h, and u, are
evaluated.

From the vector f, four disjoint patterns of disturbances,
which are named sag, swell, normal, and interruption, are
primitive patterns. So, the hypothesis test formulated in (13)
is applied. If one considers the vector h, then one primitive
pattern called harmonic is defined and the hypothesis test
formulated in (14) is considered. Finally, for the vector u, it
is well known that at least five disturbances or primitive pat-
terns (interharmonics, spikes, notches, decaying oscillations,
and damped exponentials) can occur simultaneously in the
vector u. As a result, 2° = 32 classes of disturbances can be
associated with the vector u and a very complex hypotheses
test should be formulated.

As the primitive patterns are being considered in this
work, Figure 7 portrays the scheme of the classification tech-
niques applied in the classifier blocks. Note that each class
block makes use of a simple classification technique i =
1,...,CJ, j = f>h,u, that is responsible for classifying each
disturbance in the vectors f, h, and u. Since Figure 7 refers
to the classifier block applied to the feature vector py, then
Cf = 4. C" = 1 if the feature vector py is being analyzed.
Finally, C* = 32 when one tries to classify the disturbances
in the feature vector p,. Regarding u, one has to note that
usually three, two, or one disturbances can occur and, conse-
quently, the number of disturbances classes are different for
each situation.

While the design of pattern classifiers to work with the
feature vectors extracted from vectors f and h are quite sim-
ple, the design of those techniques for disturbances classifi-
cation in the vector u could be a very hard task to be accom-
plished. However, it is worth stating that the difficulties asso-
ciated with the proposed scheme are lower than the ones as-
sociated with standard techniques such as the ones proposed
in [2, 3]; see results in Section 4. In fact, the proposed tech-
nique provides higher performance than the recently devel-
oped techniques for single and multiple disturbances.

3.1. Feature extraction based on
high-order-statistics (HOS)

As stated in [41]: Feature extraction methods determine an ap-
propriate subspace of dimensionality m (either in a linear or a

nonlinear way) in the original feature space of dimensional-
ity d. Linear transforms, such as principal component analy-
sis, factor analysis, linear discriminant analysis, and projection
pursuit have been widely used in pattern recognition for feature
extraction and dimensionality reduction.

Despite the good performance achieved by these men-
tioned feature extraction techniques, it has been recently
recognized that higher-order-statistics- (HOS-)based tech-
niques are promising approaches for features extraction if
the patterns are modeled as non-Gaussian processes. Ana-
lyzing vectors f, h, and u, one should note that these random
vectors are usually modeled as an i.i.d. random processes in
which the elements present a non-Gaussian probability mass
function (p.m.f.).

The cumulants of higher-order statistics provide much
more relevant information from the random processes. Be-
sides that, the cumulants are blind to any kind of Gaus-
sian process, whereas 2nd-order information is not. Then,
cumulant-based signal processing methods can handle col-
ored Gaussian noise automatically, whereas 2nd-order meth-
ods may not. Therefore, cumulant-based methods boost
signal-to-noise ratio when signals are corrupted by Gaussian
measurement noise and can capture more information from
the random vectors [42].

Remarkable results regarding detection, classification,
and system identification with cumulant-based methods
have been reported in [42—45]. Also, a recent investigation
of HOS for detection of disturbances in voltage signals re-
ported that the HOS-based features extracted from voltage
signals can achieve high detection ratio in a frame as short
as 1/16 of one-cycle fundamental component immersed in a
noisy environment [38].

By setting the lag 7; = 7,i = 1,2,3,. .., the expressions of
the diagonal slice of second-, third- , and fourthorder cumu-
lant elements of a zero mean and stationary random vector z,
which is assumed to be one of the vectors f — E{f}, h— E{h},
and u — E{u}, are expressed by [42]

c22(i) = E{z(n)z(n + i)}, (29)
632(i) = E{z(m)2*(n + i)}, (30)
ca(i) = E{z(m)2’ (n + i)} = 3c2.(1)c22(0),  (31)
respectively, where i is the ith lag. Assuming that z is an N-

length vector, the standard approximation of (29)—(31) is ex-
pressed by

<
)
L

G(i) = z(n)z(n +1), (32)

< s
N
[
—_

6(i) = z(n)z*(n +1), (33)

zino Zn Z[e
FiM

cai) = z(n)2(n +1)

S
Il
(=]

(34)
1p N2 N/2-1

- Nz > zm)zn+i) > Z(n),
n=0 n=0

respectively, wherei = 0,1,2,...,N/2 — 1.
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Recently, other authors proposed the use of (29)—(31)
when i = 0, whose evaluation is carried out by using the
standard approximation provided by (32)—(34), for the clas-
sification of two disturbances and the attained results were
reported between 98% and 100%, see [46]. In this technique,
a 20th-order (verylongand complex) elliptic filter to emulate
a notch filter responsible for the extraction of the fundamen-
tal component and to allow the disturbance classification on
the resulting transient signal is applied. One has to note that
4th- or 6th-order notch filter could provide very good perfor-
mance without such a huge complexity and delay to remove
the fundamental component, see [37].

Additionally, we have verified that the technique intro-
duced in [46] leads to a low classification performance due
to the following reasons. (i) If the disturbances are related to
the fundamental component, then the transient signal could
not be representative to allow the classification of distur-
bances. Note that the disturbances related to the fundamental
component are sags, swells, interruptions, and unbalances. It
seems to be one reason for the results to be between 98% and
100% and not very close to 100%, as reported in Section 4.
(ii) The authors made use of HOS parameters when i = 0
without the knowledge of the advantages offered by (29)—
(31). In fact, from (29)—(31), one can note that there is a large
number of HOS features to be extracted for further selection.
As a result, the classification for two disturbances in voltage
signal proposed in [46] is very limited in the sense that many
and more representative features could be extracted. (iii) If
the electric signals are composed of multiple disturbances,
then the feature vector extracted from the transient signals
does not allow well-defined classification regions as the ones
provided in [46] for only two disturbances. It fatally con-
tributes to decrease the performance of classification tech-
nique applied to other disturbances. (iv) The standard ap-
proximation to extract HOS-based features is not appropri-
ate if the frame length is short. As a result, a high sampling
rate or a long frame length has to be applied to extract rep-
resentative HOS-based features. One has to note that these
concerns, by no means, disregard the use of the technique
proposed in [46] for its intentional application. In fact, we
are just pointing out the inadequacy of this technique to an-
alyze the incidence of wide-ranging set of single and multiple
disturbances in electric signals.

Due to the limitation of (32)—(34) to estimate the HOS-
based features and based on the fact that the electric signals
can be seen as cyclic or/and quasicyclic ones, we propose in
this contribution the use of this information to define other
approximation of HOS parameters. By using this informa-
tion into (29)—(31), the new approximation for the HOS-
based feature extractions can be expressed as follows:

N-

G (i) = % z z(n)z[ mod(n+1i,N)], (35)
N-1

G(i) = = Z z(n)z*[ mod(n +i,N)], (36)

54,2(1'):— i z(n)z°[ mod(n +i,N)|
-0

N-1 (37)

> 2 (n),
n=0

N-
Z z(n)z[ mod(n +i,N)]

where i = 0,1,2,...,N — 1 and mod(a,b) is the modu-
lus operator, which is defined as the remainder obtained
from dividing a by b. The approximations presented in (35)—
(37) lead to a very interesting result where one has a short-
ened finite-length vector from which HOS-based parame-
ters have to be extracted. The use of mod(-) operator means
that we are assuming that the vector z is an N-length cyclic
vector. The reason for this refers to the fact that by using
such very simple assumption we can evaluate the approxima-
tion of HOS-based parameters with all available N samples.
Therefore, a reduced sampling rate and/or a shortened frame
length could be valuable for HOS parameters estimation.
That is one of the reasons for the improved performance
achieved by the proposed technique in Section 4. The use of
(35)—(37) for improved disturbance detection was presented
n [38].

Now, suppose that the elements of the vector z =
[2(0),2(1),...,z(N — 1)]T are organized from the smallest
to the largest values and the vector composed of these values
are expressed by zor = [20r(0), Zor (1), .., Zor(N — 1)]7, where
Zor(0) < z2or(1) <,..., < 2o (N — 1). If one replaces the vector
z by the vector z,, in (32)—(37), then the extracted cumu-
lants are named ordered HOS-based features [47]. By doing
s0, the set of HOS-based features is composed of several el-
ements. The HOS-based feature vector, whose elements are
candidates for use in the proposed classification technique,
extracted from the vectors z and z,,, is given by

pi = [EZTEZTM]T, =12, (38)

where z denotes f, h, and u, i = 1 refers to a normal condition
of voltage signals, i = 2 denotes the incidence of single or
multiple disturbances in the vector z,

T T
— _ [ar~r AT AT AT ~T ~T T
C = [cz Cz] [CZ zc3 ZC4 zcz zc4 24 z] > (39)
N U i L PULIPUUIPUY Y e 40
Coor = [C20C2r | T | €2,200 ©3,200 Cy20r €2,200 €3,20r Co20r | (40)
where

- A ma . (N !
4 = 606006 (5 - 1)
= [Ej,z(o)gj,z(l) t

~ T

Cie(N=1]",
. RO . (N !
Cizoe = Cj,zo,(o)cj,zm(l) e Cj,zor<? - 1)] 5

~ T
) Cj»zor(N_ 1)] >

~

’Ej,zor = [Cj,zor(o)gj,zor(l) s

where j = 2,3,4.
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feature vectors when the disturbance is sag.

3.2. Feature selection technique

As commented in [41] “The problem of feature selection is de-
fined as follows: given a set of d features, select a subset of size m
that leads to the smallest classification error. The feature selec-
tion is typically done in an off-line manner and the execution
time of a particular algorithm is not as critical as the optimality
of the feature subset it generates”

The need for the use of feature selection technique in the
set of features extracted from voltage and current signals is
due to the fact that the feature set is very large. Aiming at
the choice of a representative, finite, and reduced set of fea-
tures from powerline signals that provides a good separabil-
ity among distinct classification regions associated with all
primitive patterns, the use of the Fisher’s discriminant ratio
(FDR) is applied [48].

The reason for using the FDR and not other feature se-
lection technique such as sequential forward floating search
(SFES) or sequential backward floating search (SBES) is that
the FDR technique presented good results for this applica-
tion. The FDR vector which leads to a separability in a low-
dimensional space between sets of feature vectors associated
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F1GURE 9: FDR values related to (a) ¢, (b) €, (c) €, and (d) €,
feature vectors when the disturbance is swell.

with different primitive patterns is given by

1

0 =7, 42
Di + D3 (42

Jo = (m; —m,)’

where J. = [J; - - -Jy,]7, Ly is the total number of features,
m; and m,, and D? and D? are the means and variances vec-
tors of parameters vectors pix, k = 1,2,..., M, and pay,
k = 1,2,...,M,. p1x and py are feature vectors extracted
from the kth voltage signals with and without disturbances
and M, denotes the total number of feature vectors for the
classes of disturbances associated with the presence or not of
disturbances. The symbol © refers to the Hadarmard prod-
uctr®s = [ros - - - r1,_151,-1]" . The ith element of the FDR
vector, see (42), having the highest value, J.(i), is selected for
use in the classification technique. Applying the same proce-
dure, K features associated with the K highest FDR values are
selected.

Figures 8, 9, 10, 11, 12, 13, 14 depict the FDR values for
the features extracted from vectors f, h, and u, respectively,
when N = 1024 and f; = 256 X 60 Hz. One can note that
the large number of extracted feature allows a better choice
of features for single and multiple disturbances classification.
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FiGURE 12: FDR values related to (a) €,, (b) €,,,, (c) €,, and (d) €,,,
feature vectors when the disturbance is impulsive transient.
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feature vectors when the disturbance is oscillatory transient.

These pictures illustrate very well the limitation of the HOS-
based technique proposed in [46]. In fact, the use of HOS-
based features when the lag 7 = 0 is not a good choice be-
cause for each primitive pattern there is a distinct set of fea-
tures that improves the classification ratio. Finally, to evalu-
ate the HOS-based features one can note that for the majority
of the disturbance considered, the use of the approximation
proposed in this contribution is better than the standard ap-
proximation.

3.3. Pattern recognition technique

Pattern recognition techniques have been successfully ap-
plied to power-quality applications. In these applications,
the primitive patterns are represented by feature vector p;,
j = f,h,u, or attributes viewed as a d-dimensional vectors.
From the feature vectors, a decision, making process can be
summarized as follows: a given pattern is to be assigned to
one of ¢ categories w;,w, w3, ...,w, based on a vector of d
features.

Assuming that the features have a probability of mass
function conditioned on the pattern class, then a vector pj,
j = f,>h,u, associated with a pattern belonging to the class w;
is viewed as an observation drawn randomly from the class-
conditional probability function p(p; | w;). If the a priori

Amplitude
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Amplitude
o

0 0.01 0.02 0.03 0.04 0.05 0.06

FiGure 15: Typical single disturbances related to vector f. (a)—(c)
are samples of disturbances called sag, swell, and interruptions, re-
spectively.

probability as well as the parameters of the conditioned prob-
abilities are known, partially known or unknown, then differ-
ent critera based on Bayes theory (ML, MAP, etc.), Neyman-
Pearson, and so forth can be designed for obtaining the op-
timum decision boundaries among the ¢ classes in the d-
dimensional feature vector space.

Assuming that the conditional probabilities functions are
known and modeled as Gaussian ones, classifiers based on
the maximum likelihood (ML) criterion are designed. If the
Gaussian function parameters are estimated from the train-
ing data, which is our situation, then the likelihood ratio test
of the maximum likelihood (ML) criterion is given by

Prist ;o (Pz | ﬂi,j,()) =TT
Prilst (Pi | e}lgi,j,l) <m

, (43)

where 1y = 1/2 and 7m; = 1/2 are the a priori probabilities
of incidence or not of a single disturbance associated with
the voltage signals, i = f, h, u refers to the primitive compo-
nent represented by the vectors f, h,and u. j = 1,...,C' is
the jth primitive disturbance or primitive pattern associated
with the ith primitive component. p;, i = f,h, u, is the fea-
ture vector, H;jo, j = 1,..., C', is the hypothesis without
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FiGure 16: Harmonic disturbance associated with vector h.
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FIGURE 17: Disturbances associated with the vector u. (a) is a sample
of impulsive transient, (b) is a sample of notch, and (c) is a sample
of a damped oscillation.

no incidence of the jth primitive disturbance (pattern) in
the ith primitive component. #;1, j = 1,..., C', is the hy-
pothesis with the presence of the jth primitive disturbance
in the ith primitive component. Equation (43) is applied
to detect the existence of disturbances in the vectors f, h,
and u.

4. NUMERICAL RESULTS

The performance of the proposed technique to classify sin-
gle and multiple disturbances in voltage signals is evaluated
and compared with another technique. In Section 4.1, some
results obtained with the proposed technique applied to clas-
sify single and multiple disturbances in f, h, and u compo-
nents are provided and discussed. Thereafter, in Section 4.2,
comparison results between the proposed technique and
the one proposed in [2], developed recently to classify sin-
gle and multiple disturbances in voltage signal by consid-
ering the voltage disturbances defined in [2, 3], are pre-
sented.

4.1. Performance of the proposed method

To verify the performance of the proposed technique to clas-
sify disturbances in the vectors f, h, and u, simulations were
carried out with several waveforms of voltage signals gener-
ated with a sampling rate equal to f; = 256 X 60 samples
per second (sps) and 32 bits for amplitude quantization. The
selected primitive patterns are sag, swell, interruption, har-
monic, impulsive transient, notch, and damped oscillation.
Figures 15, 16, 17 show single disturbances associated with
the vectors f, h, and u, respectively.

Table 1 lists the attained classification ratio with the
proposed technique applied to classify the set of primi-
tive patterns (sag, swell, and interruption) that are associ-
ated with the vector f. The following considerations were
taken into account for the following simulations: (i) N =
128,256,512,768, and 1024, then the lengths of the vec-
tor f correspond to 1/2, 1, 2, 3, and 4 cycles of the funda-
mental component; (ii) feature vector py with four HOS-
based features, which were previously selected with the FDR
technique, for each primitive pattern; (iii) two thousand
sets of primitive patterns generated and equally divided into
training and test data; (iv) the use of Bayes detection tech-
nique based on the ML criterion as given by (43); (v) 62 =
—30dB; (vi) the amplitude of the fundamental component,
Ag, assumes values to characterize the disturbances in ac-
cordance with the IEEE 1159-1995 Standard [49] and the
phase, 6, is modeled as uniform random variable in the
interval (0,27]; (viii) the preprocessing block was imple-
mented with finite word length with 16bits. Figures 18,
19, 20 portray the selected features extracted from vector
f by using the FDR to verify the occurrence of interrup-
tions, sags, and swell. In these plots, the symbols * and o
are associated with the occurrence or not of each distur-
bance in the test data. One can note that there are linear
separations, then the Bayesian classifiers reduces to a linear
ones.

From the results listed in Table 1, one notes that the pro-
posed technique achieves good performance. In Table 1, C
means cycles of the fundamental component and CR refers
to the classification ratio in percentage. The improvements
shown here refer to the attained CR = 100% if the lengths of
vector f correspond to 1,2, 3, and 4 cycles of the fundamental
component. In the previously developed methods, the results
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TasLE 1: Performance of the proposed technique to classify disturbances in the vector f.

Frame length Interruption (CR in %) Sag(CR in %) Swell(CR in %)
1C 99.93 99.95 100
2C 99.96 99.97 100
3C 100 99.98 100
4C 100 100 100
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FIGURE 18: HOS-based features extracted from f for interruption
o = 62)f(68)
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FIGURE 19: HOS-based features extracted from vector f for sag a; =
84,'[(512) and oy = gz)f(194)

are reported when N > 1024 or, at least, 4 cycles of the fun-
damental component, see 3, 5, 28, 32].
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FiGgUure 20: HOS-based features extracted from vector f for swell
a = & (191).
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F1GURE 21: HOS-based features extracted from h a = ¢,,(0).

The numerical analysis of the proposed technique for the
classification of primitive pattern in voltage signals named
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TaBLE 2: Performance of the proposed technique for harmonic clas-
sification.

Frame length CRin %
172C 100
1C 100
2C 100
3C 100
4C 100

harmonic was carried out by taking into account the fol-
lowing considerations: (i) N = 128,256,512,768, and 1024
and, consequently, the lengths of the vector h correspond
to 1,2,3, and 4 cycles of the fundamental component; (ii)
two thousand sets of harmonic disturbances equally di-
vided in training and test patterns were considered; (iii)
Bayes detection technique based on the ML criterion was
designed; (iv) 62 = —30dB; (iv) the harmonic compo-
nents, whose frequency are mw,, m = 3,5,7,9,11,13, and
15, have amplitudes A; and 6; modeled as uniform ran-
dom variables in the intervals (0.01,0.4] and (0, 27], respec-
tively; (v) feature vector p, composed of one element se-
lected by FDR criterion. The generated harmonics comply
with the IEEE 1159-1995 standard [49]. Figure 21 shows the
selected HOS feature obtained from vector h to detect har-
monic presence. The symbols * and o are associated with
the occurrence or not of harmonic in the test data, respec-
tively.

The results achieved with the proposed technique are
presented in Table 2. The CR as high as 100% is not novel
if N = 1024 or, at least, 4 cycles of the fundamental com-
ponent are taken into account [3, 5, 28, 32]. The novelty
here is the fact that the proposed technique is capable of
achieving CR as high as 100% if the length of vector h cor-
responds to 1/2,1, 2,3, and 4 cycles of the fundamental com-
ponent.

To check the effectiveness of the proposed technique for
the classification of primitive patterns in the vector u, the fol-
lowing considerations were taken into account: (i) N = 1024,
which corresponds to four cycles of the fundamental compo-
nent; (ii) four-length feature vector p, in which all elements
are selected with the FDR technique; (iii) 3000 sets of dis-
turbances such as impulsive transients, notches, and damped
oscillations equally divided into training and test data; (iv)
Bayes detection technique based on the ML criterion; (v) ad-
ditive noise power equal to 02 = —30dB; and (vi) single in-
cidence of disturbances in the vector x that appears in the
primitive component represented by the vector u. Figures 22,
23, 24 depict the selected HOS-based features that were ex-
tracted from vector u to classify the disturbances as oscil-
latory transient (damped oscillations), impulsive transient,
and notch. In these figures, the symbols * and o are associ-
ated with the occurrence or not of each disturbance in the
test data.

The attained results with the test data are shown in
Table 3. One can note that the proposed technqiue is capa-
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FIGURE 22: HOS-based features extracted from u to classify the os-
cillatory transient named damped oscillation, a; = ¢,,(257).

43}

© %1073

*  With impulsive transient
O Without impulsive transient

F1Gure 23: HOS-based features extracted from u to classify the im-
pulsive transient &) = ¢5,,(4) and a, = ¢, (511).

ble of classifying almost all primitive patterns in the vector
w

From the results reported in Tables 1-3, in Figures 8—
14, and in Figures 18-24, one can make the following ob-
servations: (i) based on the results obtained with FDR fea-
ture selection technique, comulants related to 2nd-order
statistics are more appropriate features for disturbance clas-
sification in voltage signals; (ii) in the majority of the cases,
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FIGURE 24: HOS-based features extracted from u to classify the
notch disturbance, a = ¢,,(97).

TABLE 3: Performance of the proposed technique for disturbance
classification in the vector u when N = 1024 is considered.

Disturbance CRin %
notch 100
Impulsive transient 100
Oscillatory transient (damped oscillation) 100

the approximations to estimate the HOS-based features with
(35)—(37) provide better results than those obtained with
approximations provided by (31)—(34); (iii) the combina-
tion of features obtained with different approximations pro-
vides better separability; (iv) the use of cumulants extracted
from the ordered vectors usually does not offer any ad-
vantage over the usual cumulants; (v) the cumulants as-
sociated with 3rd-order are useless for disturbance classifi-
cation; (vi) in the majority of the cases, the Baysian clas-
sifiers reduce to linear classifiers because there is a linear
separability between the classes; (vii) to classify seven dis-
turbances, we have to evaluate only eight HOS-based fea-
tures.

Table 4 presents the performance of the proposed tech-
nique applied to classify multiple primitive patterns. Here, it
is considered N = 1024. In Table 4, the term Transient refers
to notch, spike, or damped oscillation, the term Fund de-
notes disturbances in the fundamental component, the term
Harm refers to the harmonic disturbance, and the term Two
transients and Three Transients mean that two or three dis-
tinct transients occur at the same frame, respectively. From
Table 4, one verifies that the proposed technique is capable of

TaBLE 4: Performance of the proposed technique for the classifica-
tion of multiple disturbances in vector x.

Disturbances CRin %
Fund + Harm 100
Fund + Harm + One Transient 99.98
Fund + Harm + Two Transients 98.35
Fund + Harm + Three Transients 96.89

classifying several sets of multiple primitive patterns in volt-
age signals.

4.2. Performance comparison

Finally, the proposed technique is compared against a pre-
vious technique recently introduced in [2]. A set of dis-
turbances, defined in accordance with [3] and reproduced
in Table 5, was generated by following the same procedure
adopted in [2, 3]. By using this set of disturbances, a per-
formance comparison between the technique discussed in
[2] and the one introduced in this contribution was carried
out and the results are comparatively reported in Table 6.
Based on the reported results, one can verify that the pro-
posed technique not only surpasses the performance of the
previous one, but it also shows a considerable improve-
ment.

One has to note that the results reported in both Sec-
tions 4.1 and 4.2 were obtained with disturbances synthet-
ically generated. As a result, the proposed technique will
show a degradation in its performance if it is applied to real
voltage signals, but it is worth stating that the classification
technique proposed in [2, 3] will present similar behavior.
At this point, we are not able to say, under this situation,
what technique will present the lowest performance degra-
dation.

5. CONCLUSIONS

In this contribution, a paradigm and a technique to clas-
sify single and multiple disturbances in electric signals are
introduced. The main advantage offered by the paradigm
is the use of the principle of divide to conquer to decom-
pose the powerline signals into a set of primitive compo-
nents in which simple and powerful feature extraction, fea-
ture selection, and classification techniques can be applied
to recognize primitive patterns (single and multiple distur-
bances).

Based on the proposed paradigm, a disturbance classifi-
cation technique is presented to classify single and the most
probable sets of multiple disturbances in voltage signals. The
numerical results obtained with computational simulations
indicate that the proposed technique shows considerable im-
provement in terms of classification ratio.

At the moment, some research is being carried out to
include flicker, interharmonic, unbalances, and exponential
decaying as primitive patterns.
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TaBLE 5: Power quality disturbance models following [3].

PQ disturbance Class Model Parameters
Normal C1 x(t) = Ag sin(wyt) Ag=1
x(t) = Ag{l + alu(t — t;) — u(t — t2)]} sin(wet)
d<a<O.
Swell C2 1,t=0 0l =a=08
t < t,u(t) = T<t—t <9T
0,t<0
Sag C3 x(t) = Ap{1 — afu(t — t;) — u(t — t,)]} sin(wot) 01<a<08, T<th—t <9T
. x(t) = Aglay sin(wot) + az sin(3wot) 0.05 < a3 < 0.15, 0.05 < a5 < 0.15
Harmonic C4
+as sin(5wot) + a7 sin(7wot) ] 0.05<a; <0.15, Ya? =1
Outage C5 x(t) = Ag{1 — afu(t — t;) — u(t — t,)]} sin(wot) 09<a<01, T<t—-t <9T
x(t) = Ag{l — a[u(t — t;)—
. ! : , 01<a<09, T<t,—t <9T
Sag + Harmonic Cé6 u(t — )]} e sin(wot) R
, , 0.05 < a3 < 0.15, 0.05 < a5 < 0.15, a2 = 1
+a3 sin(3wyt) + as sin(5wot)]
x(t)=Ao{1+afu(t -t
, (1) =Aofl+alulr ~ 1) , 01<a<09, T<t—t <9T
Swell + Harmonic | C7 —u(t—1)]} [ sin(wot) )
, , 0.05 < a3 < 0.15, 0.05 < as < 0.15, a2 = 1
+a3 sin(3wgt) + as sin(5wot)]

TaBLE 6: Performance comparison in terms of classification ratio Transactions on Power Delivery, vol. 19, no. 4, pp. 1928-1935,
(%) achieved by proposed technique and the technique proposed 2004.

in [2]. [5] M. Wang and A. V. Mamishev, “Classification of power quality

events using optimal time-frequency representations—part 1:
theory,” IEEE Transactions on Power Delivery, vol. 19, no. 3, pp.

Class Proposed technique Technique proposed in [2]

Cl 100 100 14881495, 2004.
C2 100 100 [6] M.S. Azam, F. Tu, K. R. Pattipati, and R. Karanam, “A depen-
p P

C3 100 85.55 dency model-based approach for identifying and evaluating
C4 100 100 power quality problems,” IEEE Transactions on Power Delivery,
Cs 100 © vol. 19, no. 3, pp. 1154-1166, 2004.

[7] M. Wang, G. I. Rowe, and A. V. Mamishev, “Classifica-
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[8] Z.-L. Gaing, “Wavelet-based neural network for power dis-

ACKNOWLEDGMENTS turbance recognition and classification,” IEEE Transactions on
Power Delivery, vol. 19, no. 4, pp. 1560-1568, 2004.

This work was Supported in part by CNPq under Grants [9] J. Chung, E. J. Powers, W. M. Grady, and S. C. Bhatt, “Power

disturbance classifier using a rule-based method and wavelet
150064/2005- 178/2005- FAPEMI &
Gi(;?l? %E(():O(S)OSI 8?/1(()1 6 SaSI;) fr708r; g?izﬁ and G under packet-based hidden Markov model,” IEEE Transactions on

Power Delivery, vol. 17, no. 1, pp. 233-241, 2002.
[10] W. R. A. Ibrahim and M. M. Morcos, “A power quality per-

REFERENCES spective to system operational diagnosis using fuzzy logic and
adaptive techniques,” IEEE Transactions on Power Delivery,
[1] M. V. Ribeiro, Signal processing techniques for power line com- vol. 18, no. 3, pp. 903-909, 2003.
munication and power quality applications, Ph.D. thesis, De- [11] I. W. C. Lee and P. K. Dash, “S-transform-based intelligent
partment of Communications, University of Campinas, Sao system for classification of power quality disturbance signals,”
Paulo, Brazil, April 2005. IEEE Transactions on Industrial Electronics, vol. 50, no. 4, pp.
[2] H. He and J. A. Starzyk, “A self-organizing learning array sys- 800-805, 2003.
tem for power quality classification based on wavelet trans- [12] P.K. Dash, B. K. Panigrahi, D. K. Sahoo, and G. Panda, “Power
form,” IEEE Transactions on Power Delivery, vol. 21, no. 1, pp. quality disturbance data compression, detection, and classifi-
286-295, 2006. cation using integrated spline wavelet and S-transform,” IEEE
[3] T. K. Abdel-Galil, M. Kamel, A. M. Youssef, E. E. El-Saadany, Transactions on Power Delivery, vol. 18, no. 2, pp. 595-600,
and M. M. A. Salama, “Power quality disturbance classifica- 2003.
tion using the inductive inference approach,” IEEE Transac- [13] J. Huang, M. Negnevitsky, and D. T. Nguyen, “A neural-fuzzy
tions on Power Delivery, vol. 19, no. 4, pp. 1812-1818, 2004. classifier for recognition of power quality disturbances,” IEEE
[4] T.X. Zhu,S. K. Tso, and K. L. Lo, “Wavelet-based fuzzy reason- Transactions on Power Delivery, vol. 17, no. 2, pp. 609-616,

ing approach to power-quality disturbance recognition,” IEEE 2002.



M. V. Ribeiro and J. L. R. Pereira

17

(14]

(15]

[16]

(17]

[19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

A. M. Gaouda, S. H. Kanoun, M. M. A. Salama, and A. Y.
Chikhani, “Wavelet-based signal processing for disturbance
classification and measurement,” IEE Proceedings: Generation,
Transmission and Distribution, vol. 149, no. 3, pp. 310-318,
2002.

M. Kezunovic and Y. Liao, “A novel software implementation
concept for power quality study,” IEEE Transactions on Power
Delivery, vol. 17, no. 2, pp. 544-549, 2002.

J. Y. Lee, Y. J. Won, J.-M. Jeong, and S. W. Nam, “Classifica-
tion of power disturbance using feature extraction in time-
frequency plane,” Electronics Letters, vol. 38, no. 15, pp. 833—
835, 2002.

T. A. Hoang and D. T. Nguyen, “Improving training of ra-
dial basis function network for classification of power quality
disturbances,” Electronics Letters, vol. 38, no. 17, pp. 976-977,
2002.

J. V. Wijayakulasooriya, G. A. Putrus, and P. D. Minns,
“Electric power quality disturbance classification using self-
adapting artificial neural networks,” IEE Proceedings: Genera-
tion, Transmission and Distribution, vol. 149, no. 1, pp. 98-101,
2002.

E. Styvaktakis, M. H. J. Bollen, and L. Y. H. Gu, “Expert system
for classification and analysis of power system events,” IEEE
Transactions on Power Delivery, vol. 17, no. 2, pp. 423-428,
2002.

S. Santoso, W. M. Grady, E. J. Powers, J. Lamoree, and S. C.
Bhatt, “Characterization of distribution power quality events
with Fourier and wavelet transforms,” IEEE Transactions on
Power Delivery, vol. 15, no. 1, pp. 247-254, 2000.

M. Kezunovic and Y. Liao, “A new method for classification
and characterization of voltage sags,” Electric Power Systems
Research, vol. 58, no. 1, pp. 27-35, 2001.

P. K. Dash, R. K. Jena, and M. M. A. Salama, “Power quality
monitoring using an integrated Fourier linear combiner and
fuzzy expert system,” International Journal of Electrical Power
& Energy System, vol. 21, no. 7, pp. 497-506, 1999.

A. M. Gaouda, M. M. A. Salama, M. R. Sultan, and A. Y.
Chikhani, “Power quality detection and classification using
wavelet-multiresolution signal decomposition,” IEEE Transac-
tions on Power Delivery, vol. 14, no. 4, pp. 1469-1476, 1999.
S.-J. Huang, C.-T. Hsieh, and C.-L. Huang, “Application of
wavelets to classify power system disturbances,” Electric Power
Systems Research, vol. 47, no. 2, pp. 87-93, 1998.

C. H. Lee and S. W. Nam, “Efficient feature vector extraction
for automatic classification of power quality disturbances,”
Electronics Letters, vol. 34, no. 11, pp. 1059-1061, 1998.

J.S. Lee, C. H. Lee, J. O. Kim, and S. W. Nam, “Classification of
power quality disturbances using orthogonal polynomial ap-
proximation and bispectra,” Electronics Letters, vol. 33, no. 18,
pp. 1522-1524, 1997.

A. K. Ghosh and D. L. Lubkeman, “The classification of power
system disturbance waveforms using a neural network ap-
proach,” IEEE Transactions on Power Delivery, vol. 10, no. 1,
pp. 109-115, 1995.

A. M. Youssef, T. K. Abdel-Galil, E. E El-Saadany, and M.
M. A. Salama, “Disturbance classification utilizing dynamic
time warping classifier,” IEEE Transactions on Power Delivery,
vol. 19, no. 1, pp. 272-278, 2004.

C. A. Duque, M. V. Ribeiro, E R. Ramos, and J. Szczupak,
“Power quality event detection based on the divide and con-
quer principle and innovation concept,” IEEE Transactions on
Power Delivery, vol. 20, no. 4, pp. 2361-2369, 2005.

(30]

(31]

(32]

(33]
(34]
(35]

[36

(43]

[44]

[45]

[46]

[47]

M. V. Ribeiro and J. L. R. Pereira, “An efficient method for the
classification of isolated and multiple disturbances in power
line signals,” in Proceedings of the 12th International Confer-
ence on Harmonics and Quality of Power (ICHQP *06), Cascais,
Portugal, October 2006.

D. D. Ferreira, A. S. Cerqueira, M. V. Ribeiro, and C. A. Duque,
“HOS-based method for power quality event classification,” in
Proceedings of the 14th European Signal Processing Conference
(EUSIPCO °06), vol. 1, pp. 200-206, Florence, Italy, September
2006.

A. S. Cerqueira, M. V. Ribeiro, C. A. Duque, and D. D. Fer-
reira, “Power quality events recognition using a SVM-based
method,” to appear in Electric Power System Research.

H. L. van Trees, Detection, Estimation and Modulation Theory,
Part I, Springer, New York, NY, USA, 1968.

H. L. van Trees, Detection, Estimation and Modulation Theory,
Part III, Springer, New York, NY, USA, 1971.

R. N. McDonough and A. D. Whalen, Detection of Signals in
Noise, Academic Press, London, UK, 1995.

IEEE 519 Working Group, “IEEE 519-1995 recommended
practices and requirements for harmonic control in electrical
power systems institute of electrical and electronics engineers,”
May 1992.

J. R. Carvalho, P. H. Gomes, A. S. Cerqueira, M. V. Ribeiro,
C. A. Duque, and J. Szczupak, “PLL based multirate harmonic
estimation,” in IEEE PES General Meeting, Tampa, Fla, USA,
2007.

M. V. Ribeiro, C. A. G. Marques, C. A. Duque, A. S. Cerqueira,
and J. L. R. Pereira, “Detection of disturbances in voltage sig-
nals for power quality analysis using HOS,” EURASIP Journal
on Advances in Signal Processing, vol. 2007, Article ID 59786,
13 pages, 2007.

J. Kauraniemi, T. I. Laakso, I. Hartimo, and S. J. Ovaska, “Delta
operator realizations of direct-form IIR filters,” IEEE Transac-
tions on Circuits and Systems II, vol. 45, no. 1, pp. 41-52, 1998.
R. H. Middleton and G. C. Goodwin, “Improved finite word
length characteristics in digital control using delta operators,”
IEEE Transactions on Automatic Control, vol. 31, no. 11, pp.
1015-1021, 1986.

A.K.Jain, R. P. W. Duin, and J. Mao, “Statistical pattern recog-
nition: a review,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 22, no. 1, pp. 4-37, 2000.

J. M. Mendel, “Tutorial on higher-order statistics (spectra) in
signal processing and system theory: theoretical results and
some applications,” Proceedings of the IEEE, vol. 79, no. 3, pp.
278-305, 1991.

C. Nikias and J. Mendel, “Signal processing with higher-order
statistics,” IEEE Transactions on Signal Processing, vol. 41, no. 1,
pp. 10-38, 1999,

C. L. Nikias and A. P. Petropulu, Hiher-Order Spectra
Analysis—A Nonlinear Signal Processing Framework, Prentice-
Hall, Englewood Cliffs, NJ, USA, 1993.

M. Frisch and H. Messer, “Transient signal detection using
prior information in the likelihood-ratio-test,” IEEE Transac-
tions on Signal Processing, vol. 41, no. 6, pp. 2177-2192, 1993.

O.N. Gerek and D. G. Ece, “Power-quality event analysis using
higher order cumulants and quadratic classifiers,” IEEE Trans-
actions on Power Delivery, vol. 21, no. 2, pp. 883-889, 2006.

B. Picinbono, “Polyspectra of ordered signals,” IEEE Trans-
actions on Information Theory, vol. 45, no. 7, pp. 2239-2252,
1999.



18

EURASIP Journal on Advances in Signal Processing

[48] S. Theodoridis and K. Koutroumbas, Pattern Recognition, Aca-
demic Press, San Diego, Calif, USA, 1999.

[49] IEEE 1159 Working Group, “IEEE 1159-1995 recommended
practice on monitoring electrical power quality,” November
1995.

Moisés Vidal Ribeiro was born in Trés Rios,
Brazil, in 1974. He received the B.S. de-
gree in electrical engineering from the Fed-
eral University of Juiz de Fora (UFJF), Juiz
de Fora, Brazil, in 1999, and the M.S. and
Ph.D. degrees in electrical engineering from
the University of Campinas (UNICAMP),
Campinas, Brazil, in 2001 and 2005, respec-
tively. Currently, he is an Assistant Profes-
sor at UFJE Dr. Ribeiro was a Visiting Re-
searcher in the Image and Signal Processing Laboratory of the Uni-
versity of California, Santa Barbara, in 2004, a Postdoctoral Re-
searcher at UNICAMP, in 2005, and at UFJF from 2005 to 2006. He
is guest editor for the Special Issues on Emerging Signal Processing
Techniques for Power Quality Applications and on Advanced Signal
Processing and Computational Intelligence Techniques for Power
Line Communications for the EURASIP Journal on Applied Signal
Processing and reviewer of international journals. He has been au-
thor of 15 journals and 41 conference papers, and holds six patents.
His research interests include computational intelligence, digital
and adaptive signal processing, power quality, powerline commu-
nication, and digital communications. Dr. Ribeiro received student
awards from IECON’01 and ISIE’03. He is a Member of the tech-
nical program committee of the ISPLC’06, ISPLC’07, CERMA06,
and ANDESCOM’06, and a Member of the IEEE ComSoc Techni-
cal Committee on Power Line Communications.

José Luiz Rezende Pereira received his B.S.
in 1975 from Federal University of Juiz de
Fora, Brazil, the M.S. in 1978 from COPPE-
Federal University of Rio de Janeiro, and
the Ph.D. degree in 1988 from UMIST, UK.
From 1977 to 1992, he worked at Federal
University of Rio de Janeiro. Since 1993 he
has been working at Electrical Engineering
Department of Federal University of Juiz de
Fora. Dr. Pereira’s research interests include
planning and operation modeling for transmission and distribu-
tion systems.




	Introduction
	Problem Formulation:Single and Multiple Disturbances
	Proposed Technique
	Feature extraction based onhigh-order-statistics (HOS)
	Feature selection technique
	Pattern recognition technique

	Numerical Results
	Performance of the proposed method
	Performance comparison

	Conclusions
	Acknowledgments
	REFERENCES

