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A similar motion search and retrieval system for 3D video are presented based on a modified shape distribution algorithm. 3D
video is a sequence of 3D models made for a real-world object. In the present work, three fundamental functions for efficient
retrieval have been developed: feature extraction, motion segmentation, and similarity evaluation. Stable-shape feature represen-
tation of 3D models has been realized by a modified shape distribution algorithm. Motion segmentation has been conducted by
analyzing the degree of motion using the extracted feature vectors. Then, similar motion retrieval has been achieved employing
the dynamic programming algorithm in the feature vector space. The experimental results using 3D video sequences of dances
have demonstrated very promising results for motion segmentation and retrieval.
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1. INTRODUCTION

Dynamic three-dimensional (3D) modeling of real-world
objects using multiple cameras has been an active research
area in recent years [1–5]. Since such sequential 3D mod-
els, which we call 3D video, are generated employing a lot of
cameras and represented as 3D polygon mesh, realistic rep-
resentation of dynamic 3D objects is obtained. Namely, the
objects’ appearance such as shape and color and their tem-
poral change are captured in 3D video. Therefore, they are
different from conventional 3D computer graphics and 3D
motion capture data. Similar to 2D video, 3D video consists
of consecutive sequences of 3D models (frames). Each frame
contains three kinds of data such as coordinates of vertices,
connection, and color.

So far, researches of 3D video have been mainly focused
on its acquisition methods, and they are in their infancy.
Therefore, most of the research topics in 3D video were cap-
ture systems [1–5] and compression [6, 7]. As the amount
of 3D video data increases, the development of efficient and
effective segmentation and retrieval systems is being desired
for managing the database.

Related works can be found in so-called 3D “motion cap-
ture” data aiming at motion segmentation [8–12] and re-
trieval [13–15]. This is because structural features such as

motion of joints and other feature points are easily located
and tracked in motion capture data.

For motion segmentation, Shiratori et al. analyzed lo-
cal minima in motion [8]. The idea of searching local min-
ima in kinematic parameters was also employed in [9]. Some
other approaches were proposed based on motion estima-
tion error using singular value decomposition (SVD) [10]
and least square fitting [11]. In addition, model-based ap-
proaches were also reported using hidden Markov model
(HMM) [12] and Gaussian mixture model (GMM) [10].

Regarding content-based retrieval for motion capture
data, the main target of previous works [13–15] was fast and
effective processing because accurate feature localization and
tracking was already taken for granted as discussed above.
For instance, an image-based user interface using a self-
organizing map was developed in [13]. In [14], motion data
of the entire skeleton were decomposed as the direct sum
of individual to reduce the dimension of the feature space.
Reference [15] proposed qualitative and geometric features
opposed to quantitative and numerical features used in pre-
vious approaches to avoid dynamic time warping matching,
which is computationally expensive.

In contrast to motion segmentation and retrieval for 3D
motion capture data, those for 3D video aremuchmore chal-
lenging. In motion capture systems, users wear a special suit
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with optical or magnetic markers. On the other hand, fea-
ture tracking is difficult for 3D video because neither mark-
ers nor sensors are attached to the users. In addition, each
frame of 3D video is generated independently regardless of
its neighboring frames [1–5] due to the nonrigid nature of
human body and clothes. This results in unregularized num-
ber of vertices and topology, making the tracking problem
more difficult.

Therefore, the number of 3D video segmentation algo-
rithms reported so far is quite limited [16–18]. In [16], a his-
togram of distance among vertices on 3D mesh model and
three fixed reference points were generated for each frame,
and segmentation was done when the distance between his-
tograms of successive frames crossed threshold values. And,
more efficient histogram generation method based on spher-
ical coordinate systemwas developed in [17]. The problem in
these two approaches is that they strongly relied on “suitable”
thresholding, which was defined only by empirical study (try
and error) for each sequence. In [16, 17], proper threshold
setting was left unsolved.

With regard to 3D video retrieval, there are no related
works yet except for the one we have developed [19]. How-
ever, the development of efficient tools for exploiting a large-
scale database of 3D video would become a very important
issue in the near future.

The purpose of this work is to develop a motion segmen-
tation and retrieval system for 3D video of dances based on
our previous works [18, 19]. To the best of our knowledge,
this work is the first contribution to such a problem.We have
developed three key components such as feature extraction,
motion segmentation, and similarity evaluation among 3D
video clips.

In particular, proper shape feature extraction from each
3D video frame and analysis of its temporal change are ex-
tra important tasks as compared to motion capture data
segmentation and retrieval. Therefore, we have introduced
a modified shape distribution algorithm we have devel-
oped in [18] to stably extract shape features from 3D
models.

Segmentation is an important preprocessing to divide
the whole 3D video data into small but meaningful and
manageable clips. The segmented clips are handled as min-
imum units for computational efficiency. Then, a segmen-
tation technique based on motion has been developed [18].
Because motion speed and direction of feature points are
difficult to track, the degree of motion is calculated in the
feature vector space of the modified shape distribution. The
segmentation is achieved by searching local minima in the
degree of motion accompanied with a simple verification
process.

In retrieving, an example of 3D video clip is given to
the system as a query. After extracting the feature vectors
from the query data, the similarity to each candidate clip is
computed employing dynamic programming (DP)matching
[20, 21].

In our experiments, five 3D video sequences of three
different kinds of dances were utilized. In the experiments
of segmentation, high-accuracy precision and recall rates of

Figure 1: Example frame of our 3D video data. Each frame is de-
scribed in a VRML format and consists of coordinates of vertices,
their connection, and color.

92% and 87%, respectively, have been achieved. In addi-
tion, the system has also demonstrated very encouraging re-
sults by retrieving a large portion of the desired and related
clips.

The remainder of the paper is organized as follows. In
Section 2, detailed data description of 3D video is given. In
Section 3, the modified shape distribution algorithm is de-
scribed for stable shape feature extraction. Then, the algo-
rithm for motion segmentation using the extracted feature
vectors is explained in Section 4. Section 5 describes the al-
gorithm for similar motion retrieval based on DP matching.
Section 6 demonstrates the experimental results and con-
cluding remarks are given in Section 7.

2. DATA DESCRIPTION

The 3D video data in the present work were obtained em-
ploying the system developed in [4]. They were generated
from multiple view images taken with 22 synchronous cam-
eras. The 3D object modeling is based on the combination of
volume intersection and stereo matching [4].

Similar to 2D video, 3D video is composed of a consec-
utive sequence of “frames.” Each frame of 3D video is rep-
resented as a polygon mesh model. Namely, each frame is
expressed by three kinds of data as shown in Figure 1: co-
ordinates of vertices, their connection (topology), and color.

The most significant feature in 3D video is that each
frame is generated regardless of its neighboring frames.
This is because of the nonrigid nature of human body and
clothes. Therefore, the number of vertices and topology dif-
fer frame by frame, which makes it very difficult to search the
correspondent vertices or patches among frames. Although
Matsuyama et al. have been developing a deformation algo-
rithm for dynamic 3Dmodel generation [22], the number of
vertices and topology needs to be refreshed every few frames.
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Figure 2: Thirty histograms for the same 3D model (shown on the
upper side) using the original shape distribution [24]. Generated
histograms have some deviation even for the same 3D model.

3. SHAPE FEATURE EXTRACTION: MODIFIED
SHAPE DISTRIBUTION

With regard to feature extraction from 3D models, a num-
ber of techniques have been developed aiming at static 3D
model retrieval [23]. Among the feature extraction algo-
rithms, shape distribution [24] is known as one of the most
effective methods. In the original shape distribution algo-
rithm [24], a number of points (e.g., 1024) were randomly
sampled among the vertices of the 3Dmodel surface and dis-
tance between all possible combinations of points was calcu-
lated. Then, a histogram of distance distribution was gener-
ated as a feature vector to express the shape characteristics of
a 3D model. The shape distribution algorithm has a virtue of
robustness to objects’ rotation, translation, and so on.

However, histograms using the original shape distribu-
tion cannot be generated stably because of the random sam-
pling of the 3D surface. Figure 2 shows 30 histograms gen-
erated for the same 3D model selected from our 3D video.
The histograms were generated by randomly sampling 1024
vertices and setting the number of bins of the histogram as
1024 (dividing the range between maximum and minimum
values in distance into 1024). It is observed that the shapes
of the histograms fluctuate and sometimes a totally different
histogram is obtained. In [24], deviation in the histograms
was not so significant because rough shape feature extraction
was pursued for similar shape retrieval of static 3D models.
On the other hand, in our case, it is required to clarify a slight
shape difference among frames in 3D video.

Therefore, we have modified the original shape distribu-
tion algorithm for more stability. Since vertices are mostly
uniform on the surface in our 3D models, they are firstly
clustered into 1024 groups based on their 3D spatial distri-
bution employing vector quantization as shown in Figure 3.
The centers of mass of the clusters are used as representa-
tive points for distance histogram generation. Although such

Figure 3: Concept of modified shape distribution. Vertices of 3D
model are firstly clustered into 1024 groups by vector quantization
in order to scatter representative vertices uniformly on 3D model
surface.

clustering process is computationally expensive, it needs to
be carried out only once in generating the histograms (fea-
ture vectors), and all the processings that follow are based on
the extracted feature vectors. Therefore, the computational
cost for clustering can be neglected. As a result, representa-
tive points are distributed uniformly and generation of sta-
ble histograms has been made possible. In our algorithm, the
number of bins is set to 1024. After obtaining histograms,
smoothing (moving average) is applied to them to remove
noise by taking the average of the values in �2�+2 bins as
shown in (1),

b�i =
bi�2 + bi�1 + bi + bi+1 + bi+2

5
, (1)

where bi represents the ith element of the histogram and b�i
is that after the smoothing process. By using modified shape
distribution, identical histograms can always be obtained for
the same 3D model.

4. MOTION SEGMENTATION

In motion segmentation, for dance sequences in particular,
motion speed is an important factor. When a person changes
motion type or motion direction, the motion speed becomes
small temporarily. More importantly, motion is paused for a
moment to make the dance look lively. Such moments can be
regarded as segmentation points.

Searching the points when the motion speed becomes
small is achieved by looking for local minima in the degree
of motion. From this point of view, our approach is simi-
lar to [8, 9]. The difference is that the degree of motion is
calculated in the feature vector space since the movement
of feature points of human body in 3D video is not clear as
compared to motion capture data. Namely, the distance be-
tween the feature vectors of successive frames is utilized to
express the degree of motion. In addition, one-dimensional
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data of degree of motion goes thorough a further smoothing
filter.

In [8], the extracted local minima in motion speed were
verified whether they were truly segmentation boundaries or
not by thresholding. This verification process is important to
make the system robust to noise. The local minimum values
should be lower than a predefined threshold value and the
local maximum values between the local minima should be
higher than another threshold. In this respect, threshold op-
timization depending on input data was still required in [8].
In our scheme, local minima are regarded as segmentation
boundaries when the two local maxima on both sides of the
local minimum value (Dlmin) are greater than 1.01 � Dlmin.
Since the verification is relative, it is robust to data variation
and no empirical decision is required.

5. MATCHING BETWEENMOTION CLIPS

In this paper, example-based queries are employed. A clip
from a certain 3D video is given as a query and similar mo-
tion is searched from the other clips in the database. The per-
formers in the query and the candidate clips do not necessar-
ily have to be the same due to the robust shape feature repre-
sentation by the modified shape distribution. However, since
the shape distribution algorithm extracts the global shape
feature, it is not eligible for searching motion clips with to-
tally different types of clothes. For instance, a motion clip
with casual cloth and that with Japanese kimono would be
regarded as totally different motion sequences.

DP matching [20, 21] is utilized to calculate the similar-
ity between the query and candidate clips. DP matching is a
well-knownmatching method between time-inconsistent se-
quences, which has been successfully used in speech [25, 26],
computer vision [27], and so forth.

A 3D video sequence in a database (Y) is assumed to
be divided into segments properly in advance according to
Section 4. Assume that the feature vector sequences of the
query (Q) and the ith clip in Y , Y (i), are denoted as follows:

Q = {q1, q2, . . . , qs, . . . , ql
}
,

Y (i) = {y(i)1 , y(i)2 , . . . , y(i)t , . . . , y(i)m
}
,

(2)

where qs and y(i)t are the feature vectors of the sth and tth
frames in Q and Y (i), respectively. Besides, l and m represent
the number of frames in Q and Y (i).

Let us define d(s, t) as the Euclidean distance between qs
and y(i)t as in (3),

d(s, t) = ∥∥qs � y(i)t
∥∥. (3)

Then, the dissimilarity (D) between the sequencesQ and Y (i)

is calculated as

D
(
Q,Y (i)) = cost(l,m)�

l2 +m2
, (4)

Table 1: Summary of 3D video utilized in experiments. Sequence
#1 and sequences #2-1�#2-3 are Japanese traditional dances called
bon-odori and sequence #3 is a Japanese warmup dance. Sequences
#2-1�#2-3 are identical but are performed by different persons.

Sequence # 1 # 2-1 # 2-2 # 2-3 # 3

Number of frames 173 613 612 616 1,981

Number of vertices (average) 83 k 17 k 17 k 17 k 17 k

Number of patches (average) 168 k 34 k 34 k 34 k 34 k

Resolution 5mm 10mm 10mm 10mm 10mm

Frame rate 10 frames/s

where the cost function cost(s, t) is defined as in the following
equation:

cost(s, t)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d(1, 1) for l = m = 1,

d(s, t) + min
{
cost(s, t � 1),

cost(s� 1, t),

cost(s� 1, t � 1)
}

otherwise.
(5)

Here, symbols of Q and Y (i) are omitted in d(s, t) and
cost(l,m) for simplicity. Since the cost is a function of the
sequence lengths, cost(l,m) is normalized by

√
(l2 +m2). The

lower the D is, the more similar the sequences are.

6. EXPERIMENTAL RESULTS

In our experiments, five 3D video sequences generated by
the system developed in [4] were utilized. The parameters
of the data are summarized in Table 1. Sequences #1 and
#2-1�#2-3 are Japanese traditional dances called Bon Odori
and sequence #3 is a Japanese warming-up dance. Sequences
#2-1�#2-3 are identical but performed by different persons.
The frame rate was 10 frames/s. For the detailed content of
3D video, please see Figure 4 for sequence #1 and Figure 7
for #2-1. In sequences #2-1�#2-3, the motion sequence in
Figure 7 is repeated approximately three times.

6.1. Motion segmentation

In the experiment, the motion of “standing still” in the
first tens of frames of each sequence was extracted manu-
ally in advance and neglected in the processing. Even when
the dancer in 3D video is standing still, human body sways
slightly, in which it is difficult to define segmentation bound-
aries.

Figure 4 demonstrates the subjective segmentation re-
sults for sequence #1 by eight volunteers. They were asked to
define motion boundaries without any instruction or others’
segmentation results. In this experiment, when four (50%)
or more subjects voted for the same points, the segmenta-
tion boundaries were defined. The results were used for eval-
uation. For sequences #2-1�#2-3 and #3, the segmentation
boundaries were defined by the authors.

The segmentation results for the sequence #1 are il-
lustrated in Figure 5. The ordinate represents the distance
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Figure 4: Subjective segmentation results for sequence #1 by eight volunteers.
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Segmentation boundaries defined subjectively by eight volunteers

Results of the system

Figure 5: Comparison of subjectively defined segmentation points and results of our system for sequence #1. Dotted arrows from (a) to (k)
represent the segmentation boundaries defined subjectively by eight volunteers. Solid arrows are the results of our system.

between histograms of successive frames. The dotted ar-
rows from (a) to (k) represent the subjectively defined
segmentation points shown in Figure 4. The solid arrows
are the results of our system. There was only one over-
segmentation. In addition, no miss-segmentation was de-
tected. The over-segmentation between (f) and (g) was due
to the fact that the pivoting foot was changed while the
dancer was rotating andmotion speed decreased temporarily
(see Figure 9(a)).

As other examples, segmentation results for sequences
#2-1�#2-3 are shown in Figure 6. Themeanings of arrows are
different from those in Figure 5. Solid arrows represent over-
segmented points, and dotted arrows are miss-segmented
points. The other local minima points coincided with au-
thors’ definition of segmentation boundaries. It is observed
that the distances between the feature vectors of successive
frames for sequences #2-1�#2-3 are larger than those for se-

quence #1. This is because the dancer in sequence #1 wears
kimono and motion in feet is not sensed very much.

The first 14 segmentation points (approximately, out of
the 210 frames) obtained from sequence #2-1 are shown in
Figure 7. It is observed that the 3D video sequence is di-
vided into small but meaningful segments. There was only
one over-segmentation, which is shown with the cross, and
no miss-segmentation for the period. The precision and re-
call rates for sequence #2-1 were 95% and 93%, respectively
(see Table 2 for more details).

In our algorithm, only the distance between two succes-
sive frames is considered. Figure 8 shows the precision and
recall rates when more neighboring frames are involved in
the distance calculation using sequence #2-1. As the number
of frames increases, recall rate is slightly improved while pre-
cision rate declines. This is because involvingmore neighbor-
ing frames in calculating the degree of motion corresponds



6 EURASIP Journal on Advances in Signal Processing

0 100 200 300 400 500 600 700

Frame number

0

500

1000

1500

2000

D
is
ta
n
ce

be
tw
ee
n
su
cc
es
iv
e

fr
am

es
(A

.U
.)

Oversegmentation
Miss-segmentation

(a)

0 100 200 300 400 500 600 700

Frame number

0

500

1000

1500

2000

D
is
ta
n
ce

be
tw
ee
n
su
cc
es
iv
e

fr
am

es
(A

.U
.)

Oversegmentation
Miss-segmentation

(b)

0 100 200 300 400 500 600 700

Frame number

0

500

1000

1500

2000

D
is
ta
n
ce

be
tw
ee
n
su
cc
es
iv
e

fr
am

es
(A

.U
.)

Oversegmentation
Miss-segmentation

(c)

Figure 6: Segmentation results for sequences #2-1�#2-3: (a) #2-1,
(b) #2-2, (c) #2-3. The meanings of arrows are different from
Figure 5. Solid arrows represent oversegmented points, and dotted
arrows are miss-segmented points. The other local minima points
coincided with authors’ definition of segmentation boundaries.
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Figure 8: Precision and recall rates when the number of neighbor-
ing frames involved in calculation of degree of motion was changed.
Sequence #2-1 was used.

Table 2: Performance summary of motion segmentation.

Sequence # 1 # 2-1 # 2-2 # 2-3 # 3 Total

A: number of relevant
records retrieved

11 40 42 34 124 251

B: number of irrelevant
records retrieved

1 2 3 6 11 23

C: number of relevant
records not retrieved

0 3 3 8 25 39

Precision: A/(A+B) 92 95 93 80 92 92

Recall: A/(A+C) 100 93 93 85 83 87

to neglecting small or quick motion. Our 3D video was cap-
tured at 10 frames/s. In such a low-frame rate case, calculat-
ing the distance between only the successive frames yields the
best performance.

Table 2 summarizes the motion segmentation perfor-
mance. The numbers of segmentation boundaries for #2-1�
#2-3 are not the same because each dancer made some
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(a)

(b)

Figure 9: Examples of oversegmentation: (a) when changing pivot-
ing foot; (b) when drawing a big circle by arms. Detected overseg-
mentation points are shown with circles.

mistakes. There are only a few miss- and over-segmentations
per minute. Since sequence #3 contains more complicated
motion than the others, which is hard to detect, the number
of miss-segmentations is larger than the other sequences.

Most of the miss-segmentations were caused because the
dancer did not pause properly even when the motion type
changed. On the other hand, over-segmentation arose when
the motion speed was decreased for motion transitions such
as changing pivoting foot (Figure 9(a)) and changing the
motion direction without changing the meaning of motion
(Figure 9(b)). To resolve the problem, high-level motion ob-
servation may be needed.

6.2. Similarmotion retrieval

In similar motion search, motion clips which are obtained
by segmenting the sequences are handled as minimum units
for computational efficiency. To demonstrate the retrieval
performance itself, the miss- and over-segmentations in our
motion segmentation results were corrected manually in ad-
vance. The motion definitions of the segmented clips af-
ter the correction in sequences #2-1 and #2-2 are shown in
Table 3.

Figure 10 demonstrates the matrix representing the sim-
ilarity evaluation score among clips in sequences #2-1 and
#2-2. The brighter the color is, the more similar the two clips
are. Although the dancers are different in sequences #2-1 and
#2-2, it is observed that similar clips yield larger similarity
score (smaller dissimilarity score D in (4)), showing the fea-
sibility of our modified shape distribution-based retrieval.

Figure 11 shows an example of similar motion retrieval
results. A motion clip of “drawing a big circle by hands (clip
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Figure 10: Matrix representing results of similarity evaluation be-
tween sequences #2-1 and #2-2. The whiter the color is, the more
similar the two clips are.

#2-2(4))” in sequence #2-2 was used as a query and simi-
lar motion was searched from clips in sequence #2-1. Fig-
ures 11(b)–11(g) demonstrate the top six most similar clips
retrieved from sequence #2-1. It is demonstrated that sim-
ilar motion is successfully retrieved even though the num-
bers of frames and posture of the 3D models are inconsis-
tent with those in the query. In this case, all the relevant clips
are retrieved. It has been confirmed that our retrieval system
performs quite well for other queries.

Table 4 summarizes the retrieval performance using se-
quences #2-1� #2-3. In the experiment, each clip from se-
quences shown in the column was used as a query. And the
clips from the sequences shown in the row were used as can-
didates. The query itself was not included in candidates. The
performance was evaluated by the method employed in [24].
The “first tier” in Table 4(a) demonstrates the averaged per-
centage of the correctly retrieved clips in the top k highest
similarity score clips, where k is the number of the ground
truth of similar motion clips defined by the authors. An ideal
matching would give no false positives and would return a
score of 100%. The “second tier” in Table 4(b) gives the same
type of result, but for the top 2 � k highest similarity score
clips. The “nearest neighbor” in Table 4(c) shows the per-
centage of the test in which the retrieved clip with the highest
score was correct. It is demonstrated that 56%�85% of sim-
ilar motion clips are included in the first tier and more than
80% (82%�98%) of clips are correctly retrieved in the sec-
ond tier. Besides, accuracy of nearest neighbor is 57%�98%.
Therefore, it is observed that most of the similar motion can
be found in the second tier. It is a rather good performance
considering that only such low-level feature as the modified
shape distribution is utilized in the matching.
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Table 3: Motion definitions of clips after the correction: (a) sequence #2-1; (b) sequence #2-2.

Clip ID Frames Motion type

2-1(1) 0–55 Stand still

2-1(2) 56–71 Clap hands twice

2-1(3) 72–82 Clap hands once

2-1(4) 83–99 Draw a big circle

2-1(5) 100–117 Draw a big circle

2-1(6) 118–127 Twist to right

2-1(7) 128–136 Twist to left

2-1(8) 137–146 Twist to right

2-1(9) 147–155 Twist to left

2-1(10) 156–177 Jump three steps

2-1(11) 178–192 Jump three steps

2-1(12) 193–204 Stoop down

2-1(13) 205–203 Jump and spread hands

2-1(14) 204–224 Clap hands twice

2-1(15) 225–234 Clap hands once

2-1(16) 235–250 Draw a big circle

2-1(17) 251–269 Draw a big circle

2-1(18) 270–280 Twist to right

2-1(19) 281–287 Twist to left

2-1(20) 288–300 Twist to right

2-1(21) 301–306 Twist to left

2-1(22) 307–325 Jump three steps

2-1(23) 326–347 Jump three steps

2-1(24) 348–355 Stoop down

2-1(25) 356–366 Jump and spread hands

2-1(26) 367–374 Clap hands twice

2-1(27) 375–387 Clap hands once

2-1(28) 388–403 Draw a big circle

2-1(29) 404–421 Draw a big circle

2-1(30) 422–433 Twist to right

2-1(31) 433–441 Twist to left

2-1(32) 442–451 Twist to right

2-1(33) 452–460 Twist to left

2-1(34) 460–480 Jump three steps

2-1(35) 481–501 Jump three steps

2-1(36) 502–518 Jump and spread hands

2-1(37) 519–527 Clap hands twice

2-1(38) 528–537 Clap hands once

2-1(39) 538–546 Twist to right

2-1(40) 547–556 Twist to left

2-1(41) 557–563 Twist to right

2-1(42) 564–575 Twist to left

2-1(43) 576–607 Stop in the middle of jumping

2-1(44) 608–612 Stand still

(a)

Clip ID Frames Motion type

2-2(1) 0–44 Stand still

2-2(2) 45–61 Clap hands twice

2-2(3) 62–71 Clap hands once

2-2(4) 72–89 Draw a big circle

2-2(5) 90–107 Draw a big circle

2-2(6) 108–119 Twist to right

2-2(7) 120–128 Twist to left

2-2(8) 129–135 Twist to right

2-2(9) 136–145 Twist to left

2-2(10) 146–166 Jump three steps

2-2(11) 167–181 Jump three steps

2-2(12) 182–191 Stoop down

2-2(13) 192–203 Jump and spread hands

2-2(14) 204–214 Clap hands twice

2-2(15) 215–224 Clap hands once

2-2(16) 225–242 Draw a big circle

2-2(17) 243–260 Draw a big circle

2-2(18) 261–270 Twist to right

2-2(19) 271–280 Twist to left

2-2(20) 281–286 Twist to right

2-2(21) 287–311 Twist to left

2-2(22) 312–320 Undefined motion (mistake)

2-2(23) 321–332 Jump three steps

2-2(24) 333–344 Jump three steps

2-2(25) 345–356 Stoop down

2-2(26) 357–366 Jump and spread hands

2-2(27) 367–372 Clap hands twice

2-2(28) 373–392 Clap hands once

2-2(29) 393–412 Draw a big circle

2-2(30) 413–423 Draw a big circle

2-2(31) 424–430 Twist to right

2-2(32) 431–439 Twist to left

2-2(33) 440–448 Twist to right

2-2(34) 449–470 Twist to left

2-2(35) 471–488 Jump three steps

2-2(36) 489–499 Jump three steps

2-2(37) 500–508 Stoop down

2-2(38) 509–518 Jump and spread hands

2-2(39) 519–529 Clap hands twice

2-2(40) 530–544 Clap hands once

2-2(41) 545–556 Draw a big circle

2-2(42) 557–565 Twist to right

2-2(43) 566–572 Twist to left

2-2(44) 573–586 Twist to right

2-2(45) 587–601 Twist to left

2-2(46) 602–612 Stop in the middle of drawing a big circle

(b)
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 11: Experimental results for 3D video retrieval using motion of “drawing a big circle by hands”: (a) query clip from sequence #2-2
(clip #2-2(4)); (b) the most similar clip in sequence #2-1 (clip #2-1(4)); (c) the second most similar clip (clip #2-1(28)); (d) the third most
similar clip (clip #2-1(5)); (e) the fourth most similar clip (clip #2-1(16)); (f) the fifth most similar clip (clip #2-1(29)); (g) the sixth most
similar clip (clip #2-1(17)).
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Table 4: Retrieval performance: (a) first tier, (b) second tier, (c)
nearest neighbor. Query clip was generated from the sequence in
the column and the clips from the sequences shown in the row were
used as candidates. The query itself was not included in the candi-
date clips.

# 2-1 # 2-2 # 2-3

# 2-1 80% (298/372) 63% (252/397) 70% (292/420)
# 2-2 62% (247/394) 63% (220/350) 63% (259/414)
# 2-3 57% (242/421) 56% (232/414) 85% (346/408)

(a)

# 2-1 # 2-2 # 2-3

# 2-1 98% (366/372) 84% (335/397) 90% (378/420)
# 2-2 85% (335/394) 82% (287/350) 87% (360/414)
# 2-3 89% (374/421) 94% (390/414) 96% (392/408)

(b)

# 2-1 # 2-2 # 2-3

# 2-1 98% (40/41) 76% (31/41) 90% (36/40)
# 2-2 57% (24/42) 62% (26/42) 62% (26/42)
# 2-3 67% (28/42) 69% (29/42) 90% (36/40)

(c)

Some false positives were detected due to the fact that the
shape distribution is designed for extracting global shape fea-
tures. Therefore, extracted sequential feature vectors tend to
be affected by various factors such as difference in motion
trajectories and physiques or clothes of the dancers. To en-
hance the retrieval performance, higher-level motion analy-
sis is needed.

7. CONCLUSIONS

3D video, which is generated using multiple view images
taken with a lot of cameras, is attracting a lot of attention
as a new multimedia technology. In this paper, key technolo-
gies for 3D video retrieval such as feature extraction, mo-
tion segmentation, and similarity evaluation have been de-
veloped. The development of these technologies for 3D video
is muchmore challenging than those formotion capture data
because localization and tracking of feature points are very
difficult in 3D video. The modified shape distribution algo-
rithm has been employed for stable feature representation
of 3D models. Segmentation has been conducted analyzing
the degree of motion calculated in the feature vector space.
The proposed segmentation algorithm does not require any
predefined threshold values in verification process and re-
lies only on relative comparison, thus realizing robustness to
data variation. The similar motion retrieval has been realized
by DP matching using the feature vectors. We have demon-
strated effective segmentation with the precision and recall
rates of 92% and 87% on average, respectively. In addition,
reasonable retrieval results have been demonstrated by ex-
periments.
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