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This paper addresses the problem of blind speech dereverberation by inverse filtering of a room acoustic system. Since a speech
signal can be modeled as being generated by a speech production system driven by an innovations process, a reverberant signal is
the output of a composite system consisting of the speech production and room acoustic systems. Therefore, we need to extract
only the part corresponding to the room acoustic system (or its inverse filter) from the composite system (or its inverse filter). The
time-variant nature of the speech production system can be exploited for this purpose. In order to realize the time-variance-based
inverse filter estimation, we introduce a joint estimation of the inverse filters of both the time-invariant room acoustic and the
time-variant speech production systems, and present two estimation algorithms with distinct properties.
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1. INTRODUCTION

Room reverberation degrades speech intelligibility or cor-
rupts the characteristics inherent in speech. Hence, derever-
beration, which recovers a clean speech signal from its rever-
berant version, is indispensable for a variety of speech pro-
cessing applications. In many practical situations, only the
reverberant speech signal is accessible. Therefore, the dere-
verberation must be accomplished with blind processing.

Let an unknown signal transmission channel from a
source to possibly multiple microphones in a room be mod-
eled by a linear time invariant system (to provide a unified
description independent of the number of microphones, we
refer to a set of signal transmission channel(s) from a source
to possibly multiple microphones as a signal transmission
channel. The channel from the source to each of the micro-
phones is called a subchannel. A set of signal(s) observed by
the microphone(s) is refered to as an observed signal. We
also refer to an inverse filter set, which is composed of fil-
ters applied to the signal observed by each microphone, as
an inverse filter). The observed signal (reverberant signal)
is then the output of the system driven by the source signal
(clean speech signal). On the other hand, the source signal is
modeled as being generated by a time variant autoregressive
(AR) system corresponding to an articulatory filter driven by
an innovations process [1]. In what follows, for the sake of

definiteness, the AR system corresponding to the articula-
tory filter and the system corresponding to the room’s signal
transmission channel are refered to as the speech production
system and the room acoustic system, respectively. Then, the
observed signal is also the output of the composite system
of the speech production and room acoustic systems driven
by the innovations process. In order to estimate the source
signal, the dereverberation may require the inverse filter of
the room acoustic system. Therefore, blind speech derever-
beration involves the estimation of the inverse filter of the
room acoustic system separately from that of the speech pro-
duction system under the condition that neither the param-
eters of the speech production system nor those of the room
acoustic system are available.

Several approaches to this problem have already been in-
vestigated. One major approach is to exploit the diversity be-
tween multiple subchannels of the room acoustic system [2–
6]. This approach seems to be sensitive to order misdetec-
tion or additive noise since it strongly exploits the isomor-
phic relation between the subspace formed by the source sig-
nal and that formed by the observed signal. The so-called
prewhitening technique achieved some positive results [7–
10]. It relies on the heuristic knowledge that the character-
istics of the low order (e.g., 10th order [8]) linear prediction
(LP) residue of the observed signal are largely composed of
those of the room acoustic system. Based on this knowledge,
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this technique regards the residual signal generated by ap-
plying LP to the observed signal as the output of the room
acoustic system driven by the innovations process. Then, the
inverse filter of the room acoustic system can be obtained by
using methods designed for i.i.d. series. Although methods
incorporating this technique may be less sensitive to addi-
tive noise than the subspace approach, the dereverberation
performance remains insufficient since the heuristics is just a
crude approximation. Also methods that estimate the source
signal directly from the observed signal by exploiting features
inherent in speech such as harmonicity [11] or sparseness
[12] have been proposed. The source estimate is then used
as a reference signal when calculating the inverse filter of the
room acoustic system. However, the influence of source es-
timation errors on the inverse filter estimates remains to be
revealed, and a detailed investigation should be undertaken.

As an alternative to the above approach, the time variant
nature of the speech production system may help us to ob-
tain the inverse filter of the room acoustic system separately
from that of the speech production system. Let us consider
the inverse filter of a composite system consisting of speech
production and room acoustic systems. The overall inverse
filter is composed of the inverse filters of the room acoustic
and speech production systems. The inverse filter of the room
acoustic system is time invariant while that of the speech pro-
duction system is time variant. Hence, if it is possible to ex-
tract only the time invariant subfilter from the overall inverse
filter, we can obtain the inverse filter of the room acoustic sys-
tem. This time-variance-based approach was first proposed
by Spencer and Rayner [13] in the context of the restora-
tion of gramophone recordings. They implemented this ap-
proach simply; the overall inverse filter is first estimated, and
then, it is decomposed into time invariant and time variant
subfilters. However, it would be extremely difficult to obtain
an accurate estimate of the overall inverse filter, which has
both time invariant and time variant zeros especially when
the sum of the orders of both systems is large [14]. There-
fore, the method proposed in [13] is inapplicable to a room
environment.

This paper proposes estimating both the time invariant
and time variant subfilters of the overall inverse filter directly
from the observed signal. The proposed approach skips the
estimation of the overall inverse filter, which is the drawback
of the conventional method. Let us consider filtering the ob-
served signal with a time invariant filter and then with a time
variant filter. When the output signal is equalized with the
innovations process, the time invariant filter becomes the in-
verse filter of the room acoustic systemwhereas the time vari-
ant filter negates the speech production system. Thus, we can
obtain the inverse filter of the room acoustic system simply
by adjusting the parameters of the time invariant and time
variant filters so that the output signal is equalized with the
innovations process. We then propose two blind processing
algorithms based on this idea. One uses a criterion involving
the second-order statistics (SOS) of the output; the other uti-
lizes the higher-order statistics (HOS). Since SOS estimation
demands a relatively small sample size, the SOS-based algo-
rithm will be efficient in terms of the length of the observed
signals. On the other hand, the HOS-based algorithm will

provide highly accurate inverse filter estimates because the
HOS brings additional information. Performance compar-
isons revealed that the SOS-based algorithm improved the
rapid speech transmission index (RASTI), which is ameasure
of speech intelligibility, from 0.77 to 0.87 by using observed
signals of at most five seconds. In contrast, the HOS-based al-
gorithm estimated the inverse filters with a RASTI of nearly
one when observed signals of longer than 20 seconds were
available. The main variables used in this paper are listed in
Table 1 as a reference.

2. PROBLEM STATEMENT

2.1. Problem formulation

The problem of speech dereverberation is formulated as fol-
lows. Let a source signal (clean speech signal) be represented
by s(n), and the impulse response of anM×1 linear finite im-
pulse response (FIR) system (room acoustic system) of order
K by {h(k) = [h1(k), . . . ,hM(k)]T}0≤k≤K . Superscript T in-
dicates the transposition of a vector or a matrix. An observed
signal (reverberant signal) x(n) = [x1(n), . . . , xM(n)]T can be
modeled as

x(n) =
K∑

k=0
h(k)s(n− k). (1)

Here, x(n) consists ofM signals from theMmicrophones. By
using the transfer function of the room acoustic system, we
can rewrite (1) as

x(n) = [H(z)
]
s(n), (2)

H(z) =
K∑

k=0
h(k)z−k = [H1(z), . . . ,HM(z)

]T
, (3)

where [z−1] represents a backward shift operator. Hm(z) is
the transfer function of the subchannel ofH(z), correspond-
ing to the signal transmission channel from the source to
the mth microphone. Then, the task of dereverberation is
to recover the source signal from N samples of the ob-
served signal. This is achieved by filtering the observed sig-
nal x(n) with the inverse filter of the room acoustic system
H(z). Let y(n) denote the recovered signal and let {g(k) =
[g1(k), . . . , gM(k)]T}−∞≤k≤∞ be the impulse response of the
inverse filter. Then, y(n) is represented as

y(n) =
∞∑

k=∞
g(k)Tx(n− k), (4)

or equivalently,

y(n) = [G(z)T]x(n), (5)

G(z) =
∞∑

k=∞
g(k)z−k. (6)

Note that, by definition, the recovered signal y(n) is
a single signal. We want to set up the tap weights
{gm(k)}1≤m≤M,−∞≤k≤∞ of the inverse filter so that y(n) is
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Table 1: List of main variables.

Variable Description

M Number of microphones

N Number of samples

K Order of room acoustic system

L Order of inverse filter of room acoustic system

P Order of speech production system

W Size of window function

T Number of time frames

s(n) Source signal

x(n) Possibly multichannel observed signal

y(n) Estimate of source signal

e(n) Innovations process

d(n) Estimate of innovations process

h(k) Impulse response of room acoustic system

g(k) Impulse response of inverse filter of room acoustic system

b(k,n) Parameter of speech production system

a(k,n) Estimate of parameter of speech production system

H(z), and so on Transfer function of room acoustic system {h(k)}0≤k≤K , and so on

GCD{P1(z), . . . ,Pn(z)} Greatest common divisor of polynomials P1(z), . . . ,Pn(z)

H(ξ) Differential entropy of possibly multivariate random variable ξ

J(ξ) Negentropy of possibly multivariate random variable ξ

I(ξ1, . . . , ξn) Mutual information between random variables ξ1, . . . , ξn
K(ξ1, . . . , ξn) Correlatedness between random variables ξ1, . . . , ξn
υ(ξ) Variance of random variable ξ

κi(ξ) ith-order cumulant of random variable ξ

Σ(ξ) Covariance matrix of multivariate random variable ξ

equalized with the source signal s(n) up to a constant scale
and delay. This requirement can also be stated as

G(z)TH(z) = αz−β, (7)

where α and β are constants representing the scale and delay
ambiguity, respectively.

Next, the model of the source signal s(n) is given as fol-
lows. A speech signal is widely modeled as being generated by
a nonstationary AR process [1]. In other words, the speech
signal is the output of a speech production system modeled
as a time variant AR system driven by an innovations process.
Let {b(k,n)}n∈Z, 1≤k≤P , where Z is the set of integers, denote
the time dependent parameters of the speech production sys-
tem of order P and let e(n) denote the innovations process.
Then, s(n) is described as

s(n) =
P∑

k=1
b(k,n)s(n− k) + e(n), (8)

or equivalently,

s(n) =
[

1
1− B(z,n)

]
e(n), (9)

B(z,n) =
P∑

k=1
b(k,n)z−k. (10)

In this paper, we assume that

(1) the innovations {e(n)}n∈Z consist of zero-mean inde-
pendent random variables,

(2) the speech production system 1/(1 − B(z,n)) has no
time invariant pole. This assumption is equivalent to
the following equation:

GCD
{
. . . , 1− B(z, 0), 1− B(z, 1), . . .

} = 1, (11)

where GCD{P1(z), . . . ,Pn(z)} represents the greatest
common divisor of polynomials P1(z), . . . ,Pn(z).

Although assumption (1) does not hold for a voiced portion
of speech in a strict sense due to the periodic nature of vo-
cal cord vibration, the assumption has been widely accepted
in many speech processing techniques including the linear
predictive coding of a speech signal. A comment on the va-
lidity of assumption (2) is provided in Section 4.

2.2. Fundamental problem

Figure 1 depicts the system that produces the observed signal
from the innovations process. We can see that the observed
signal is the output of H(z)/(1 − B(z,n)), which we call the
overall acoustic system, driven by the innovations process.

As mentioned above, our objective is to estimate the in-
verse filter of H(z). Despite this objective, we know only the
statistical property of the innovations process e(n), specified
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Overall acoustic system

Speech production
system

(1-input 1-output)

Room acoustic
system

(1-inputM-output)

e(n)
1 1 M

1
1− B(z,n)

s(n)
H(z) x(n)

Figure 1: Schematic diagram of system producing observed signal
from innovations process.

by assumption (1); neither the parameters of 1/(1− B(z,n))
nor those of H(z) are available. Therefore, we face the criti-
cal problem of how to obtain the inverse filter of H(z) sep-
arately from that of 1/(1 − B(z,n)) with blind processing.
This is the cause of the so-called excessive whitening problem
[6], which indicates that applying methods designed for i.i.d.
series (e.g., see [15, 16] and references therein) to a speech
signal results in cancelling not only the characteristics of the
room acoustic system H(z) but also the average characteris-
tics of the speech production system 1/(1− B(z,n)).

3. TIME-VARIANCE-BASED APPROACH

In order to overcome the problemmentioned above, we have
to exploit a characteristic that differs for the room acous-
tic system H(z) and the speech production system 1/(1 −
B(z,n)). We use the time variant nature of the speech pro-
duction system as such a characteristic.

Let us consider the inverse filter of the overall acoustic
system H(z)/(1 − B(z,n)). Since the overall acoustic system
consists of a time variant part 1/(1 − B(z,n)) and a time in-
variant partH(z), the inverse filter accordingly has both time
invariant and time variant zeros. The set of time invariant ze-
ros forms the inverse filter of the room acoustic system H(z)
while the time variant zeros constitute the inverse filter of
the speech production system 1/(1− B(z,n)). Hence, we can
obtain the inverse filter of the room acoustic system by ex-
tracting the time invariant subfilter from the inverse filter of
the overall acoustic system.

3.1. Review of conventional methods

A method of implementing the time-variance-based inverse
filter estimation is proposed in [13, 17]. The method pro-
posed in [13, 17] identifies the speech production system
and the room acoustic system assuming that both systems
are modeled as AR systems. The overall acoustic system is
first estimated from several contiguous disjoint observation
frames. In this step, it is assumed that the overall acous-
tic system is time invariant within each frame. Then, poles
commonly included in the framewise estimates of the over-
all acoustic system are collected to extract the time invariant
part of the overall acoustic system.

Overall acoustic system

Speech
production
system

Room
acoustic
system

Time-invariant
filter

(M-input 1-output)

Time-variant
filter

(1-input 1-output)

e(n)
1 1 1 1M

1
1− B(z,n)

s(n)
H(z)

x(n)
G(z)

y(n)
1− A(z,n) d(n)

Figure 2: Schematic diagram of global system from innovations
process to its estimate.

The method imposes the following two conditions.

(i) The frame size is larger than the order of the room
acoustic system as well as that of the speech produc-
tion system.

(ii) None of the system parameters change within a single
frame.

However, the parameters of the speech production system
change by tens of milliseconds while the order of the room
acoustic system may be equivalent to several hundred mil-
liseconds. Therefore, we can never design a frame size that
meets those two conditions. This frame-size problem is dis-
cussed in more detail in Section 3.2.

Moreover, this method assumes that the room acoustic
system is minimum phase, which may be an unrealistic as-
sumption. Therefore, it is difficult to apply this method to an
actual room environment.

Reference [14] proposes another method of implement-
ing the time-variance-based inverse filter estimation. The
method estimates only the room acoustic system based on
maximum a posteriori estimation assuming that the inno-
vations process e(n) is Gaussian white noise. However, the
method also assumes the room acoustic system to be mini-
mum phase.

3.2. Novel method based on joint estimation of time
invariant/time variant subfilters

The two requirements for the frame size with the conven-
tional method arise from the fact that it estimates the overall
acoustic system in the first step. Therefore, we propose the
joint estimation of the time invariant and time variant subfil-
ters of the inverse filter of the overall acoustic system directly
from the observed signal x(n).

Let us consider filtering x(n) with time invariant fil-
ter G(z) and then with time variant filter 1 − A(z,n) (see
Figure 2). If we represent the parameters of 1 − A(z,n) by
{a(k,n)}1≤k≤P , the final output d(n) is given as follows:

d(n) = y(n)−
P∑

k=1
a(k,n)y(n− k), (12)
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or equivalently,

d(n) = [1− A(z,n)
]
y(n), (13)

A(z,n) =
P∑

k=1
a(k,n)z−k, (14)

where y(n) is given by (5). Then, we have the following the-
orem under assumption (2).

Theorem 1. Assume that the final output signal d(n) is equal-
ized with innovations process e(n) up to a constant scale and
delay, and that 1− A(z,n) has no time invariant zero:

d(n) = αe(n− β), (15)

GCD
{
1− A(z, 1), . . . , 1− A(z,N)

} = 1. (16)

Then, the time invariant filter G(z) satisfies (7).

Proof. The proof is given in Appendix A.

This theorem states that we simply have to set up the tap
weights {gm(k)}1 and {a(k,n)} so that d(n) is equalized with
αe(n − β). The calculated time invariant filter G(z) corre-
sponds to the inverse filter of the room acoustic systemH(z),
and the time variant filter 1 − A(z,n) corresponds to that of
the speech production system 1/(1 − B(z,n)). Thus, we can
conclude that the joint estimation of the time invariant/time
variant subfilters is a possible solution to the problem de-
scribed in Section 2.2.

At this point, we can clearly explain the drawback of the
conventional method with a large frame size. When using a
large frame size, it is impossible to completely equalize d(n)
with αe(n− β) because 1/(1− B(z,n)) varies within a single
frame. Hence, the estimate of the overall acoustic system in
each frame is inevitably contaminated by estimation errors.
These errors make it difficult to extract static poles from the
framewise estimates of the overall acoustic system. By con-
trast, the joint estimation that we propose does not involve
the estimation of the inverse filter of the overall acoustic sys-
tem. Therefore, a frame size shorter than the order of the
room acoustic system can be employed, which enables us to
equalize d(n) with αe(n− β).

Since the innovations process e(n) is inaccessible in real-
ity, we have to develop criteria defined solely by using d(n).
These criteria are provided in the next two sections. The al-
gorithms derived can deal with a nonminimum phase system
as the room acoustic system since they use multiple micro-
phones and/or the HOS of the output d(n) [15, 16].

4. ALGORITHMUSING SECOND-ORDER STATISTICS

Since output signal d(n) is an estimate of innovations process
e(n), it would be natural to set up the tap weights {gm(k)}
and {a(k,n)} so that the statistical property of the outputs

1 Hereafter, we will omit the range of indices unless necessary.

{d(n)}1≤n≤N satisfies assumption (1). In this section, we de-
velop a criterion based only on the SOS of {d(n)}. To bemore
precise, we try to uncorrelate {d(n)}.

We assume the following two conditions additionally in
this section.

(i) M ≥ 2, that is, we use multiple microphones.
(ii) Subchannel transfer functions H1(z), . . . ,HM(z) have

no common zero.

Under these assumptions, the observed signal x(n) is an AR
process driven by the source signal s(n) [16]. Therefore, we
can substitute an FIR inverse filter of order L for the doubly-
infinite inverse filter in (4) as

y(n) =
L∑

k=0
g(k)Tx(n− k). (17)

Here, we can restrict the first tap of G(z) as

gm(0) =
⎧
⎪⎨
⎪⎩

1 m = 1,

0 m = 2, . . . ,M,
(18)

where the microphone with m = 1 is nearest to the source
(see [16] for details).

4.1. Loss function

LetK(ξ1, . . . , ξn) denote a suitable measure of correlatedness
between random variables ξ1, . . . , ξn. Then, the problem is
mathematically formulated as

minimize
{a(k,n)}, {gm(k)}

K
(
d(1), . . . ,d(N)

)

subject to
{
1− A(z,n)

}
1≤n≤N being minimum phase.

(19)

The constraint of (19) is intended to stabilize the estimate,
1/(1− A(z,n)), of the speech production system.

First, we need to define the correlatedness measureK(·).
Several criteria for measuring the correlatedness between
random variables have been developed [18, 19]. We use the
criterion proposed in [19] since it can be further simplified
as described later. The criterion is defined as

K
(
ξ1, . . . , ξn

) =
n∑

i=1
log υ

(
ξi
)− log

∣∣detΣ(ξ)
∣∣, (20)

ξ = [ξn, . . . , ξ1
]T
, (21)

where υ(ξ1), . . . , υ(ξn), respectively, represent the variances of
random variables ξ1, . . . , ξn, and Σ(ξ) denotes the covariance
matrix of ξ. Definition (20) is a suitable measure of correlat-
edness in that it satisfies

K
(
ξ1, . . . , ξn

) ≥ 0 (22)

with equality if and only if random variables ξ1, . . . , ξn are
uncorrelated as

i �= j ⇐⇒ E
{
ξiξ j

} = 0, (23)
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where E{·} denotes an expectation operator. Then, we will
try to minimize

K
(
d(1), . . . ,d(N)

) =
N∑

n=1
log υ

(
d(n)

)− log
∣∣detΣ(d)

∣∣,

(24)

d = [d(N), . . . ,d(1)
]T

(25)

with respect to {a(k,n)} and {gm(k)}. This loss function can
be further simplified as follows under (18) (see Appendix B):

K
(
d(1), . . . ,d(N)

) =
N∑

n=1
log υ

(
d(n)

)
+ constant. (26)

Hence, problem (19) is finally reduced to

minimize
{a(k,n)}, {gm(k)}

N∑

n=1
log υ

(
d(n)

)

subject to
{
1− A(z,n)

}
being minimum phase.

(27)

Therefore, we have to set up tap weights {a(k,n)} and
{gm(k)} under (18) so as to minimize the logarithmic mean
of the variances of outputs {d(n)}.

Next, we show that the set of 1 − A(z,n) and G(z) that
minimizes the loss function of (27) equalizes the output sig-
nal d(n) with the innovations process e(n).

Theorem 2. Suppose that there is an inverse filter, G(z), of
the room acoustic system that satisfies (7) and (18). Then,∑N

n=1 log υ(d(n)) achieves a minimum if and only if

d(n) = αe(n− β) = h1(0)e(n). (28)

Proof. The proof is presented in Appendix C.

With Theorems 1 and 2, a solution to problem (27) pro-
vides the inverse filters of the room acoustic system and the
speech production system.

Remark 1. Let us assume that the variance of d(n) is station-
ary. The loss function of (27) is then equal to N log υ(d(n)).
Because the logarithmic function is increasing monotoni-
cally, the loss function is further simplified to Nυ(d(n)),
which may be estimated by

∑N
n=1 d(n)2. Thus, the loss func-

tion of (27) is equivalent to the traditional least squares (LS)
criterion when the variance of d(n) is stationary. However,
since the variance of the innovations process indeed changes
with time, the loss function of (27) may be more appropriate
than the LS criterion. This conjecture will be justified by the
experiments described later.

4.2. Algorithm

In this section, we derive an algorithm for accomplishing
(27). Before we proceed, we introduce an approximation of
time variant filter 1 − A(z,n). Since a speech signal within a

short time frame of several tens of milliseconds is almost sta-
tionary, we approximate 1 − A(z,n) by using a filter that is
globally time variant but locally time invariant as

1− A(z,n) = 1− Ai(z), i =
⌊
n− 1
W

+ 1
⌋
, (29)

where W is the frame size and 	·
 represents the floor
function. Under this approximation, d(n) is produced from
y(n) as follows. The outputs {y(n)}1≤n≤N , of G(z) are seg-
mented into T short time frames by using a W-sample
rectangular window function. This generates T segments
{y(n)}N1≤n≤N1+W−1, . . . , {y(n)}NT≤n≤NT+W−1, where Ni is the
first index of the ith frame satisfyingN1 = 1,NT+W−1 = N ,
and Ni +W = Ni+1. Then, y(n) in the ith frame is processed
through 1− Ai(z) to yield d(n) as

d(n) = y(n)−
P∑

k=1
ai(k)y(n− k). (30)

By using this approximation, problem (27) is reformulated
as

minimize
{ai(k)}1≤i≤T , 1≤k≤P , {gm(k)}1≤m≤M, 1≤k≤L

N∑

n=1
log υ

(
d(n)

)

subject to
{
1− Ai(z)

}
1≤i≤T being minimum phase.

(31)

We solve problem (31) by employing an alternating vari-
ables method. The method minimizes the loss function with
respect first to {ai(k)} for fixed {gm(k)}, then to {gm(k)} for
fixed {ai(k)}, and so on. Let us represent the fixed value of
gm(k) by g̃m(k) and that of ai(k) by ãi(k). Then, we can for-
mulate the optimization problems for estimating {ai(k)} and
{gm(k)} as

minimize
{ai(k)}1≤i≤T , 1≤k≤P

N∑

n=1
log υ

(
d(n)

)∣∣∣∣
{gm(k)}={g̃m(k)}

subject to
{
1− Ai(z)

}
being minimum phase,

(32)

minimize
{gm(k)}1≤m≤M, 1≤k≤L

N∑

n=1
log υ

(
d(n)

)∣∣∣∣
{ai(k)}={ãi(k)}

. (33)

Note that only {gm(k)} with k ≥ 1 are adjusted. The first
tap weights {gm(0)} are fixed as (18). By repeating the opti-
mization cycle of (32) and (33) R1 times, we obtain the final
estimates of ai(k) and gm(k).

First, let us derive the algorithm that accomplishes (32).
We first note that (32) is achieved by solving the following
problem for each frame number i:

minimize
{ai(k)}1≤k≤P

Ni+W−1∑

n=Ni

log υ
(
d(n)

)∣∣∣∣
{gm(k)}={g̃m(k)}

subject to 1− Ai(z) being minimum phase.

(34)

Let us assume that d(n) is stationary within a single frame.
Then, the loss function of (34) becomes

Ni+W−1∑

n=Ni

log υ
(
d(n)

) = N log υ
(
d(n)

)
. (35)
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Furthermore, because of the monotonically increasing prop-
erty of the logarithmic function, the loss function be-
comes equivalent to Nυ(d(n)), which can be estimated
by

∑Ni+W−1
n=Ni

d(n)2. Thus, the solution to (34) is obtained
by minimizing the mean square of d(n). Such a solu-
tion is calculated by applying linear prediction (LP) to
{y(n)}Ni≤n≤Ni+W−1. It should be noted that LP guarantees
that 1 − Ai(z) is minimum phase when the autocorrelation
method is used [1].

Next, we derive the algorithm to solve (33). We realize
(33) by using the gradient method. By calculating the deriva-
tive of loss function

∑N
n=1 log υ(d(n)), we obtain the follow-

ing algorithm (see Appendix D for the derivation):

gm(k)′ = gm(k) + δ
T∑

i=1

〈
d(n)vm,i(n− k)

〉Ni+W−1
n=Ni〈

d(n)2
〉Ni+W−1
n=Ni

, (36)

vm,i(n) = xm(n)−
P∑

k=1
ai(k)xm(n− k), (37)

where 〈·〉Ni+W−1
n=Ni

is an operator that takes an average from
Nith to (Ni+W−1)th samples, and δ is the step size. The up-
date procedure (36) is repeated R2 times. Since the gradient-
based optimization of {gm(k)} is involved in each (32)-(33)
optimization cycle, (36) is performed R1R2 times in total.

Remark 2. Now, let us consider the special case of R1 = 1.
Assume that we initialize {gm(k)} as

gm(k) = 0, 1 ≤ ∀m ≤M, 1 ≤ ∀k ≤ L. (38)

Then, {ai(k)} is estimated via LP directly from the observed
signal, and {gm(k)} is estimated by using those estimates of
{ai(k)}. This is essentially equivalent to methods that use the
prewhitening technique [7–10]. In this way, the prewhiten-
ing technique, which has been used heuristically, is derived
from the models of source and room acoustics explained in
Section 2.Moreover, by repeating the (32)-(33) cycle, wemay
obtain more precise estimates.

4.3. Experimental results

We conducted experiments to demonstrate the performance
of the algorithm described above. We took Japanese sen-
tences uttered by 10 speakers from the ASJ-JNAS database
[20]. For each speaker, we made signals of various lengths by
concatenating his or her utterances. These signals were used
as the source signals, and by using these signals, we could
investigate the dependence of the performance on the sig-
nal length. The observed signals were simulated by convolv-
ing the source signals with impulse responses measured in
a room. The room layout is illustrated in Figure 3. The or-
der of the impulse responses, K , was 8000. The reverberation
time was around 0.5 seconds. The signals were all sampled at
8 kHz and quantized with 16-bit resolution.

The parameter settings are listed in Table 2. The initial
estimates of the tap weights were set as

gm(k) = 0, 1 ≤ ∀m ≤M, 1 ≤ ∀k ≤ L (39)

while {gm(0)}1≤m≤M are fixed as (18).

Room:
200 cm height

Source:
150 cm height

Microphones:
100 cm heightMicrophones

Source

35
5
cm

445 cm

65 cm

20 cm 95 cm

100 cm

80 cm

Figure 3: Room layout.

Table 2: Parameter settings. Each optimization (32) is realized by
LP whereas each (33) is implemented by repeating (36).

Number of microphones M 4

Order of G(z) L 1000

Frame size W 200

Order of Ai(z) P 16

Number of repetitions of (32)-(33) cycle R1 6

Number of repetitions of (36) R2 50

Offline experiments were conducted to evaluate the fun-
damental performance. For each speaker and signal length,
the inverse filter was estimated by using the corresponding
observed signal. The estimated inverse filter was applied to
the observed signal to calculate the accuracy of the estimate.
Finally, for each signal length, we averaged the accuracies
over all the speakers to obtain plots such as those in Figure 4.
In Figure 4, the horizontal axis represents the signal length,
and the vertical axis represents the averaged accuracy, whose
measures are explained below.

Since the proposed algorithm estimates the inverse fil-
ters of the room acoustic system and the speech production
system, we accordingly evaluated the dereverberation per-
formance by using two measures. One was the rapid speech
transmission index (RASTI2) [21], which is the most com-
mon measure for quantifying speech intelligibility from the
viewpoint of room acoustics. We used RASTI as a measure
for evaluating the accuracy of the estimated inverse filter
of the room acoustic system. According to [21], RASTI is
defined based on the modulation transfer function (MTF),
which quantifies the flattening of power fluctuations by re-
verberation. A RASTI score closer to one indicates higher
speech intelligibility. The other is the spectral distortion (SD)
[22] between the speech production system 1/(1 − B(z,n))
and its estimate 1/(1 − A(z,n + β)). Since the characteristics
of the speech production system can be regarded as those of

2 We used RASTI instead of the speech transmission index (STI) [21],
which is the precise version of RASTI, because calculating an STI score
requires a sampling frequency of 16 kHz or greater.
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Figure 4: RASTI as a function of observed signal length.

the clean speech signal, the SD represents the extraction er-
ror of the speech characteristics. We used the SD as ameasure
for assessing the accuracy of the estimated inverse filter of the
speech production sytem. The reference 1/(1 − B(z,n)) was
calculated by applying LP to the clean speech signal s(n) seg-
mented in the same way as the recovered signal y(n).

To show the effectiveness of incorporating the nonsta-
tionarity of the innovations process (see the remark in the
last paragraph of Section 4.1), we compared the performance
of the proposed algorithm with that of an algorithm based
on the least squares (LS) criterion. The LS-based algorithm
solves

minimize
{ai(k)},{gm(k)}

N∑

n=1
d(n)2

subject to
{
1− Ai(z)

}
being minimum phase.

(40)

Such an algorithm can be easily obtained by replacing the
algorithm solving (33) by the multichannel LP [16, 23].

Figure 4 shows the RASTI score averaged over the 10
speakers’ results as a function of the length of the observed
signal. Figure 5 shows the SD averaged over the results for all
time frames and speakers. There was little difference between
the results of the proposed algorithm and those of the LS-
based algorithm when the length of the observed signal was
above 10 seconds. Hence, we plot the results for observed sig-
nals duration up to 10 seconds in Figures 4 and 5 to highlight
the difference between the two algorithms. We can see that
the proposed algorithm outperformed the algorithm based
on the LS criterion especially when the observed signals were
short.

We found that, among the 10 speakers, the dereverbera-
tion performance for the male speakers was a bit better than
that for the female speakers. This is probably because as-
sumption (1) fits better for male speakers because the pitches

1086420
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Figure 5: SD as a function of observed signal length.
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Figure 6: Energy decay curves of impulse responses before and after
dereverberation.

of male speeches are generally lower than those of female
speeches.

In Figure 6, we show examples of the energy decay curves
of impulse responses before and after the dereverberation ob-
tained by using an observed signal of five seconds. A clear re-
duction in reflection energy can be seen; there was a 15 dB
reduction in the reverberant energy 50milliseconds after the
arrival of the direct sound.

From the above results, we conclude that the proposed
algorithm can estimate the inverse filter of the room acoustic
system with a relatively short 3–5 second observed signal.

5. ALGORITHMUSING HIGHER-ORDER
STATISTICS

In this section, we derive an algorithm that estimates
{a(k,n)}1≤n≤N , 1≤k≤P and {gm(k)}1≤m≤M, 0≤k≤L so that the
outputs {d(n)}1≤n≤N become statistically independent of
each other. Statistical independence is a stronger require-
ment than the uncorrelatedness exploited by the algorithm
described in the preceding section since the independence of
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random variables is characterized by both their SOS and their
HOS. Therefore, an algorithm based on the independence of
{d(n)} is expected to realize a highly accurate inverse filter
estimation because it fully uses the characteristics of the in-
novations process specified by assumption (1).

Before presenting the algorithm, we formulate a theorem
about the uniqueness of the estimates, {d(n)}, of the innova-
tions {e(n)}. In this section, we also assume that

(i) the innovations {e(n)} have non-Gaussian distribu-
tions,

(ii) the innovations {e(n)} satisfy the Lindeberg condition
[24].

Under these assumptions, we have the following theorem.

Theorem 3. Suppose that variables {d(n)} are not determin-
istic. If {d(n)} are statistically independent with non-Gaussian
distributions, then d(n) is equalized with e(n) except for a pos-
sible scaling and delay.

Proof. The proof is deferred to Appendix E.

By using Theorems 1 and 3, it is clear that the inverse
filters of the room acoustic system and the speech production
system are uniquely identifiable.

In practice, the doubly-infinite inverse filterG(z) in (4) is
approximated by the L-tap FIR filter as

y(n) =
L∑

k=0
g(k)Tx(t − k). (41)

Unlike the SOS-based algorithm, we need not constrain the
first tap weights as (18). Thus, we estimate {gm(k)} with k ≥
0 in this section.

5.1. Loss function

Let us represent the mutual information of random variables
ξ1, . . . , ξn by I(ξ1, . . . , ξn). By using themutual information as
a measure of the interdependence of the random variables,
we minimize the loss function defined as I(d(1), . . . ,d(N))
with respect to {a(k,n)} and {gm(k)} under the constraint
that instantaneous systems {1−A(z,n)} are minimum phase
in a similar way to (19). The loss function can be rewritten as
(see Appendix F)

I
(
d(1), . . . ,d(N)

) = −
N∑

n=1
J
(
d(n)

)
+K

(
d(1), . . . ,d(N)

)
,

(42)

where J(ξ) denotes the negentropy [25] of random vari-
able ξ. The computational formula of the negentropy is given
later. The negentropy represents the nongaussianity of a ran-
dom variable. From (42), what we try to solve is formulated
as

minimize
{a(k,n)}, {gm(k)}

(
−

N∑

n=1
J
(
d(n)

)
+K

(
d(1), . . . ,d(N)

)
)

subject to
{
1− A(z,n)

}
being minimum phase.

(43)

By comparing (43) with (19), it is found that (43) exploits the
negentropies of {d(n)} in addition to the correlatedness be-
tween {d(n)} as a criterion. Therefore, we try not only to un-
correlate outputs {d(n)} but also to make the distributions
of {d(n)} as far from the Gaussian as possible.

5.2. Algorithm

As regards time variant filter 1 − A(z,n), we again use ap-
proximation (29). Then, we solve

minimize
{ai(k)}, {gm(k)}

(
−

N∑

n=1
J
(
d(n)

)
+K

(
d(1), . . . ,d(N)

))

subject to
{
1− Ai(z)

}
being minimum phase

(44)

instead of (43).
Problem (44) is solved by the alternating variables

method in a similar way to the algorithm in Section 4.
Namely, we repeat the minimization of the loss function with
respect to {ai(k)} for fixed {gm(k)} and minimization with
respect to {gm(k)} for fixed {ai(k)}. However, since the loss
function of (44) is very complicated, we derive a suboptimal
algorithm by introducing the following assumptions found
in our preliminary experiment.

(i) Given {gm(k)}, or equivalently, given y(n), the set of
parameters {ai(k)} that minimizesK(d(1), . . . ,d(N))
also reduces the loss function of (44).

(ii) Given {ai(k)}, the set of parameters {gm(k)} that min-
imizes (−∑N

n=1 J(d(n))) also reduces the loss function
of (44).

With assumption (i), we again estimate {ai(k)}1≤k≤P by
applying LP to segment {y(n)}Ni≤n≤Ni+W−1, which is the out-
put of G(z), for each i. It should be remembered that we can
obtain minimum-phase estimates of {1−Ai(z)} by using LP.

Next, we estimate {gm(k)} for fixed {ai(k)} by maximiz-
ing

∑N
n=1 J(d(n)) based on assumption (ii). By using the

Gram-Charlier expansion and retaining dominant terms, we
can approximate the negentropy J(ξ) of random variable ξ
as [26]

J(ξ) � κ3(ξ)2

12υ(ξ)3
+

κ4(ξ)2

48υ(ξ)4
, (45)

where κi(ξ) represents the ith order cumulant of ξ. Generally,
the innovations of a speech signal have supergaussian dis-
tributions whose third-order cumulants are negligible com-
pared with its fourth-order cumulants. Therefore, we finally
reach the following problem in the estimation of {gm(k)}:

maximize
{gm(k)}1≤m≤M, 0≤k≤L

N∑

n=1

κ4
(
d(n)

)

υ
(
d(n)

)2

∣∣∣∣
{ai(k)}={ãi(k)}

subject to
M∑

m=1

L∑

k=0
gm(k)2 = 1.

(46)

We again note that the range in k is from 0 to L unlike (33).
The constraint of (46) is intended to determine the constant
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Figure 7: RASTI as a function of observed signal length.

scale α arbitrarily. We use the gradient method to realize this
maximization. By taking the derivative of the loss function of
(46), we have the following algorithm:

gm(k)′ = gm(k)

+ δ
T∑

i=1

4
〈
d(n)2

〉4

×(〈d(n)3vm,i(n− k)
〉〈
d(n)2

〉2

− 〈d(n)4〉〈d(n)2〉〈d(n)vm,i(n− k)
〉)
,

gm(k)′′ = gm(k)′∑M
m=1

∑L
k=0 gm(k)′

2 ,

(47)

where the averages are calculated for indicesNi toNi+W−1.
Here, we have again used the assumption that d(n) is station-
ary within a single frame just as we did in the derivation of
(36).

Remark 3. While we can easily estimate {ai(k)} and {gm(k)}
with assumptions (i) and (ii), the convergence of the al-
gorithm is not guaranteed because the assumptions may
not always be true. We examine this issue experimentally.
It is hoped that future work will reveal the theoretical back-
ground to the assumptions.

5.3. Experimental results

We compared the dereverberation performance of the HOS-
based algorithm proposed in this section with that of the
SOS-based algorithm described in the previous section. We
used the same experimental setup as that in the previous sec-
tion except for the iteration parameters R1 and R2, which we
set at 10 and 20, respectively.

Figure 7 shows the RASTI score averaged over the 10
speakers’ results as a function of the length of the observed
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Figure 8: SD as a function of observed signal length.
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Figure 9: RASTI as a function of iteration number.

signal. As expected, we can see that the HOS-based algorithm
outperformed the SOS-based algorithm when the observed
signal was relatively long. In particular, when an observed
signal of longer than 20 seconds was available, the RASTI
score was nearly equal to one. Figure 8 shows the average
SD. Again, we can confirm the great superiority of the HOS-
based algorithm to the SOS-based algorithm in terms of
asymptotic performance.

In Figure 9, we plot the average RASTI score as a func-
tion of the number of alternations of estimation parame-
ters {ai(k)} and {gm(k)}. We can clearly see the convergence
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Figure 10: RASTI obtained in the presence of noise.

of the RASTI score. The RASTI score converges particularly
rapidly when the observed signal length is sufficiently large.

6. DISCUSSION

6.1. Effect of additive noise

Thus far, we have considered a system without any additive
noise. In this section, we experimentally examine the effect
of additive noise on the performance of the proposed algo-
rithms3.

We tested a case where the observed signal was con-
taminated by additive white Gaussian noise with signal to
noise ratios (SNR) of 40, 30, 20, and 10 dB. Since the pro-
posed methods do not involve noise reduction, we mea-
sured the performance as a RASTI score calculated by us-
ing the impulse response of equalized room acoustic system
G(z)TH(z).

In Figure 10, we plot the average RASTI scores as a func-
tion of the SNR for observed signals of five and twenty sec-
onds. The SOS-based algorithm was relatively robust against
additive noise. Although the performance of the HOS-based
algorithm was degraded more severely than that of the SOS-
based algorithm, the former still exhibited excellent perfor-
mance in the presence of noise with an SNR of 30 dB or
greater when the observed signal was 20 seconds long.

Thus, it is a promising way to combine the proposed
algorithms with traditional noise reduction methods such
as spectral subtraction [28] in a noisy environment with a

3 We also conducted an experiment by using real recordings where the
room acoustic system might fluctuate and where there was slight back-
ground noise. Good dereverberation performance was achieved in this
experiment. The result is reported in [27].
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Figure 11: Histogram showing the number of poles of the speech
production system in each small region in the complex plane.

severe SNR. An investigation of such a combination is how-
ever beyond the scope of this paper.

6.2. Validity of assumption (2)

Assumption (2) is one of the essential assumptions that form
the basis of the proposed algorithms. Here we investigate its
validity.

Figure 11 is an example histogram showing the number
of poles of the speech production system included in a clean
speech signal of five seconds in each small region in the com-
plex plane. The number of poles in each region is normalized
by the total frame number. Due to this normalization, re-
gions with a value of one correspond to time invariant poles.
In Figure 11, we can see no such regions, which indicates that
there is no time invariant pole. This result supports assump-
tion (2).

7. CONCLUSION

We have described the problem of speech dereverberation.
The contribution of this paper is summarized as follows.

(i) We proposed the joint estimation of the time invariant
and time variant subfilters of the inverse filter of an
overall acoustic system. It was shown that these subfil-
ters correspond to the inverse filters of a room acoustic
system and a speech production system, respectively.

(ii) We developed two distinct algorithms; one uses a crite-
rion based on the SOS of the output while the other is
based on theHOS. The SOS-based algorithm improves
RASTI by 0.1 even when the observed signals are at
most 5-second long. By contrast, the HOS-based algo-
rithm estimates the inverse filter with a RASTI score of
nearly one, as long as observed signals of longer than
20 seconds are available.

The main purpose of this paper is to elucidate the the-
oretical background of the joint estimation based speech
dereverberation and the corresponding algorithms and to
evaluate their fundamental performance. Thus, we have not
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investigated practical issues such as computational costs and
adaptation to time varying environments. A simple way to
cope with these issues would be to employ stochastic gradi-
ent learning. An exaustive subjective listening test should also
be conducted. Investigating these issues in depth is a subject
for future study.

APPENDICES

A. PROOF OF THEOREM 1

By using (2), (5), and (13), we obtain

d(n) = [(1− A(z,n)
)
G(z)TH(z)

]
s(n). (A.1)

Substituting (15) into (A.1) yields

αe(n− β) = [(1− A(z,n)
)
G(z)TH(z)

]
s(n). (A.2)

On the other hand, from (9), we have

e(n) = [1− B(z,n)
]
s(n) = [1− B(z,n)z−β

]
s(n + β).

(A.3)

This equation is equivalent to

e(n− β) = [1− B(z,n− β)z−β
]
s(n). (A.4)

Relations (A.2) and (A.4) give
(
1− A(z,n)

)
G(z)TH(z)

= (1− B(z,n− β)
)
αz−β, 1 ≤ ∀n ≤ N.

(A.5)

Since both 1−A(z,n) and 1−B(z,n) have no time invariant
zero according to (16) and (11), we have

G(z)TH(z) = αz−β. (A.6)

B. DERIVATION OF (26)

In this appendix, we show that log |detΣ(d)| is in-
variant with respect to {a(k,n)}1≤n≤N , 1≤k≤P and
{gm(k)}1≤m≤M, 1≤k≤L. We here assume that s(n) = 0
when n ≤ 0. Hence, relation (B.10), which we derive here,
may be an approximation.

Output vector d, defined by (25), is represented by using
y = [y(N), . . . , y(1)]T as

d = Ay, (B.1)

where A is defined as (B.2):

A =
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −a(1,N) · · · · · · −a(P,N)

1 −a(1,N−1) · · · · · · −a(P,N−1)
. . .

. . .

1 −a(1,P+1) · · · · · · −a(P,P+1)
1 −a(1,P) · · · −a(P−1,P)

. . .
. . .

...

1 −a(1, 2)
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(B.2)

Relation Σ(d) = E{ddT} = AE{yyT}AT = AΣ(y)AT

leads to

log
∣∣detΣ(d)

∣∣ = log
∣∣detΣ(y)

∣∣ + 2 log |detA|. (B.3)

Because the determinant of an upper triangular matrix is
the product of its diagonal components, we have detA = 1.
Hence, we obtain

log
∣∣detΣ(d)

∣∣ = log
∣∣detΣ(y)

∣∣. (B.4)

y is related to s = [s(N), . . . , s(1)]T as

y =
M∑

m=1
Gmxm =

( M∑

m=1
GmHm

)
s, (B.5)

where xm, Gm, and Hm are written as

xm =
[
xm(N), . . . , xm(1)

]T
,

Gm =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

gm(0) · · · gm(L) O
. . .

. . .

gm(0) · · · gm(L)
. . .

...

O gm(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Hm =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hm(0) · · · hm(K) O
. . .

. . .

hm(0) · · · hm(K)
. . .

...

O hm(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(B.6)

Hence, in a similar way to (B.3), we obtain

log
∣∣detΣ(y)

∣∣ = log
∣∣detΣ(s)

∣∣ + 2 log

∣∣∣∣∣det
( M∑

m=1
GmHm

)∣∣∣∣∣

= 2 log

∣∣∣∣∣det
( M∑

m=1
GmHm

)∣∣∣∣∣ + constant.

(B.7)

Since
∑M

m=1GmHm is also an upper triangular matrix with
diagonal elements of

∑M
m=1 hm(0)gm(0), we have

log

∣∣∣∣∣det
( M∑

m=1
GmHm

)∣∣∣∣∣ = N log

( M∑

m=1
hm(0)gm(0)

)
.

(B.8)

Substituting (18) into (B.8) yields

log

∣∣∣∣∣det
( M∑

m=1
GmHm

)∣∣∣∣∣ = N logh1(0) = constant.

(B.9)

By using (B.3), (B.7), and (B.9), we can derive

log detΣ(d) = constant. (B.10)
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C. PROOF OF THEOREM 2

By (4) and (12), d(n) is written by using {s(n− k)}0≤k≤K+L+P
as

d(n) = h1(0)s(n) + Lc
{
s(n− k); 1 ≤ k ≤ K + L + P

}
,
(C.1)

where Lc{·} stands for the linear combination. By substitut-
ing (8) into (C.1), d(n) is rewritten as

d(n) = h1(0)e(n) + u
(
n;G(z),A(z,n)

)
, (C.2)

where u(n) is of the form

u(n) = Lc
{
s(n− k); 1 ≤ k ≤ K + L + P

}
. (C.3)

Because s(n) is of the form

s(n) = Lc
{
e(n), s(n− k); 1 ≤ k ≤ P

}
(C.4)

as in (8), s(n) has no components of {e(n+k)}k≥1. Therefore,
e(n) and u(n) are statistically independent. Then, we have

υ
(
d(n)

) = h1(0)2υ
(
e(n)

)
+ υ
(
u(n)

) ≤ h1(0)2υ
(
e(n)

)

(C.5)

with equality if and only if

υ
(
u(n)

) = 0. (C.6)

Because the logarithmic function is increasing monotoni-
cally,

∑N
n=1 log υ(d(n)) reaches a minimum if and only if

υ
(
u(n)

) = 0, 1 ≤ ∀n ≤ N. (C.7)

According to (C.2), condition (C.7) is satisfied if and only if
d(n) is equalized with e(n) as

d(n) = h1(0)e(n). (C.8)

D. DERIVATION OF (36)

By using the assumption that d(n) is stationary within a sin-
gle frame and replacing the variance υ(d(n)) by its sample
estimate, the loss function of (33),

∑N
n=1 log υ(d(n)), is esti-

mated by

T∑

i=1
W log

〈
d(n)2

〉Ni+W−1
n=Ni

∝
T∑

i=1
log

〈
d(n)2

〉Ni+W−1
n=Ni

. (D.1)

The derivative of the right-hand side of (D.1) with respect to
gm(k) is

∂

∂gm(k)

T∑

i=1
log

〈
d(n)2

〉Ni+W−1
n=Ni

=
T∑

i=1

2
〈
d(n)2

〉Ni+W−1
n=Ni

〈
d(n)

∂d(n)
∂gm(k)

!Ni+W−1

n=Ni

.

(D.2)

The derivative of d(n) belonging to the ith frame is

∂d(n)
∂gm(k)

= ∂y(n)
∂gm(k)

−
P∑

l=1
ai(l)

∂y(n− l)
∂gm(k)

= xm(n− k)−
P∑

l=1
ai(l)xm(n− l − k)

= vm,i(n− k).

(D.3)

From (D.2) and (D.3), we have the update equation of (36).

E. PROOF OF THEOREM 3

Let { f (k,n)}−∞≤k≤∞ be the impulse response of the global
system (1−A(z,n))G(z)TH(z)/(1− B(z,n)) at time n. Since
d(n) has a non-Gaussian distribution, sequence { f (k,n)} has
finite nonzero components according to the central limit the-
orem [24]. Because d(n) is not deterministic, { f (k,n)} has at
least one nonzero component. Let the first nonzero compo-
nent of { f (k,n)} be f (βn,n). Since the time variant part of
the global system (1 − A(z,n))G(z)TH(z)/(1 − B(z,n)) has
the first tap of weight one, we have

βm = βn, f
(
βm,m

) = f
(
βn,n

)
, ∀m, ∀n. (E.1)

So we can represent the index and value of the first nonzero
component as β and α, respectively. Because variables {d(n)}
are independent, we obtain the following relation by using
Darmois’ theorem [25]:

f (k,n) f (k −m,n−m) = 0, ∀n, ∀k, ∀m �= 0. (E.2)

If

k = β +m, (E.3)

we have

f (k −m,n−m) = f (β,n−m) = α �= 0. (E.4)
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Therefore, ifm �= 0, we obtain by using (E.2)

f (k,n) = f (β +m,n) = 0. (E.5)

Thus, { f (k,n)} has only one nonzero component f (β,n) =
α. Since d(n) is represented as

d(n) =
[(

1− A(z,n)
)
G(z)TH(z)

1− B(z,n)

]
e(n), (E.6)

d(n) is equalized with e(n) up to constant scale α and delay
β.

F. DERIVATION OF (40)

Mutual information I(d(1), . . . ,d(N)) is defined as

I
(
d(1), . . . ,d(N)

) =
N∑

n=1
H
(
d(n)

)−H(d), (F.1)

whereH(ξ) represents the differential entropy of (multivari-
ate) random variable ξ. From (B.1), we have

H(d) =H(y) + log |detA|. (F.2)

Because of (B.3), we also have

log |detA| = 1
2

(
log

∣∣detΣ(d)
∣∣− log

∣∣detΣ(y)
∣∣). (F.3)

Substituting (F.2) and (F.3) into (F.1) gives

I
(
d(1), . . . ,d(N)

)

=
N∑

n=1
H
(
d(n)

)− 1
2
log

∣∣detΣ(d)
∣∣

+
1
2
log

∣∣detΣ(y)
∣∣−H(y)

= −
N∑

n=1

(
1
2
log υ

(
d(n)

)−H
(
d(n)

))

+
1
2

( N∑

n=1
log υ

(
d(n)

)− log
∣∣detΣ(d)

∣∣
)

+
1
2
log

∣∣detΣ(y)
∣∣−H(y).

(F.4)

Now, the negentropy of n-dimensional random variable ξ is
defined as

J(ξ) =H
(
ξgauss

)−H(ξ)

= 1
2
log

∣∣detΣ
(
ξgauss

)∣∣ +
n

2
(1 + log 2π)−H(ξ),

(F.5)

where ξgauss is a Gaussian random variable with the same co-
variance matrix as that of ξ. By using (20) and (F.5), (F.4) is
rewritten as

I
(
d(1), . . . ,d(N)

)

= −
N∑

n=1
J
(
d(n)

)
+ J(y) +K

(
d(1), . . . ,d(N)

)
.

(F.6)

Furthermore, since y is related to s by an N × N regular lin-
ear transformation according to (B.5), and the negentropy is
conserved by such linear transformation, we obtain

J(y) = constant. (F.7)

From (F.6) and (F.7), we finally reach (42).
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