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It has recently been shown that the n-dimensional reduced adder graph (RAG-n) technique is beneficial for many DSP applications
such as for FIR and IIR filters, where multipliers can be grouped in multiplier blocks. This paper highlights the importance of DFT
and FFT as DSP objects and also explores how the RAG-n technique can be applied to these algorithms. This RAG-n DFT will
be shown to be of low complexity and possess an attractively regular VLSI data flow when implemented with the Rader DFT
algorithm or the Bluestein chirp-z algorithm. ASIC synthesis data are provided and demonstrate the low complexity and high
speed of the design when compared to other alternatives.
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1. INTRODUCTION

The discrete Fourier transform (DFT) and its fast implemen-
tation, the fast Fourier transform (FFT), have both played a
central role in digital signal processing. DFT and FFT algo-
rithms have been invented (and reinvented) in many varia-
tions. As Heideman et al. [1] have pointed out, we know that
Gauss used an FFT-type algorithm we now call the Cooley-
Tukey FFT.

We will follow the terminology introduced by Burrus [2],
who classified FFT algorithms according to the (multidimen-
sional) index maps of their input and output sequences. We
will therefore call all algorithms which do not use a multi-
dimensional index map DFT algorithms, although some of
them, such as theWinograd DFT algorithms, enjoy an essen-
tially reduced computational effort.

In a recent EURASIP paper by Macleod [3], the adder
costs were discussed of rotators used to implement the com-
plex multiplier in fully pipelined FFTs for 13 different meth-
ods, ranging from the direct method and 3-multiplier meth-
ods to the matrix CSE method and CORDIC-based designs.
It was determined that not a single structure gave the best re-
sults for all twiddle factor values. On average the CORDIC-
based method gave the best results for single multiplier costs.
In this paper, we restrict our design to the two most popu-
lar methods (4× 2+ and 3× 5+) used in FFT cores [4, 5] by
FPGA vendors.

The literature provides many FFT design examples. We
found implementations with programmable signal proces-
sors and ASICs [6–10]. FFTs have also been developed using
FPGAs for 1D [11, 12] and 2D transforms [13, 14].

This paper deals with the implementation of two alterna-
tives of fast DFTs via a transformation into an FIR filter. The
methods are called a Rader DFT algorithm and a Bluestein
chirp-z transform. We will present latency data (measured in
clock cycles) when the FFT-block is used in a microproces-
sor coprocessor configuration. The design data are compared
with direct matrix multiplier DFT methods and radix-2 and
radix-4 type Cooley-Tukey based FFTs as used by FPGA ven-
dors [5]. The provided area data are measured in equivalent
gates as typical for cell-based ASIC designs.

2. CONSTANT COEFFICIENTMULTIPLICATIONS

DSP algorithms areMAC intensive. Essential savings are pos-
sible if the multiplications are constant and not variable. Sta-
tistically, half the digits will be zero in the two’s complement
coding of a number. As a result, if a constant coefficient is
realized with an array multiplier,1 on average 50% of the par-
tial products will also be zero. In the case of a canonic signed

1 An array multiplier is usually synthesized by an ASIC tool in a binary
adder tree structure.
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. . ., x[1], x[3], x[2], x[6], x[4], x[5]

Permuted input sequence

W5
7 W4

7 W6
7 W2

7 W3
7 W1

7

x[0] + z−1 + z−1 + z−1 + z−1 + z−1 +

DFT: X[5], X[4], X[6], X[2], X[3], X[1]

Figure 1: Length p = 7 Rader prime factor DFT implementation.

digit (CSD) system, that is, digits with the ternary values
{0, 1,−1} = {0, 1, 1}, and no two adjacent nonzero digits,
the density of the nonzero elements becomes 33%. However,
sometimes it can be more efficient to first factor the coef-
ficient into several factors, thus realizing the individual fac-
tors in an optimal CSD sense [15–18]. This multiplier adder
graph (MAG) representation reduces, on average, the imple-
mentation effort to 25% when compared to the number of
product terms used in an array multiplier [3, 19].

In many DSP algorithms, we can achieve additional cost
reduction if we combine several multipliers within a multi-
plier block. The transposed FIR filter shown in Figure 1 is
a typical example for a multiplier block. It has been noted
by Bull and Horrocks [15, 16] that such a multiplier block
can be implemented very efficiently. Later, Dempster and
Macleod [20] introduced a systematic algorithm, which pro-
duces an n-dimensional reduced adder graph (RAG-n) of a
block multiplier. In general, however, finding the optimal
RAG-n is an NP-hard problem. RAG-n determines when
the design is optimal; for the suboptimal case, heuristics are
used. The full 10-step RAG-n algorithms can be found in
[20].

Another alternative to implementing multiple constant
multiplication is to use the subexpression technique first in-
troduced byHartley [21]. Here, common patterns in the CSD
coding are identified and successively combined. For random
coefficients, minor improvements were observed compared
with RAG-n. For multiplier blocks with redundancy, RAG-n
generally offered the best performance [23].

3. FIR FILTER STRUCTURES USED TO
COMPUTE THE DFT

FIR filters are widely studied DSP structures. Their behavior
in terms of quantization error, BIBO stability, and the ability
to build fast-pipelined structures make FIR filters very attrac-
tive. Two algorithms have been used to compute the DFT via
the FIR structure. These two are the Rader algorithm, which
requires an I/O data permutation and a cyclic convolution,
and the Bluestein chirp-z algorithm, which uses a complex
I/O multiplication and a linear FIR filter. These two algo-
rithms are briefly reviewed below. Details can be found in
the DSP textbooks [24, 25], as well as in a wide variety of
FFT books [26–30].

The DFT is defined as follows:

X[k] =
N−1∑

n=0
x[n]Wnk

N k,n ∈ ZN , WN = e j2π/N . (1)

The Rader algorithm [31, 32] used to compute the DFT is
defined only for prime length N . Because N = p is a prime,
we know that there is a primitive element, a generator g, that
generates all elements of n and k in the field Zp, excluding
zero. We substitute n with gn mod N and k through gk mod
N and get the following index transform:

X
[
gk mod N

]− x[0] =
N−2∑

n=0
x
[
gn mod N

]
W

gn+k mod (N−1)
N

(2)

for k ∈ {1, 2, 3, . . . ,N − 1}. We notice that the right-hand
side of (2) is a cyclic convolution, that is,

[
x
[
g0 mod N

]
, x
[
g1 mod N

]
, . . . , x

[
gN−2 mod N

]]

�
[
WN ,W

g
N , . . . ,W

gN−2 mod (N−1)
N

]
.

(3)

The DC component must be computed separately as

X[0] =
N−1∑

n=0
x[n]. (4)

Figure 1 shows the Rader algorithm forN = 7 using the mul-
tiplier block technique.

The second algorithm that transforms a DFT into an FIR
filter is the Bluestein chirp-z transform (CZT) algorithm.
Here the DFT exponent nk is a quadratic expanded to

nk = − (k − n)2

2
+
n2

2
+
k2

2
. (5)

The DFT therefore becomes

X[k] =Wk2/2
N

N−1∑

n=0

(
x[n]Wn2/2

N

)
W−(k−n)2/2

N . (6)

The computation of the DFT is therefore done in three steps:

(1) N multiplications of x[n] withWn2/2
N ;

(2) linear convolution of x[n]Wn2/2
N ∗W−n2/2

N ;
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x[n]

exp(− jπn2/N)

Permultiplication
with chirp signal

Linear
convolution

exp(− jπk2/N)

Postmultiplication
with chirp signal

X[k]

Figure 2: The Bluestein chirp-z algorithm.

Table 1: Number of coefficients and costs of Rader multiplier block
implementation for 12-bit plus sign coefficients.

DFT length 7 17 31 61 127 257

CN 6 16 30 60 126 256

RN 6 16 30 60 124 253

CSD 21 59 100 201 428 810

MAG 18 51 85 175 360 688

RAG-n 11 23 35 61 124 237

(3) N multiplications withWk2/2
N .

This algorithm is graphically interpreted in Figure 2.
For a complete transform, we need a lengthN linear con-

volution and 2N complex multiplications. The advantage,
compared with the Rader algorithms, is that there is no re-
striction to primes in the transform length N . CZT can be
defined for every length.

3.1. RAG-n implementation of DFTs

Because the Rader algorithm is restricted to prime lengths,
there is less redundancy in the coefficients compared with
the Bluestein chirp-z DFT algorithms, which can be defined
for any length. Table 1 shows, for the primes next to length
2n, the implementation effort of the circular filter in trans-
posed form. The numbers of adders required to implement
the 12-bit filter coefficients are shown for CSD, MAG [17],
and RAG-n [20].

The first row in Table 1 shows the cyclic convolution
length N , which is also next to the number of complex co-
efficients CN = N − 1, shown in row 2. Row 3 shows the
number RN of different real sin/cos coefficient multiplier that
must be implemented. Comparing row 3 and the worst case
with 2(N−1) real sin/cos coefficients, we see that redundancy
and trivial coefficients reduce the number of nontrivial coef-
ficients by a factor of 2. The last three rows show the costs
(i.e., the number of adders) for a 12-bit multiplier precision
implementation using CSD, MAG, or RAG-n algorithms, re-
spectively. Note the advantage of RAG-n, especially for longer
filters. RAG-n only requires about 1/3 the adder of CSD-type
filters.

The effort for the CSD, MAG, and RAG-n methods for
all the Rader DFTs up to a length of 257 is graphically inter-
preted in Figure 3.

Narasimha et al. [33] have noticed that in the CZT al-
gorithm many coefficients of the FIR filter part are trivial or
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Figure 3: Effort for a complex multiplier block design in the Rader
algorithm.

Table 2: Number of coefficients and costs of a CZTmultiplier block
implemented with 12-bit plus sign coefficients.

N 8 16 32 64 128 256

CN 4 7 12 23 44 87

RN 2 3 6 11 22 43

CSD 6 10 19 38 70 148

MAG 6 9 17 34 62 129

RAG-n 5 7 11 19 24 44

identical. For instance, the length-8 CZT has an FIR filter of
length 15, C(n) = e j2π((n

2/2 mod 8)/8), n = 1, 2, . . . , 15, but there
are only four different complex coefficients. These four coef-
ficients are 1, j, and±e jπ/8, that is, we have only two nontriv-
ial real coefficients to implement in the length-8 CZT.

In general, power-of-two lengths are popular building
blocks for Cooley-Tukey FFTs, so we use N = 2n in Table 2
for a comparison.

The comparison of Table 2 with the Rader data shown in
Table 1 shows the advantages of the CZT implementation.

The effort for the CSD, MAG, and RAG-n methods for
the CZT DFT up to a length of 256 is graphically interpreted
in Figure 4. Note that the DFTs with a maximum transform
length are connected through an extra solid line. Due to co-
efficient redundancy explored in the CZT design, we see that
some longer transform lengths may have a lower implemen-
tation effort than some shorter transforms. For this reason,
we might try to use the longer transform whenever possible.

3.2. Complex RAG-nDFT implementations

Thus far we have implemented a DFT of a real input sequ-
ence; the complex twiddle factor multiplication Wnk

n is im-
plemented with two real multiplications. For complex in-
put DFTs, we have two choices for how to implement the
complex multiplication. We might use a straightforward
approach with 4 real multiplications and 2 real additions:

(a + jb)(c + js) = a× c − b× s + j(a× s + b× c). (7)
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Figure 4: Effort for a real coefficient multiplier block design in the
Bluestein chirp-z algorithm. The solid line shows the maximum
transform length for a specific cost value.

Or, we might use a different factorization such as

s[1] = a− b, s[2] = c − s, s[3] = c + s,

m[1] = s[1]s, m[2] = s[2]a, m[3] = s[3]b,

s[4] = m[1] +m[2], s[5] = m[1] +m[3],

(a + jb)(c + js) = s[4] + js[5],

(8)

which uses 3 real multiplications and 5 real additions,2 as
shown in Figure 5.

Figure 7 shows that for a transform length of up to 257,
the algorithm with 4 × 2+ is superior (for both Rader and
CZT) when compared with the 3×5+ algorithms. This is due
to the fact that with the 4× 2+ algorithms for a filter with N
complex coefficients, two multiplier blocks with size 2N are
designed, while for the 3×5+ algorithms three real multiplier
block filters with block size N must be used. To have cleaner
results, we do not show the implementation effort for all CZT
lengths; only the maximum transform lengths for the same
implementation effort are shown.

The overall adder budget now consists of three parts: (a)
the multiplier-block adders, used for CSD, MAG, or RAG
coding; (b) the two output adders required to compute the
complex multiplier outputs; and (c) the 2 structural adders
used for each tap. Because CZT uses only a few different co-
efficients, the required number for (b) is much smaller than
for the Rader transform. However, the filter structure for the
CZT is about twice as long when compared with the Rader
transform. Table 3 shows a comparison for the overall adder
budget required for a CZT of length 64 and a Rader trans-
form of length 61. Again, the direct comparison of Rader and
CZT shows a reduced effort for CZT.

2 Note that in the 3∗×5+ blockmultiplier architecture, the sum s[2] = c−s
and s[3] = c+ s is precomputed and is therefore sometimes called a 3×3+
algorithm.

(a + jb)× (c + js) = R + jI
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×
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(a + jb)× (c + js) = R + jI

+ × +
−

R
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−

+ × + I

(b)

Figure 5: The two complexmultiplier versions (a) 4×2+, (b) 3×5+.

CPU DFT/FFT
co-processor

Data x, X Program

Figure 6: Co-processor configuration of FFT core.

3.3. Alternative DFT implementations and
synthesis data

In a typical OFDM or DVB configuration [34], the FFT core
is used as a coprocessor to speed up the host processor per-
formance as shown in Figure 6. The computation of the DFT
as coprocessor then has three stages.

(a) The serial data transfer to the coprocessor.
(b) The computation of the DFT, until the first output

value is available.
(c) The data transfer back to the host processor.

While (a) + (c) are usually constants, the latency of the DFT
(b) is a critical design parameter. Table 4 summarizes the
equivalent gate count and the latency of different algorithms.
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Table 3: Total required adders for complex DFTs.

CZT-64 points Rader-61 points

CSD MAG RAG CSD MAG RAG

Mul. block 76 68 38 402 350 120

Cmul 22 22 22 120 120 120

Structural 252 252 252 124 124 124

Total 350 342 312 646 594 366

The gate count is measured as equivalent gates as used in cell-
based ASIC design. The latency is the number of clock cycles
the FFT core needs until the first output sample is available
(see (b) above).

Alternative DFT implementations of the CZT RAG-n de-
sign include a direct implementation via DFT matrix multi-
plication [22] using subexpression sharing. Here a length 8
DFT (8-bit) already requires 74 adders; a 16-point DFT in
16 bits requires 224 adders.

For short length DFTs, the Winograd algorithm seems
to be an attractive alternative as well, because it reduces the
number of multiplications to aminimum. Unfortunately, the
number of structural adders in the Winograd algorithm in-
creases more than is proportional to the length. For instance,
a complex length 8 DFT requires 52 structural adders [32].

Another common approach uses radix-2 or 4 FFT pro-
cessor elements [5, 35]. A fully pipelined Cooley-Tukey FFT
(called Stream I/O by Xilinx) can benefit from MAG coeffi-
cient coding, but each butterfly in 12-bit precision will re-
quire, on average, 12× 4× 25% + 2 = 14 adders. A 64-point
FFT therefore requires 32×6×14 = 2688 adders if MAG cod-
ing is used. If we use the optimum rotator from [3], then the
required adder can be further reduced to 1684 in a radix-2
scheme. A mixed radix-2/4 algorithm is reported with 1412

Table 4: Size (measured via equivalent number of gates for com-
binational and noncombinational elements) and speed as latency
(measured as clock cycles until first output value are available) for
different DFT lengths sorted by latency.

Method DFT length

4 8 16 32 64

Matrix Size — 26 640 80 640 — —

Mult.∗ [22] Latency — 2 2 — —

Winograd
Size 5129 14 137 36 893 — —

Latency 2 2 2 — —

CSD-CZT
Size 10 349 14 192 23 630 41 426 78 061

Latency 4 4 4 4 4

RAG-CZT
Size 9970 13 728 22 578 39 234 73 171

Latency 4 4 4 4 4

Xilinx Radix-2 Size — — 29 535 30 455 32 255

Min. Resource [5] Latency — — 45 112 265

Xilinx Radix-4 Size — — — — 137 952

Stream I/O [5] Latency — — — — 64

∗Estimated.

adders in [3]. In Table 3, the same transform is listed with
312 adders for the chirp-z algorithm.

MinimumFFT resources are achieved with a single radix-
2 Cooley-Tukey butterfly processor (called a minimum re-
source design by Xilinx) at the cost of high latency, shown
as the radix-2 entry in Table 4. Faster but more resource
intensive is a column processor that uses a separate butter-
fly processor in each stage, shown as the radix-4 streaming
I/O in Table 4 [5].

Winograd, CSD, and RAG-n CZT circuits have been
synthesized from their VHDL description and optimized
for speed and size with synthesis tools from Synopsys. The
lsi_10k standard-cell library under typical WWCOMoper-
ating conditions has been used. We used two pipeline stages
for the multiplier and two for the RAG in the design.

From the comparison in Table 4, it can be concluded that
the RAG-CZT provides better results in size compared to the
Winograd DFT or the matrix multiplier for more than 16-
point DFTs. Therefore, only CZT implementations were used
for longer DFTs. When compared with a 64-point Cooley-
Tukey FFT processor, only the single butterfly processor gives
a smaller area, while a faster pipelined streaming I/O proces-
sor requires a 64 clock cycle latency and is twice the size of
the RAG-CZT.

By providing a sufficient amount of extra buffer mem-
ory all of the above algorithms can be modified in such a
way that the pipelined FFT computation is only limited by
the data transfer time from host to FFT core. This is partic-
ularly useful in 2D FFT, when a large number of consecutive
row/column FFTs need to be computed. However, in 1DDFT
the latency, that is, the number of clock cycles will not change
by adding buffer memory until a value is available at the core
for the (waiting) host processor.
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3.4. AlternativeMCMarithmetic concepts

Other possible arithmetic modifications that can be used
to implement the multiple constant multiplication (MCM)
block in fast DFTs are the (exclusive) use of carry-save adders
[36], distributed arithmetic [37], common subexpression
sharing (CSE) [21], or the residue number system (RNS)
[38].

It has also been suggested 3 that theMCMproblem can be
considered as a more general design of a 2N × 2 matrix mul-
tiply problem. This will then also cover the two cases 4× 2+
and 3×5+ discussed in this paper. However, the conventional
RAG-n algorithm used in this study with a single input and
multiple outputs then needs to be modified to include such
a CSE-like input permutation search. The same idea can also
be applied to the 13 different methods discussed by Macleod
[3]. We have also recently seen successful improvements of
the RAG-n heuristic based on the HCUBmetric [39] and the
differential RAG [40], which will be especially beneficial for
coefficient bit widths larger than the 12 bits used in this pa-
per.

Some of the above-mentionedMCM arithmetic concepts
may in fact further improve the implementation effort of the
fast DFT algorithms for certain length or bit width and may
be the basis for further studies. The main result of this pa-
per, however, is that due to recent advances in MCM algo-
rithms, Rader and chirp-z have become viable options over
the conventional radix-2 FFT. This contrasts with previously
accepted understanding, as expressed by Burrus and Parks
[28, page 37], who state: “if implemented on digital hard-
ware, the chirp-z transform does not seem advantageous for
calculating the normal DFT.”

3.5. Quantization noise of alternative DFT algorithms

Since fast DFTs and FFTs can be used, for instance, to imple-
ment a fast convolution, it is important to analyze and deter-
mine the required quantization error of the algorithms. To
simplify our discussion let us make the following assump-
tions that are used in textbooks, like [25, 30].

(a) The quantization errors are uncorrelated.
(b) The errors are uniformly distributed random variables

of (B + 1)-bit signed fractions, such that the variance
becomes 2−2B/12.

(c) The complex multiplication with 4 multiplications has
a quantization error of σ2 = 4× 2−2B/12 = 2−2B/3.

(d) The input signal x is randomwhite noise with variance
σ2x = 1/(3N2).

With this assumption we can determine the quantization
noise of the DFT since N source contributes to each output
as

EDFT = N × σ2. (9)

3 The authors are grateful to an anonymous referee for this suggestion.

From (d) we compute the output variance of the DFT/FFT as

EX = E
{∣∣X[k]

∣∣2} =
N−1∑

n=0
E
{∣∣x[n]

∣∣2
}∣∣Wnk

N

∣∣,

EX = Nσ2x =
1
3N

,

(10)

and the noise-to-output ratio becomes

EDFT

EX
= 3N2σ2. (11)

This results in a one-bit loss in the noise-to-signal ratio as the
length doubles. If inside the DFT a double wide accumulator
is used, the noise reduces to

EDFT2accu = σ2, (12)

which provides the best performance of all algorithms. The
same results occur with the Rader DFT if we use a double-
width accumulator. For the chirp-z DFT, the input and out-
put complex multiplications introduce another 2σ2 noise,
and the overall output budget becomes

ECZT = 3× σ2 (13)

assuming that we use a double width accumulator in the FIR
part for the chirp-z DFT. For the FFT, let us have a look
at the popular radix-2 Cooley-Tukey FFT. Here, a double-
length accumulator does not help to reduce the round-off
noise since the output of the butterfly must be stored in the
same (B−1)-bit memory location. To avoid overflow, we can
scale the input by N , but the quantization error

EFFTinput = N × σ2 (14)

will be essential. Double FFT length results in a loss of 1 bit
in accuracy. A better approach is to scale at each stage by 1/2.
Then each of the N = 2n output nodes is connected to 2n−s−1

butterflies and therefore to 2n−s noise sources. Thus the out-
put mean-square magnitude of the noise is

EFFT = σ2
n−1∑

s=0
2n−s

(
1
2

)2n−2s−2

= 4σ2
(
1− 0.5n

) ≈ 4× σ2,

(15)

and the noise-to-signal ratio becomes

EFFT

EX
= 12N × σ2. (16)

Now we only have a 1/2-bit per stage reduction in the noise-
to-signal ratio, as first shown by Welch [41]. Table 5 summa-
rizes the results for the different methods.

The noise can be further reduced by using a higher radix
in the FFT, more guard bits, or a block floating-point for-
mat, but these methods will usually require more hardware
resources.
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Table 5: Noise in length N = 2n DFT and FFT algorithms width
σ2 = 2−2B/3.

Algorithm type
Noise Noise-to-signal

variance ratio

Direct DFT matrix multiply Nσ2 3N2 × σ2

DFT double width accumulator σ2 3Nσ2

Rader double width
FIR accumulator

σ2 3Nσ2

Chirp-z DFT 3σ2 9Nσ2

Radix-2 FFT input scaling (N − 1)σ2 3N(N − 1)σ2

Radix-2 FFT
intermediate scaling

4σ2(1− 0.5n) 12Nσ2(1− 0.5n)

4. CONCLUSION

This paper shows that both Rader and Bluestein Chirp-z
DFTs are viable implement paths for DFT or large Radix FFTs
when the multiplier block is implemented with a reduced
adder graph technique. This paper shows that the CZT offers
lower costs than the Rader design due to the larger number
of redundant coefficients in the CZT, which is beneficial to
RAG-n. The DFT hardware effort in an implementation via
RAG-n CZT has only O(N) effort (i.e., not quadratic O(N2)
as for the direct DFT method) and provides a DFT with very
short latency, which is attractive when the DFT is used as a
coprocessor. For a 64-point RAG-CZT, 92% of the resources
are used for the linear filter, 7% for the complex I/O multi-
plier, and 1% for coefficient storage.

From a quantization standpoint, both Rader and Blues-
tein Chirp-z DFTs perform better than the Radix-2 Cooley-
Tukey FFT for fixed-point implementations. The Rader algo-
rithm reaches the minimum quantization error of the direct
matrix DFT algorithm.
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