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A new class-based histogram equalization method is proposed for robust speech recognition. The proposed method aims at not
only compensating for an acoustic mismatch between training and test environments but also reducing the two fundamental
limitations of the conventional histogram equalization method, the discrepancy between the phonetic distributions of training
and test speech data, and the nonmonotonic transformation caused by the acoustic mismatch. The algorithm employs multiple
class-specific reference and test cumulative distribution functions, classifies noisy test features into their corresponding classes,
and equalizes the features by using their corresponding class reference and test distributions. The minimum mean-square error
log-spectral amplitude (MMSE-LSA)-based speech enhancement is added just prior to the baseline feature extraction to reduce
the corruption by additive noise. The experiments on the Aurora2 database proved the effectiveness of the proposed method by
reducing relative errors by 62% over the mel-cepstral-based features and by 23% over the conventional histogram equalization
method, respectively.
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significant performance improvements under noisy environ-

The performance of automatic speech recognition (ASR) sys-
tems degrades severely when they are employed in acous-
tically mismatched environments compared to the training
ones. The main cause of this acoustic mismatch is corrup-
tion by additive noise and channel distortion, both of which
are commonly encountered adverse sources in the real-world
ASR applications. To cope with this problem, robust speech
recognition has become one of the most crucial issues in
the research area of speech recognition. Currently, most ro-
bust speech recognition methods can be categorized into
the following three areas: signal space, feature space, and
model space [1]. Compared to the other two categories,
the feature space approach has also been widely employed
due to advantages such as easy implementation, low com-
putational complexity, and effective performance improve-
ments. Acoustic environments corrupted by additive noise
and channel distortion act as a nonlinear transformation
in the feature spaces of the cepstrum or log-spectrum [2].
Thus, classical linear feature space methods such as cepstral
mean subtraction or cepstral mean and variance normal-
ization have substantial limitations even though they yield

ments [3—5]. Currently, the major feature space approaches
to reducing the nonlinear behaviors of the acoustic mismatch
are based on the piecewise linear approximation, such as in-
teracting multiple model (IMM) [6] and stereo-based piece-
wise linear compensation for environments (SPLICE) [7].
Another effective environmental compensation method that
transforms observed features is constrained maximum like-
lihood linear regression (CMLLR) although it is not strictly
based on the feature space. In the related literature [8], its
performance was shown to be comparable to those of other
linear model space transformation methods. However, like
other model space transformation methods, CMLLR also re-
quires at least several speech utterances for its reliable esti-
mation of the transformation matrix and it is still classified
as a linear transform-based approach.

As an alternative approach to coping with the drawbacks
of linear transform-based methods, the histogram equaliza-
tion (HEQ) technique has been employed to compensate
for the acoustic mismatch. While HEQ was originally in-
troduced to image processing applications [9], recent re-
search has shown that it is also quite effective in preventing
performance degradation in ASR under noisy environments
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[10—-17]. Moreover, in contrast with most linear transform-
based approaches, HEQ is computationally more efficient
because its algorithm mostly consists of sorting and search
(or table look-up) routines. The role of HEQ is to trans-
form test features to reference ones in order to compensate
for the acoustic mismatch between the training and test en-
vironments by converting the probability density function
(PDF) of the original test variable into its reference (or train-
ing) PDE In order to compensate for the acoustic mismatch
more effectively, HEQ has two fundamental requirements.
First, distributions of phonetic or acoustic classes, defined
in the acoustic modeling of speech recognition systems, for
both training and test data should be identical or similar
to each other [18]. Second, acoustic mismatch should act
as a monotonic transformation in the feature space [17].
In other words, the ordering information of phonetic or
acoustic classes along each feature axis should not be al-
tered by the acoustic mismatch. When these requirements
are not kept, the ordering information of phonetic or acous-
tic classes in features can be changed by the acoustic mis-
match and as a result, the transformation by HEQ can impair
class separability of the features. However, in most speech
recognition applications, test speech utterances tend to be
too short to make their phonetic or acoustic class distribu-
tions identical or similar to those of training data. Further-
more, corruption by additive noise or channel distortion is
considered as a random transformation in the feature space.
This random behavior does not always guarantee the mono-
tonic transformation. Therefore, the above-mentioned re-
quirements are not generally satisfied in real-world speech
recognition applications. As a result, it is difficult to take
full advantage of HEQ when the conventional HEQ is used
to compensate for the acoustic mismatch in noisy environ-
ments.

In this paper, we propose a new class-based HEQ tech-
nique to reduce these two limitations of the conventional
HEQ method. Instead of utilizing global reference and test
cumulative distribution functions (CDFs) as in the conven-
tional HEQ, the proposed method employs multiple class-
based CDFs not only to compensate for the acoustic mis-
match between training and test data but also to reduce
the limitations of the conventional HEQ. Based on the fact
that HEQ is not able to compensate for the adverse effect
caused by temporally random behavior of noise, we also in-
troduce the minimum mean-square error log-spectral am-
plitude (MMSE-LSA)-based speech enhancement technique
[19] that is used as a front-end preprocessor to HEQ to fur-
ther reduce the acoustic mismatch.

The rest of this paper is organized as follows. Section 2
provides a brief review of the MMSE-LSA-based speech en-
hancement algorithm used in this work. Section 3 describes
the basic algorithm of the conventional HEQ. In Section 4,
we present the proposed class-based HEQ technique that re-
duces the two limitations of the conventional HEQ for com-
pensating for the acoustic mismatch in speech recognition
under noisy environments. Section 5 describes experimental
results of our proposed method. Finally, concluding remarks
will be given in Section 6.

2. SPEECH ENHANCEMENT BASED ON MMSE-LSA

HEQ utilizes CDFs of both reference and test data to com-
pensate for the acoustic mismatch. Therefore, this method
does not take into account specific temporal characteristics
of noise but deals with the property of how long-term dis-
tributions of noisy speech representations differ from those
of clean reference speech ones. Thus, it focuses more on
speech than noise in the compensation of the acoustic mis-
match. On the contrary, most speech enhancement meth-
ods reduce noise components from noisy speech representa-
tions by firstly estimating noise characteristics such as noise
power or magnitude spectra. In this case, random behaviors
of noise are regarded more importantly. From these differ-
ent approaches, we expect that the use of a proper speech en-
hancement technique in combination with HEQ will provide
additional compensation effects than that of HEQ alone. In
this paper, we employ the MMSE-LSA algorithm as a front-
end speech enhancement method that is used prior to the
feature extraction to additionally compensate for the acous-
tic mismatch. A brief review of the MMSE-LSA algorithm is
given as follows [19-21].

Let Sx(n) = Ax(n)e/?*" | Dy(n), and Ux(n) = Ri(n)e/%
be the frequency components of clean speech s(t), addi-
tive noise d(t), and noisy speech u(t) at frequency bin in-
dex k, time frame index n, and time sample index ¢, respec-
tively. When Si(n) and Di(n) are assumed to be character-
ized by separate zero-mean complex Gaussian distributions,
the MMSE-LSA estimate of a clean speech spectrum, Afk(n),
is obtained by the estimation criterion that minimizes the
mean-square error of log-spectral amplitude for given noisy
spectrum Ui (n) and is given by

Ar(n)

Am) = T

Gmmse-Lsak (1) Ry (1), (1)

where Gymse-Lsa k(1) 1s derived as

GmMsE-Lsa k(1) = % exp <% Lm(n) ;dT), )

where v (1) = (&(n)/(1+&(n)))yk(n), ye(n) = Ri(n)/Aax(n),
&(n) = mi(n)/(1 — q(n)), n(n) = Agk(n)/Aax(n), Agk(n) =
E{ISx(n)1*} = E{AZ(n)}, and Aax(n) = E{|Dx(n)|}. ni(n)
and yx(n) are called a priori and a posteriori signal-to-noise
ratios (SNR), respectively. gx(n) is called the a priori proba-
bility of speech absence and is fixed to 0.2 for all frequency
bins and time frames in this paper. A;x(n) and 14 (n) denote
power spectral densities of speech and noise, respectively.

The likelihood ratio between speech presence and ab-
sence, Ax(n), is defined by

1 — gi(n) exp (vi(n))

Al = =0 ) 1+ &)

.3

Ec(m)=nk(n)/(1-qx(n))
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In our experiments, A4 (n) is estimated by the mixed deci-
sion-based decision-directed approach [22-24] given by

Aaj(n+1)
(Brak(n) + (1 — B)R(n), if Ue(n) € Hy
Blay(n)
= & (n)
ARl e
1 2 _
+(m> Ri(ﬂ)), otherwise,

(4)

where Hj is the speech absence hypothesis that is usually de-
termined by a voice activity detector and f3 is a forgetting fac-
tor empirically chosen as 0.98.

When the gain function of the estimator is aggressively
estimated, enhanced speech signals tend to suffer from sig-
nal distortion [25]. On the other hand, in case of underesti-
mation, they contain a significant amount of residual noise.
Thus, the degree of aggression needs to be chosen carefully to
obtain the maximum gain in the sense of speech recognition
accuracy. The method to determine the degree of aggression
in these experiments is similar to that used in the Aurora ad-
vanced front-end noise reduction algorithm [25] except that
an empirically chosen fixed value is used in this case.

3. CONVENTIONAL HISTOGRAM EQUALIZATION

Currently, there are two approaches to matching reference
and test CDFs in the HEQ-based feature space transforma-
tion. The first one is the use of empirical CDFs and the other
is the adoption of Gaussianization [26, 27]. Although the for-
mer approach requires far more parameters and their adap-
tation data, its main advantages are that (1) it can bypass
the problems associated with choosing the size of the mix-
ture models [27] and (2) it is considered as a nonparamet-
ric method which does not require any specific assumptions
about the probability distribution of modeling data. On the
contrary, one merit of the latter approach is that Gaussian-
ization of the features can enforce the modeling assump-
tion in the HMM-based ASR where the output probabilities
are modeled with mixtures of diagonal covariance Gaussians.
Here, the main focus of our approach is on the use of mul-
tiple classes in the nonlinear feature space transformation.
Therefore, we only deal with HEQ utilizing empirical CDFs
for CDF matching in this paper and its detailed descriptions
are given as follows.

For given random reference and test variables x and y
whose corresponding PDFs are given as Px (x) and Py(y), re-
spectively, a transform function x = F(y) mapping Py (y) into
Px(x) can be given as [9, 17]

x =F(y) = Cx' (Cx(y)), (5

where Cx'(x) is the inverse of reference CDF Cy(x) and
Cy (y) is the test CDF of random variable y, respectively.

Of course, most current speech recognition algorithms
utilize multidimensional feature vectors as their feature pa-
rameters, where each feature vector consists of a number of
coefficients. When the feature parameters are transformed on
a multidimensional vector basis, HEQ requires the joint CDF
transformation involving Jacobian operations. However, the
joint CDF transformation is generally a difficult problem as
in [26]. Thus, we make a simplified assumption that the fea-
ture coefficients are statistically independent of each other
[27]. This assumption is especially acceptable when decor-
related filter-bank log-energies [28] or cepstral coefficients
are used as recognition features because of their low degree
of cross-correlation. Therefore, for the sake of algorithmic
simplicity, we only deal with the CDF transformation on a
component-by-component basis in this paper.

Another critical issue in HEQ is the reliable estimation of
reference and test CDFs. In speech recognition applications,
the amount of training data is usually large. Thus, reference
CDFs can be estimated quite reliably by computing cumu-
lative histograms using training data. However, when short
utterances are used as test data, the lengths of such utter-
ances may be insufficient for a reliable estimation. In these
test environments, the test CDF estimation becomes much
more important. When the amount of estimation samples is
small, the order-statistic-based CDF estimation is preferred
rather than the cumulative histogram-based method and its
brief description is as follows [12, 16].

Let us define a sequence consisting of N frames of a par-
ticular feature component as

Vi = {n(1), (2),... (N (6)

where y;(n) denotes the Ith feature component at the nth
frame.
The order statistics of (6) can be defined as

yi([1]) < -+ < y([n]) < - -+ < p([N]), (7)

where [r;] represents the original frame index of the feature
component y([r;]) at which its rank is denoted as r; when the
elements of the sequence V] are sorted in ascending order.
Then, given test feature component y;(n), the order-
statistic-based direct estimate of test CDFs can be defined as

Ri(yi(n)) — 0.5
N )
where R;(y;(n)) denotes the rank of y;(n) ranging from 1 to
N and L stands for the total dimension of the feature vector.
An estimate of the reference feature component by the
conventional HEQ given test feature component y;(n) is ob-

tained as
A~ - A~ - R — :
800 = iy v () = ity (P20 o)

According to the adoption of empirical CDFs in CDF
matching in this paper, all reference CDFs are modeled by
using cumulative histograms. Moreover, the transformation
by the inverse of each reference CDF in (9) is performed with
a linear interpolation by taking into account the relative po-
sition within the histogram bin to reduce the mapping error
[17].

, i(n),...

Cyay(ni(n)) = l1<l<I, (8)
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4, CLASS-BASED HISTOGRAM EQUALIZATION
4.1. Basic algorithm

The proposed approach for reducing both the acoustic mis-
match and the limitations of the conventional HEQ con-
sists of utilizing multiple class-specific CDFs at both refer-
ence and test sides. To solve these two problems, it divides
global distributions defined in the conventional HEQ into
sets of multiple class distributions, classifies feature compo-
nents into their classes, and then transforms them using their
corresponding class CDFs [18]. By this approach, the mis-
match of phonetic class distributions can be effectively re-
duced because of the increased similarity between the refer-
ence and test distributions within the same class. In addition,
the global-level nonmonotonic transformation, the second
limitation of the conventional HEQ, can be restricted only to
a class level only if class information is reliably assigned to
each feature coefficient. However, reliably assigning class in-
formation to each feature component is a prerequisite condi-
tion for ensuring the validity of the proposed HEQ method.
In most HEQ methods, the equalization is performed on a
component-by-component basis for the sake of algorithmic
simplicity as well as reliable CDF estimation. In this sense,
the phonetic classification can be also performed on a fea-
ture component basis. However, utilizing a feature vector in-
stead of only a specific feature component is more useful in
phonetic classification and thus employed in the proposed
method. Nevertheless, it may be still a critical problem to
accurately classify feature vectors into their corresponding
phonetic classes in noisy environments. To cope with such a
problem, we use a histogram equalized feature vector in the
classification instead of the original noisy feature vector to
reduce the adverse effects by additive noise and channel dis-
tortion. A detailed description of the proposed class-based
HEQ is given as follows.

Let us define a noisy feature vector W, consisting of L-
dimensional components at time frame 7 as

W = {31(n), ya(n)s.., yr(m)} (10)

where T stands for vector transpose.
Then, phonetic class index i assigned to noisy feature vec-
tor W, is obtained as

i= argmind(Wn,zi), 1<i<lI, (11)
1

where d(-, ) denotes the Mahalanobis distance measure, z;
stands for the centroid of the ith class computed by the k-
means algorithm, I is the number of classes, and Wn is the
histogram equalized version of W,, by the conventional HEQ
given as follows:

W, = [&1(n),....5m)}"

= {Cxhy (Croy (11 (m)), -, Cielyy (Cawy (e (m))}
(12)

4.2. Class-tying technique

According to the basic idea of the class-based HEQ, the lim-
itations of the conventional HEQ can be effectively reduced
by increasing the number of phonetic classes to a sufficient
level, only if the phonetic classification accuracy is suffi-
ciently high. However, the phonetic classification accuracy
tends to be inevitably decreased in noisy environments. In
such noisy conditions, increasing the number of phonetic
classes further deteriorates the classification accuracy due to
increased class candidates. At the same time, increasing the
number of phonetic classes also decreases the amount of clas-
sified sample data for each phonetic class, which deteriorates
the reliability of test CDF estimation. For these reasons, the
performance of the class-based HEQ increases to a certain
number of phonetic classes, and then tends to decrease. As
a result, we cannot increase the number of phonetic classes
arbitrarily to keep the classification accuracy within an al-
lowable level and, at the same time, provide more reliable
test CDF estimation. To provide higher phonetic classifica-
tion accuracy as well as more reliable test CDF estimation,
the class-tying technique is employed so that a number of
small similar phonetic untied classes are tied into a larger tied
class. The tying rule between small untied classes and a single
larger tied class is determined such that the tied class j for a
certain small untied class i is obtained by
f:argmjind(z;,Zj), 1<j<], (13)

where Z; represents the centroid of the jth tied class, each
of which is computed by using vector quantization, where all
centroids of the small untied classes defined in (11) are used
as training sample data. In addition, J (where ] < I) is the
number of tied classes.

Then, the proposed class-based HEQ formulation for
given test feature component y;(n) is defined as

Rz (yi(n)) = 0.5
~ — - ],l
xi(n) = Cx(lﬁ])<CY(ﬁl) (yl(”))) - CX(lﬁl) (N]A)’

(14)

where, Cyin (y) and Rf)l(y) denote the test CDF and the

rank at the jAth tied class and Ith feature component, respec-
tively, N7 is the number of frames which are classified as the
fth tied class, and C);(lﬁl) (x) represents the inverse of refer-
ence CDF Cy7) (x) which is obtained by the cumulative his-
togram computed from all training data of the /th feature
components which are classified as the jth tied class by the
vector quantization-based phonetic classification.

In exceptional cases, where the number of frames classi-
fied into a particular tied class is less than the threshold value
(in our case, empirically chosen as 5), the equalization is per-
formed by the conventional HEQ for more reliable CDF esti-
mation. Figure 1 shows the overall structure of the proposed
compensation method where the MMSE-LSA-based speech
enhancement algorithm is optionally added as a front-end to
the feature extraction. In this figure, the global HEQ refers to
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FiGure 1: Block diagram of the proposed acoustic mismatch compensation method based on the class-based HEQ with the MMSE-LSA-

based speech enhancement.
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FIGURE 2: Recognition results of untied/tied class CHEQ compen-
sation techniques with regard to various numbers of classes on the
Aurora 2 task (clean-condition training).

the conventional HEQ from the fact that it uses global refer-
ence and test CDFs.

5. EXPERIMENTAL RESULTS

5.1. Speech database and feature extraction

In the performance evaluation, the Aurora2 database which
is converted from the TI-DIGITS database is used. Only clean
speech data are used in the training of all experiments (i.e.,
clean-condition training). Test sets A and B, each containing
four kinds of additive noises, and test set C, contaminated by
two kinds of additive noises and different channel distortion
(MIRS), are chosen in the test. The MMSE-LSA-based speech
enhancement (SE) technique is applied at the signal space.
In SE, a 25 millisecond long Hamming window is applied
to noisy speech signals with an interval of 10 millisecond.
FFT with 256 points is used for spectral analysis. Enhanced

speech signals reconstructed by the overlap-add method are
then used for feature extraction.

The feature extraction procedure is conducted based on
the ETSI Aurora formula as follows. First, speech signals are
blocked into a sequence of frames, each with 25 millisecond
length and 10 millisecond interval. Next, speech frames are
pre-emphasized with a factor of 0.97 and then a Hamming
window is applied to each speech frame. From a set of 23
mel-scaled filter-bank log-energies, the 39-dimensional mel-
frequency cepstral coefficient (MFCC)-based feature vector
consisting of 12 MFCCs, the log-energy, and their first and
second derivatives is extracted. Prior to the derivative com-
putations, the 22-order cepstral liftering is applied to the
static MFCCs. Each digit-based hidden Markov model con-
sists of 16 states and each state has 3 mixtures. The number
of histogram bins in reference CDFs was chosen as 64 in both
conventional HEQ (HEQ) and class-based HEQ (CHEQ) be-
cause its further increase did not show any meaningful per-
formance improvements. The tied class parameters, I and
], are empirically set to 60 and 6, respectively, based on
the experimental results shown in Figure 2. The equaliza-
tion is conducted on each component of the 39-dimensional
MFCCs for both training and test data on an utterance-by-
utterance basis.

5.2. Speech recognition results

Figure 2 shows recognition results when the CHEQ method
is used alone or in combination with the class-tying tech-
nique to compensate for the acoustic mismatch in noisy fea-
tures. The results represent averaged values of word-error
rate (WER) for the three test sets with respect to a num-
ber of tied classes ranging from one (i.e., conventional HEQ
case) to ten. WERs are averaged between 0dB and 20dB
SNR as recommended by the Aurora group. In the exper-
iments of tied class cases, the corresponding untied classes
are empirically chosen as those producing the lowest WER
between 20 to 100 untied classes. In this figure, we observe
that CHEQ provides significant improvements over HEQ
only when the number of classes exceeds two. Above this



EURASIP Journal on Advances in Signal Processing

TaBLE 1: Average WERs (%) of various acoustic compensation techniques on the Aurora2 task (clean-condition training, averaged between

0-20 dB SNRs).

Test data Baseline SE HEQ CHEQ SE + HEQ SE + CHEQ
Set A 38.88 22.61 19.41 15.77 17.81 14.79
Set B 44.43 26.97 18.32 15.11 17.21 14.38
Set C 33.32 26.84 21.55 16.50 20.49 16.11
Average 39.99 25.20 19.40 15.65 18.10 14.89
ERR — 36.98 51.48 60.86 54.72 62.76

number, the performance improvement seems marginal for
the untied-CHEQ case. However, further improvements are
still obtained for the tied-CHEQ case. From this figure, it
is well observed that CHEQ is very effective in improving
recognition performance compared to HEQ and the tied
class technique provides an additional gain with a maximum
error-rate reduction (ERR) of 4.65%. However, as mentioned
in Section 4.2, we also notice that the recognition accuracy
tends to deteriorate for more phonetic classes than those pro-
ducing the best performance, mainly due to the decreased
phonetic classification accuracy in noisy environment.

Table 1 presents the recognition results obtained by us-
ing the baseline feature (i.e., MFCC) and compensation tech-
niques each of which is applied alone or in combination with
one of the other methods under clean-condition training. In
the experiments, MMSE-LSA-based SE was applied only to
test data while HEQ and CHEQ are applied to both training
and test data. For all test sets, all of the three compensation
methods reduce relative errors by more than 30% even in the
case that each technique is used alone. It is also observed that
HEQ is far more effective than SE. In addition, CHEQ offers
substantial improvements over HEQ by an ERR of 19%. Ap-
plying SE to HEQ and CHEQ produces slight improvements
by ERRs of 6% and 4%, respectively, indicating that MMSE-
LSA-based SE and histogram equalization do not act as fully
additive each other when they are used together in compen-
sating for the acoustic mismatch. In this case, CHEQ with
SE provides less improvement than HEQ with SE. This may
be due to the fact that major causes of the nonmonotonic
transformation can be effectively removed as the preproces-
sor SE reduces noise. The addition of SE produces substan-
tial improvements for test sets A and B but offers marginal
error reduction for test set C. These results comply with the
fact that the MMSE-LSA-based SE is only effective in reduc-
ing additive noise and has less capability of canceling the
channel distortion. It is also noted that the performance im-
provements by HEQ-based compensation methods on test
set C are less than those on test sets A and B. These results
mean that the compensation techniques are not as effective
for acoustic environments suffering from both additive noise
and channel distortion together as those containing additive
noise only. Nevertheless, when we compare recognition re-
sults for CHEQ with those for SE and HEQ, we still observe
that the degradation on test set C by CHEQ is much less than
those by SE or HEQ. More complex acoustic environments
including additive noise and channel distortion together tend
to have higher possibilities for the nonmonotonic transfor-

mation than those presenting only additive noise. In these
acoustic environments, reduced degradation in recognition
accuracy by CHEQ implies that the ability of CHEQ to re-
duce the nonmonotonic transformation is its discriminative
superiority compared to HEQ.

Table 2 through Table 7 show detailed recognition results
when the baseline MFCC feature or compensated features
by various compensation techniques are used. It is observed
that SE reduces errors moderately for all types of noises and
different channel environments while slight degradations are
found for the clean condition. However, large variations of
average WERSs for different noise types imply weak noise ro-
bustness of SE. On the contrary, HEQ provides larger error
reduction than SE for the same kinds of noises and channel
environments. It even reduces errors for the clean condition.
Smaller variation of average WERs for different noise types in
HEQ indicates its relative robustness over various noise con-
ditions and confirms its merit that HEQ does not require any
assumptions on noise characteristics. Finally, CHEQ offers
the largest error reduction of all three compensation meth-
ods. It seems especially useful for the noise types of car, air-
port, street, and station but relatively less effective in those
of babble, exhibition, and restaurant. The former noises are
largely related to the engine noise, while the latter contain
human speech-like noises considerably. We think the less
effectiveness of CHEQ on the human speech-like noises is
mainly a result of the lower phonetic classification accuracy
at this category of noises. However, the relatively small varia-
tion of average WERs by CHEQ for different kinds of noises
implies its invariant effectiveness over various noises. From
Table 4 to Table 7, it is illustrated that CHEQ is much supe-
rior to HEQ for the SNR conditions lower than 20 dB but
less effective for clean and 20 dB conditions. The presence of
noise is less prominent at high SNR conditions. Thus, the
nonmonotonic transformations by the acoustic mismatch at
these high SNR conditions are expected to be less severe,
which can reduce the room for further improvements by
CHEQ. In addition, decreased reliability of the class-based
test CDF estimation caused by a reduced amount of classified
data could overweigh the gain from the use of a class concept
in CHEQ, and this seems to be another cause of performance
degradation by CHEQ in these high SNR conditions. At the
same time, the performance degradation by CHEQ in high
SNR environments also strongly implies that the limitation
of HEQ by the nonmonotonic transformation is much dom-
inant than that by the mismatch of phonetic class distribu-
tions between training and test data.
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TaBLE 2: Recognition results of the baseline feature (MFCC) on the Aurora2 task under clean-condition training (WER %).

SNR Set A Set B Set C

Subway  Babble Car  Exhib.  Avg. Rest. ~ Street  Airport  Station  Avg. | Subway  Street  Avg.
Clean 1.17 1.03 1.19 0.86 1.06 1.17 1.03 1.19 0.86 1.54 0.98 1.03 1.01
20dB 3.04 10.04 3.16 3.80 5.01 10.81 4.23 9.93 5.62 3.50 5.53 4.81 5.17
15dB 7.09 26.57 10.47 8.15 13.07 | 25.61 11.73 23.11 16.38 5.00 12.37 10.31 11.34
10dB 21.28 50.94  33.76 2490 3272 | 47.28  33.25 46.85 40.39 9.21 24.81 2473 2477
5dB 46.61 7297 66,51 5649  60.65 | 70.43  61.85 69.31 70.26  20.51 47.16 51.15  49.16
0dB 72.70 88.27  86.73  84.02 8293 | 83.30  81.32 84.16 87.75  44.70 73.99 78.36  76.18
-5dB 87.38 95.04 91.65 92.35 91.61 | 95.00 89.93 91.89 91.51 77.24 87.90 89.30  88.60
Avg. 30.14 49.76 40.13 35.47 38.88 | 48.49  38.48 46.67 44.08 44.43 32.77 33.87  33.32

TaBLE 3: Recognition results of the SE compensation technique on the Aurora 2 task under clean-condition training (WER %).

SNR SetA Set B Set C

Subway  Babble = Car  Exhib.  Avg. Rest.  Street  Airport  Station  Avg. | Subway  Street  Avg.
Clean 1.63 1.81 1.79 1.48 1.68 1.63 1.81 1.79 1.48 98.37 1.63 1.72 1.68
20dB 2.86 3.11 2.33 4.38 3.92 3.84 2.90 3.55 3.18 96.16 4.21 3.66 3.94
15dB 4.97 7.19 2.98 6.11 7.07 9.21 4.93 6.95 5.37 90.79 8.14 7.04 7.59
10dB 9.58 17.74 6.98 11.82 14.87 | 20.85 10.43 17.30 11.88 79.15 18.67 16.90 17.79
5dB 25.76 43.02 22.34 27.21 29.19 | 4547  29.72 41.07 33.66 54.53 41.11 35.67  38.39
0dB 55.97 78.45 62.51 56.87  54.18 | 78.32  64.45 74.74 71.52 21.68 70.00 63.03  66.52
-5dB 82.71 95.80 89.08 85.75 79.08 | 96.84  86.61 92.93 91.89 3.16 85.82 83.92  84.87
Avg. 19.83 29.90 19.43 21.28 22.61 | 31.54  22.49 28.72 25.12 26.97 28.43 25.26  26.84

TaBLE 4: Recognition results of the HEQ compensation technique on the Aurora 2 task under clean-condition training (WER %).

SNR Set A Set B SetC

Subway  Babble  Car  Exhib.  Avg. Rest.  Street  Airport  Station  Avg. | Subway  Street  Avg.
Clean 1.14 1.00 0.92 0.96 1.01 1.14 1.00 0.92 0.96 1.01 1.07 1.09 1.08
20dB 3.44 2.36 2.62 3.92 3.09 2.82 2.63 2.54 3.02 2.75 3.84 2.81 3.33
15dB 6.69 4.38 4.59 7.07 5.68 4.85 4.75 4.35 5.25 4.80 6.66 5.35 6.01
10dB 11.39 9.10 9.60 14.87 11.24 | 10.10 9.70 9.01 10.80 9.90 13.72 12.61 13.17
5dB 23.24 23.22 23.23 29.19 24.72 | 22.54  23.00 21.92 24.44 22.98 28.86 26.63  27.75
0dB 48.66 53.93 52.49 54.18 52.32 | 49.80  50.97 50.10 53.72 51.15 59.01 55.99  57.50
-5dB 78.29 82.04 80.44  79.08 79.96 | 80.04  80.74 79.96 80.59 80.33 84.03 81.41  82.72
Avg. 18.68 18.60 18.51 21.85 19.41 | 18.02 18.21 17.58 19.45 18.32 22.42 20.68  21.55

TABLE 5: Recognition results of the CHEQ compensation technique on the Aurora 2 task under clean-condition training (WER %).

SNR Set A Set B Set C

Subway  Babble Car Exhib.  Avg. Rest.  Street  Airport  Station  Avg. | Subway  Street  Avg.
Clean 1.54 1.39 1.40 1.60 1.48 1.54 1.39 1.40 1.60 1.48 1.38 1.54 1.46
20dB 3.56 2.75 2.45 4.07 3.21 3.50 2.78 2.65 3.05 3.00 3.19 2.57 2.88
15dB 6.14 4.84 3.67 6.08 5.18 5.00 4.66 4.77 491 4.84 5.50 3.99 4.75
10dB 9.73 9.79 7.37 11.72 9.65 9.21 8.71 6.98 8.15 8.26 10.99 9.31 10.15
5dB 18.76 20.22 16.25 22.77 19.50 | 20.51 18.20 17.89 17.59 18.55 22.08 19.26  20.67
0dB 38.99 45.83 37.52 42.92 41.32 | 44.70  39.03 40.05 39.80 40.90 45.29 42.78  44.04
-5dB 71.63 76.63 70.15 70.01 72.11 7724  70.71 70.92 71.34 72.55 75.84 74.00  74.92
Avg. 15.44 16.69 13.45 17.51 15.77 16.58 14.68 14.47 14.70 15.11 17.41 15.58 16.50
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TaBLE 6: Recognition results of the SE + HEQ compensation technique on the Aurora 2 task under clean-condition training (WER %).

SNR Set A Set B Set C

Subway  Babble Car Exhib. Avg. Rest. Street  Airport  Station Avg. Subway  Street  Avg.
Clean 1.26 1.21 1.25 1.17 1.22 1.26 1.21 1.25 1.17 1.22 1.38 1.12 1.25
20dB 3.25 2.57 2.39 3.61 2.96 2.58 2.72 2.30 2.78 2.60 2.98 2.57 2.78
15dB 5.68 4.20 3.49 6.17 4.89 4.94 4.26 3.97 4.97 4.54 5.80 4.56 5.18
10dB 10.25 8.19 8.62 12.31 9.84 9.46 8.68 8.05 9.13 8.83 12.04 10.85 11.45
5dB 21.15 21.80 2049  26.26 2243 | 22.29  20.68 20.34 21.60 21.23 27.14 25.09  26.12
0dB 45.96 52.48 47.57  49.77  48.95 | 48.63  48.22 47.93 50.60 48.85 58.70 55.17  56.94
—5dB 77.74 83.28 82.02 79.20 80.56 80.87 79.44 81.24 81.52 80.77 83.48 80.96 82.22
Avg. 17.26 17.85 16.51 19.62 17.81 17.58 16.91 16.52 17.82 17.21 21.33 19.65 20.49

TaBLE 7: Recognition results of the SE + CHEQ compensation technique on the Aurora 2 task under clean-condition training (WER %).

SNR Set A Set B Set C
Subway  Babble Car Exhib.  Avg. Rest.  Street  Airport  Station  Avg. Subway  Street  Avg.
Clean 1.57 1.60 1.76 1.42 1.59 1.57 1.60 1.76 1.42 1.59 1.41 1.48 1.45
20dB 3.32 2.51 2.24 3.36 2.86 2.76 2.99 2.30 2.50 2.64 2.73 2.33 2.53
15dB 5.56 4.56 2.89 5.49 4.63 5.43 4.53 3.85 4.57 4.60 5.10 3.99 4.54
10dB 9.46 7.80 6.32 10.49 8.52 8.54 8.10 6.74 7.56 7.74 9.86 8.98 9.42
5dB 18.27 17.84 15.09 22.00 18.30 | 19.34  16.78 16.67 16.78 17.39 21.09 18.68  19.89
0dB 37.64 43.83 35.19  42.02 39.67 | 43.60  38.48 37.31 38.75 39.54 46.64 41.72  44.18
-5dB 68.77 76.51 69.82 69.58 71.17 | 77.40  69.89 72.00 70.60 72.47 74.61 73.88  74.25
Avg. 14.85 15.31 12.35 16.67 14.79 15.93 14.18 13.37 14.03 14.38 17.08 15.14 16.11
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