
Hindawi Publishing Corporation
EURASIP Journal on Advances in Signal Processing
Volume 2007, Article ID 70186, 11 pages
doi:10.1155/2007/70186

Research Article
Audiovisual Speech SynchronyMeasure:
Application to Biometrics
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1. INTRODUCTION

Speech is a means of communication which is intrinsically
bimodal: the audio signal originates from the dynamics of
the articulators. Both audible and visible speech cues carry
relevant information. Though the first automatic speech-
based recognition systems were only relying on its auditory
part (whether it is speech recognition or speaker verifica-
tion), it is well known that its visual counterpart can be a
great help, especially under adverse conditions [1]. In noisy
environments for example, audiovisual speech recognizers
perform better than audio-only systems. Using visual speech
as a second source of information for speaker verification
has also been experimented, even though resulting improve-
ments are not always significant.

This review tries to complement existing surveys about
audiovisual speech processing. It does not address the prob-
lem of audiovisual speech recognition nor speaker verifica-
tion: these two issues are already covered in [2, 3]. Moreover,
this paper does not tackle the question of the estimation of
visual speech from its acoustic counterpart (or reciprocally):
the reader might want to have a look at [4, 5] showing that
linear methods can lead to very good estimates.

This paper focuses on the measure of correspondence be-
tween acoustic and visual speech. How correlated the two
signals are? Can we detect a lack of correspondence between

them? Is it possible to decide (putting aside any biometric
method), among a few people appearing in a video, who is
talking?

Section 2 overviews the acoustic and visual front-ends
processing. They are often very similar to the one used for
speech recognition and speaker verification, though a ten-
dency to simplify them as much as possible has been noticed.
Moreover, linear transformations aiming at improving joint
audiovisual modeling are often performed as a preliminary
step before measuring the audiovisual correspondence, they
will be discussed in Section 3. The correspondence measures
proposed in the literature are then presented in Section 4.
The results that we obtained in the biometric identity veri-
fication task using synchrony measures on the BANCA [6]
database are presented in Section 5. Finally, a list of other ap-
plications of these techniques in different technological areas
is presented in Section 6.

2. FRONT-END PROCESSING

This section reviews the speech front-end processing tech-
niques used in the literature for audiovisual speech process-
ing in the specific framework of audiovisual speech syn-
chrony measures. They all share the common goal of reduc-
ing the raw data in order to achieve a good subsequent mod-
eling.
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2.1. Acoustic speech processing

Acoustic speech parameterization is classically performed on
overlapping sliding windows of the original audio signal.

Short-time energy

The raw amplitude of the audio signal can be used as is. In
[7], the authors extract the average acoustic energy on the
current window as their one-dimensional audio feature. Sim-
ilar methods such as root mean square amplitude or log-
energy were also proposed [4, 8].

Periodogram

In [9], a [0–10 kHz] periodogram of the audio signal is com-
puted on a sliding window of length 2/29.97 seconds (corre-
sponding to the duration of 2 frames of the video) and di-
rectly used as the parameterization of the audio stream.

Mel-frequency cepstral coefficients

The use ofMFCC parameterization is very frequent in the lit-
erature [10–14]. There is a practical reason for that; it is the
state-of-the-art [15] parameterization for speech processing
in general, including speech recognition and speaker verifi-
cation.

Linear predictive coding and line spectral frequencies

Linear predictive coding, and its derivation line spectral fre-
quencies [16], have also been widely investigated. The latter
are often preferred because they are directly related to the vo-
cal tract resonances [5].

A comparison of these different acoustic speech features
is performed in [14] in the framework of the FaceSync linear
operator, which is presented in Section 3.3. To summarize, in
their specific framework, the authors conclude that MFCC,
LSF and LPC parameterizations lead to a stronger correlation
with the visual speech than spectrogram and raw energy fea-
tures. This result is coherent with the observation that these
features are the ones known to give good results for speech
recognition.

2.2. Visual speech processing

In this section, we will refer to the gray-level mouth area as
the region of interest. It can be much larger than the sole lip
area and can include jaw and cheeks. In the following, it is
assumed that the detection of this region of interest has al-
ready been performed. Most of visual speech features pro-
posed in the literature are shared by studies in audiovisual
speech recognition. However, somemuchmore simple visual
features are also used for synchronization detection.

Raw intensity of pixels

This is the visual equivalent of the audio raw energy. In [7,
12], the intensity of gray-level pixels is used as is. In [8], their

sum over the whole region of interest is computed, leading to
a one-dimensional feature.

Holistic methods

Holistic methods consider and process the region of interest
as a whole source of information. In [13], a two-dimensional
discrete cosine transform (DCT) is applied on the region of
interest and the most energetic coefficients are kept as visual
features, it is a well-knownmethod in the field of image com-
pression. Linear transformations taking into account the spe-
cific distribution of gray-level in the region of interest were
also investigated. Thus, in [17], the authors perform a pro-
jection of the region of interest on vectors resulting from a
principal component analysis; they call the principal com-
ponents “eigenlips” by analogy with the well-known “eigen-
faces” [18] principle used for face recognition.

Lip-shapemethods

Lip-shape methods consider and process lips as a deformable
object from which geometrical features can be derived, such
as height, width openness of the mouth, position of lip cor-
ners, and so forth. They are often based on fiducial points
which need to be automatically located. In [4], videos avail-
able are recorded using two cameras (one frontal, one from
side) and the automatic localization is made easier by the use
of face make-up, both frontal and profile measures are then
extracted and used as visual features. Mouth width, mouth
height, and lip protrusion are computed in [19], jointly with
what the authors call the relative teeth count which can be
considered as ameasure of the visibility of teeth. In [20, 21], a
deformable template composed of several polynomial curves
follows the lip contours; it allows the computation of the
mouth width, height, and area. In [10], the lip shape is
summarized with a one-dimensional feature, the ratio of lip
height and lip width.

Dynamic features

In [3], the authors underline that, though it is widely agreed
that an important part of speech information is conveyed dy-
namically, dynamic features extraction is rarely performed;
this observation is also verified for correspondencemeasures.
However, some attempts to capture dynamic information
within the extracted features do exist in the literature. Thus,
the use of time derivatives is investigated in [22]. In [11], the
authors compute the total temporal variation (between two
subsequent frames) of pixel values in the region of interest,
following: (1)

vt =
W∑

x=1

H∑

y=1

∣∣It(x, y)− It+1(x, y)
∣∣, (1)

where It(x, y) is the grey-level pixel value of the region of in-
terest at position (x, y) in frame t.
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2.3. Frame rates

Audio and visual sample rates are classically very different.
For speaker verification, for example, MFCCs are usually ex-
tracted every 10milliseconds; whereas videos are often en-
coded at a frame rate of 25 images per second. Therefore, it
is often required to downsample audio features or upsample
visual features in order to equalize audio and visual sample
rates. However, though the extraction of raw energy or pe-
riodogram can be performed directly on a larger window,
downsampling audio features is known to be very bad for
speech recognition. Therefore, upsampling visual features is
often preferred (with linear interpolation, e.g.). One could
also think of using a camera able to produce 100 images
per second. Finally, some studies (like the one presented in
Section 4.3.2) directly work on audio and visual features with
unbalanced sample rates.

3. AUDIOVISUAL SUBSPACES

In this section, we overview transformations that can be ap-
plied on audio, visual, and/or audiovisual spaces with the
aim of improving subsequentmeasure of correspondence be-
tween audio and visual clues.

3.1. Principal component analysis

Principal component analysis (PCA) is a well-known linear
transformation which is optimal for keeping the subspace
that has largest variance. The basis of the resulting subspace
is a collection of principal components. The first principal
component corresponds to the direction of the greatest vari-
ance of a given dataset. The second principal component cor-
responds to the direction of second greatest variance, and so
on. In [23], PCA is used in order to reduce the dimensionality
of a joint audiovisual space (in which audio speech features
and visual speech features are concatenated) while keeping
the characteristics that contribute most to its variance.

3.2. Independent component analysis

Independent component analysis (ICA) was originally in-
troduced to deal with the issue of source separation [24].
In [25], the authors use visual speech features to improve
separation of speech sources. In [26], ICA is applied on an
audiovisual recording of a piano session, and a close-up of
the keyboard is shot when the microphone is recording the
music. ICA allows to clearly find a correspondence between
the audio and visual note. However, to our knowledge, ICA
has never been used as a transformation of the audiovisual
speech feature space (as in [26] for the piano). A Matlab im-
plementation of ICA is available on the Internet [27].

3.3. Canonical correlation analysis

Canonical correlation analysis (CANCOR) is a multivari-
ate statistical analysis allowing to jointly transform the au-
dio and visual feature spaces while maximizing their corre-

lation in the resulting transformed audio and visual feature
spaces. Given two synchronized random variables X and Y ,
the FaceSync algorithm presented in [14] uses CANCOR to
find canonic correlation matrices A and B that whiten X
and Y under the constraint of making their cross-correlation
diagonal and maximally compact. Let X = (X − μX)TA,
Y = (Y − μY )TB, and ΣXY = E[XYT]. These constraints
can be summarized as follows:

whitening: E[XXT] = E[YYT] = I ,

diagonal: ΣXY = diag{σ1, . . . , σM} with 1 ≥ σ1 ≥ · · · ≥
σm > 0 and σm+1 = · · · = σM = 0,

maximally compact: for i from 1 to M, the correlation σi =
corr(Xi,Yi) betweenXi and Yi is as large as possible.

The proof of the algorithm for computing A = [a1, . . . ,
am] and B = [b1, . . . ,bm] is described in [14]. One can show
that the ai are the normalized eigenvectors (sorted in de-
creasing order of their corresponding eigenvalue) of matrix
C−1XXCXYC

−1
YYCYX and bi is the normalized vector which is

collinear to C−1YYCYXai, where CXY = cov(X ,Y). A Matlab
implementation of this transformation is also available on
the Internet [28].

3.4. Coinertia analysis

Coinertia analysis (CoIA) is quite similar to CANCOR. How-
ever, while CANCOR is based on the maximization of the
correlation between audio and visual features, CoIA re-
lies on the maximization of their covariance cov(Xi,Yi) =
corr(Xi,Yi)×var(Xi)×var(Yi). This statistical analysis was
first introduced in biology and is relatively new in our do-
main. The proof of the algorithm for computing A and B can
be found in [29]. One can show that the ai are the normalized
eigenvectors (sorted in decreasing order of their correspond-
ing eigenvalue) of matrix CXYC

t
XY and bi is the normalized

vector which is collinear to Ct
XYai.

Remark 1. Comparative studies between CANCOR and
CoIA are proposed in [19–21]. The authors of [19] show that
CoIA is more stable than CANCOR; the accuracy of the re-
sults is much less sensitive to the number of samples avail-
able. The liveness score (see Section 6) proposed in [20, 21] is
much more efficient with CoIA than CANCOR. The authors
of [21] suggest that this difference is explained by the fact
that CoIA is a compromise between CANCOR (where au-
diovisual correlation is maximized) and PCA (where audio
and visual variances are maximized) and therefore benefits
from the advantages of both transformations.

4. CORRESPONDENCEMEASURES

This section overviews the correspondence measures pro-
posed in the literature to evaluate the synchrony between
audio and visual features resulting from audiovisual front-
end processing and transformations described in Sections 2
and 3.
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4.1. Pearson’s product-moment coefficient

Let X and Y be two independent random variables which are
normally distributed. The square of their Pearson’s product-
moment coefficient R(X ,Y) (defined in (2)) denotes the por-
tion of total variance of X that can be explained by a linear
transformation of Y (and reciprocally, since it is a symmetri-
cal measure):

R(X ,Y) = cov(X ,Y)
σXσY

. (2)

In [7], the authors compute the Pearson’s product-moment
coefficient between the average acoustic energy X and the
value Y of the pixels of the video to determine which area
of the video is more correlated with the audio. This allows to
decide which of two people appearing in a video is talking.

4.2. Mutual information

In information theory, the mutual information MI(X ,Y) of
two random variables X and Y is a quantity that measures
the mutual dependence of the two variables. In the case of X
and Y are discrete random variables, it is defined as in (3),

MI(X ,Y) =
∑

x∈X

∑

y∈Y
p(x, y) log

p(x, y)
p(x)p(y)

. (3)

It is nonnegative (MI(X ,Y) ≥ 0) and symmetrical (MI(X ,
Y) = MI(Y ,X)). One can demonstrate that X and Y are
independent if and only if MI(X ,Y) = 0. The mutual in-
formation can also be linked to the concept of entropy H in
information theory as shown in (5):

MI(X ,Y) = H(X)−H(X | Y), (4)

MI(X ,Y) = H(X) +H(Y)−H(X ,Y). (5)

As shown in [7], in the special case where X and Y are nor-
mally distributed monodimensional random variables, the
mutual information is related to R(X ,Y) via the following
equation:

MI(X ,Y) = −1
2
log
(
1− R(X ,Y)2

)
. (6)

In [7, 12, 13, 30], the mutual information is used to locate
the pixels in the video which are most likely to correspond
to the audio signal, the face of the person who is speaking
clearly corresponds to these pixels. However, one can notice
that the mouth area is not always the part of the face with
the maximum mutual information with the audio signal, it
is very dependent on the speaker.

Remark 2. In [17], the mutual information between audio
X and time-shifted visual Yt features is plotted as a function
of their temporal offset t. It shows that the mutual informa-
tion reaches its maximum for a visual delay of between 0 and
120milliseconds. This observation led the authors of [20, 21]
to propose a liveness score L(X ,Y) based on the maximum
value Rref of the Pearson’s coefficient for short time offset be-
tween audio and visual features,

Rref = max
−2≤t≤0

[
R
(
X ,Yt

)]
. (7)

4.3. Joint audiovisual models

Though the Pearson’s coefficient and themutual information
are good at measuring correspondence between two random
variables even if they are not linearly correlated (which is
what they were primarily defined for), some other methods
does not rely on this linear assumption.

4.3.1. Parametric models

Gaussianmixturemodels

Let us consider two discrete random variables X = {xt, t ∈
N} and Y = {yt, t ∈ N} of dimension dX and dY , respec-
tively. Typically, X would be acoustic speech features and Y
visual speech features [10, 31]. One can define the discrete
random variable Z = {zt, t ∈ N} of dimension dZ where zt
is the concatenation of the two samples xt and yt, such as
zt = [xt, yt] and dZ = dX + dY .

Given a sample z, the Gaussian mixture model λ defines
its probability distribution function as follows:

p(z | λ) =
N∑

i=1
wiN

(
z;μi,Γi

)
, (8)

where N (•;μ,Γ) is the normal distribution of mean μ and
covariance matrix Γ · λ = {wi,μi,Γi}i∈[1,N] are parameters
describing the joint distribution of X and Y . Using a training
set of synchronized samples xt and yt concatenated into joint
samples zt, the Expectation-Maximization algorithm (EM)
allows the estimation of λ.

Given two sequences of test X = {xt, t ∈ [1,T]} and Y =
{yt, t ∈ [1,T]}, a measure of their correspondence Cλ(X ,Y)
can be computed as in (9),

Cλ(X ,Y) = 1
T

T∑

t=1
p
([
xt, yt

] | λ). (9)

Then the application of a threshold θ decides on whether the
acoustic speechX and the visual speechY correspond to each
other (if Cλ(X ,Y) > θ) or not (if Cλ(X ,Y) ≤ θ).

Remark 3. λ is well known to be speaker-dependent, GMM-
based systems are the state-of-the-art for speaker identifica-
tion. However, there is often not enough training samples
from a speaker S to correctly estimate the model λS using the
EM algorithm. Therefore, one can adapt a world model λΩ
(estimated on a large set of training samples from a popula-
tion as large as possible) using the few samples available from
speaker S into a model λS. This is not the purpose of this pa-
per to review adaptation techniques, the reader can refer to
[15] for more information.

HiddenMarkovmodels

Like the Pearson’s coefficient and the mutual information,
time offset between acoustic and visual speech features is
not modeled using GMMs. Therefore, the authors of [13]
propose to model audiovisual speech with hidden Markov
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models (HMMs). Two speech recognizers are trained: one
classical audio only recognizer [32], and an audiovisual
speech recognizer as described in [1]. Given a sequence of
audiovisual samples ([xt, yt], t ∈ [1,T]), the audio-only sys-
tem gives a word hypothesisW . Then, using the HMMof the
audiovisual system, what the authors call a measure of plau-
sibility P(X ,Y) is computed as follows:

P(X ,Y) = p
([
x1, y1

] · · · [xT , yT
] |W)

. (10)

An asynchronous hidden Markov model (AHMM) for au-
diovisual speech recognition is proposed in [33]. It assumes
that there is always an audio observation xt and sometimes
a visual observation ys at time t. It intrinsically models the
difference of sample rates between audio and visual speech,
by introducing the probability that the system emits the next
visual observation ys at time t. AHMM appears to outper-
form HMM in the task of audiovisual speech recognition
[33] while naturally resolving the problem of different audio
and visual sample rates.

4.3.2. Nonparametric models

The use of neural networks (NN) is investigated in [11].
Given a training set of both synchronized and not synchro-
nized audio and visual speech features, a neural network
with one hidden layer is trained to output 1 when the au-
diovisual input features are synchronized and 0 when they
are not. Moreover, the authors propose to use an input
layer at time t consisting of [Xt−NX , . . . ,Xt, . . . ,Xt+NX ] and
[Yt−NY , . . . ,Yt, . . . ,Yt+NY ] (instead ofXt andYt), choosingNX

and NY such as about 200milliseconds of temporal context
is given as an input. This proposition is a way of solving the
well-known problem of coarticulation and the already men-
tioned lag between audio and visual speech. It also removes
the need for down-sampling audio features (or upsampling
visual features).

5. APPLICATION TO BIOMETRICS

Among many applications (some of which are listed in
Section 6), identity verification based on talking faces is one
that can really benefit from synchrony measures.

5.1. Audiovisual features extraction

Given an audiovisual sequence AV , we use our algorithm for
face and lip tracking [34] to locate the lip area in every frame,
as shown in Figure 1. While 15 classical MFCC coefficients
are extracted every 10milliseconds from the audio of the se-
quence AV , the first 30 DCT coefficients of the grey-level lip
area are extracted (in a zigzag manner) from every frame of
the video. A linear interpolation is finally performed on the
visual features to reach the audio sample rate (100Hz). This
feature extraction process is done for every sequence AV to
get the two random variablesX ∈ R15 (for audio speech) and
Y ∈ R30 (for visual speech).

Figure 1: Lip tracking on the BANCA database.

5.2. Synchronymeasures

We introduce two novel synchrony measures Ṡ and S̈ based
on Canonical correlation analysis and Co-inertia analysis, re-
spectively. The first step is to compute the transformation
matrices Ȧ, and Ḃ for CCA (resp., Ä and B̈ for CoIA). A
training set made of a collection of synchronized audiovisual
sequences is gathered to compute them, using the formulae
described in [29] (resp., in [14]). Consequently, we can de-
fine the following audiovisual speech synchrony measures in
(11) and (12):

ṠȦ,Ḃ(X ,Y) =
1
K

K∑

k=1

∣∣corr
(
ȧTk X , ḃ

T
k Y
)∣∣ (11)

S̈Ä,B̈(X ,Y) =
1
K

K∑

k=1

∣∣cov
(
äTk X , b̈

T
k Y
)∣∣, (12)

where only the first K vectors ak and bk of matrices A and
B are considered. In the following, we will arbitrarily choose
K = 3.

5.3. Replay attacks

Most of audiovisual identity verification systems based on
talking faces perform a fusion of the scores given by a
speaker verification algorithm and a face recognition algo-
rithm. Therefore, it is quite easy for an impostor to imper-
sonate his/her target if he/she owns recordings of his/her
voice and pictures (or videos) of his/her face.

5.3.1. Impersonation scenarios

Many databases are available to the research community
to help evaluate multimodal biometric verification algo-
rithms, such as BANCA [6], XM2VTS [35], BT-DAVID [36],
BIOMET [37], MyIdea, and IV2. Different protocols have
been defined for evaluating biometric systems on each of
these databases, but they share the assumption that impos-
tor attacks are zero-effort attacks, that is, that the impostors
use their own voice and face to perform the impersonation
trial. These attacks are of course quite unrealistic, only a fool
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would attempt to imitate a person without knowing anything
about them.

Therefore, in [8], we have augmented the original
BANCA protocols with more realistic impersonation scenar-
ios, which can be divided into two categories: forgery scenar-
ios (where voice and/or face transformation is performed)
and replay attacks scenarios (where previously acquired bio-
metric samples are used to impersonate the target).

In this section, we will tackle the Big Brother scenario;
prior to the attack, the impostor records a movie of the tar-
get’s face and acquires a recording of his/her voice. However,
the audio and video do not come from the same utterance, so
they may not be synchronized. This is a realistic assumption
in situations where the identity verification protocol chooses
an utterance for the client to speak.

5.3.2. Training

As mentioned earlier, a preliminary training step is needed
to learn the projection matrices A and B (both for CCA
and CoIA) and—then only—the synchrony measures can
be computed. This training step can be done using different
training sets depending on the targeted application.

Worldmodel

In this configuration, a large training set of synchronized au-
diovisual sequences is used to learn A and B.

Client model

The use of a client-dependent training set (of synchronized
audiovisual sequences from one particular person) will be
more deeply investigated in Section 5.4 about identity veri-
fication.

No training

One could also avoid the preliminary training set by learn-
ing (at test time) A and B on the tested audiovisual sequence
(X ,Y) itself.

Self-training

This method is an improvement brought to the above and
was driven by the following intuition: It is possible to learn
a synchrony model between synchronized variables, whereas
nothing can be learned from not-synchronized variables.Given
a tested audiovisual sequence (X ,Y), with X = {x1, . . . , xN}
and Y = {y1, . . . , yN}, one can therefore try to learn the
projection matrices A and B from a subsequence (Xtrain =
{x1, . . . , xL},Ytrain = {y1, . . . , yL}), with L < N and com-
pute the synchrony measure S on what is left of the se-
quence: (Xtest,Ytest) with Xtest = {xL+1, . . . , xN} and Ytest =
{yL+1, . . . , yN}. In order to improve the robustness of this
method, a cross-validation principle is applied: the partition
between training and test set is performed P times by ran-
domly drawing samples from (X ,Y) to build the training set
(keeping the others for the test set). Each partition p leads to

a measure Sp and the final synchrony measure S is computed

as their mean, S = (1/P)
∑P

p=1 Sp.

5.3.3. Experiments

Experiments are performed on the BANCA database [6],
which is divided into two disjoint groups (G1 and G2) of
26 people. Each person recorded 12 videos where he/she
says his/her own text (always the same) and 12 other videos
where he/she says the text of another person from the same
group, this makes 624 synchronized audiovisual sequences
per group. On the other side, for each group, 14352 not-
synchronized audiovisual sequences were artificially recom-
posed from audio and video from two different original se-
quences with one strong constraint that the person heard and
the person seen pronounce the same utterance (in order to
make the boundary decision between synchronized and not-
synchronized audiovisual sequences even more difficult to
define).

For each synchronized and not-synchronized sequence, a
synchronymeasure S is computed. Thismeasure is then com-
pared to a threshold θ and the sequence is decided to be syn-
chronized if it is bigger than θ and not-synchronized other-
wise. Varying the threshold θ, a DET curve [38] can be plot-
ted. On the x-axis, the percentage of falsely rejected synchro-
nized sequences is plotted, whereas the y-axis shows the per-
centage of falsely accepted not-synchronized sequences (de-
pending on the chosen value for θ).

5.3.4. Results

Figure 2 shows the performance of the CCA (left) and CoIA
(right) measures using the different training procedures de-
scribed in Section 5.3.2. The best performance is achieved
with the novel Self-training we introduced, both for CCA
and CoIA, as well as with the CCA using World model, it
gives an equal error rate (EER) of around 17%. It is no-
ticeable that World model works better with CCA whereas
Client model gives poor results with CCA and works nearly as
good as Self-training with CoIA. This latter observation con-
firms what was previously noticed in [19]. The CoIA is much
less sensitive to the number of training samples available, the
CoIA works fine with little data (Client model only uses one
BANCA sequence to train A and B [6]) and the CCA needs a
lot of data for robust training.

Finally, Figure 3 shows that one can improve the perfor-
mance of the algorithm for synchrony detection by fusing
two scores (based on CCA and based on CoIA). After a clas-
sical step of score normalization, a support vector machine
(SVM) with linear kernel is trained on one group (G1 or G2)
and applied on the other one. The fusion of CCA withWorld
model and CoIA with Self-training lowers the EER to around
14%. This final EER is comparable to what was achieved in
[21].

5.4. Identity verification

According to the results obtained in Figure 2, not only can
synchrony measures be used as a first barrier against replay



H. Bredin and G. Chollet 7

10

15

20

30

10 15 20 30

False alarm probability (%)

M
is
s
pr
ob

ab
ili
ty
(%

)

World model

Client model

No training

Self-training

(a)

10

15

20

30

10 15 20 30

False alarm probability (%)

M
is
s
pr
ob

ab
ili
ty
(%

)

World model

Client model

No training

Self-training

(b)

Figure 2: Synchrony detection with CCA and CoIA.
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Figure 3: Fusion of CoIA and CCA.
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attacks, but it also led us to investigate the use of audiovi-
sual speech synchrony measure for identity verification (see
performance achieved by the CoIA with Client model).

Some previous work have been done in identity verifica-
tion using fusion of speech and lip motion. In [23] the au-
thors apply classical linear transformations for dimensional-
ity reduction (such as principal component analysis - PCA,
or linear discriminant analysis—LDA) on feature vectors re-
sulting from the concatenation of audio and visual speech
features. CCA is used in [39] where projected audio and vi-
sual speech features are used as input for client-dependent
HMMmodels.

Our novel approach uses CoIA with Client model (that
achieved very good results for synchrony detection) to iden-
tify people with their personal way of synchronizing their au-
dio and visual speech.

5.4.1. Principle

Given an enrollment audiovisual sequence AVλ from a per-
son λ, one can extract the corresponding synchronized vari-
ables Xλ and Yλ as described in Section 5.2. Then, using
(Xλ,Yλ) as the training set, client-dependent CoIA projection
matrices Äλ and B̈λ are computed and stored as the model of
client λ.

At test time, given an audiovisual sequence AVε from a
person ε pretending to be the client λ, one can extract the
corresponding variables Xε and Yε. S̈Äλ,B̈λ

(Xε,Yε) (defined
in (12)) finally allows to get a score which can be compared
to a threshold θ. The person ε is accepted as the client λ if
S̈Äλ,B̈λ

(Xε,Yε) > θ and rejected otherwise.

5.4.2. Experiments

Experiments are performed on the BANCA database follow-
ing the Pooled protocol [6]. The client access of the first ses-
sion of each client is used as the enrollment data and the test
are performed using all the other sequences (11 client ac-
cesses and 12 impostor accesses per person). The impostor
accesses are zero-effort impersonation attacks since the im-
postor uses his/her own face and voice when pretending to be
his/her target. Therefore, we also investigated replay attacks.
The client accesses of the Pooled protocol are not modified,
only the impostor accesses are, to simulate replay attacks.

Video replay attack

A video of the target is shown while the original voice of the
impostor is kept unchanged.

Audio replay attack

The voice of the target is played while the original face of the
impostor is kept unchanged.

Notice that, even though the acoustic and visual speech
signals are not synchronized, the same utterance (a digit code
and the name and address of the claimed identity) is pro-
nounced.

5.4.3. Results

Figure 4 shows the performance of identity verification using
the client-dependent synchrony model on these three proto-
cols.

On the original zero-effort Pooled protocol, the algorithm
achieves an EER of 32%. This relatively weak method might
however bring some extra discriminative power to a system
based only on the speech and face modalities, which we will
study in the the following section. We can also notice that it
is intrinsically robust to replay attacks: both audio and video
replay attacks protocols lead to an EER of around 17%. This
latter observation also shows that this new modality is very
little correlated to the speech and face modality, and mostly
depends on the actual correlation for which it was originally
designed.

6. OTHER APPLICATIONS

Measuring the synchrony between audio and visual speech
features can be a great help in many other applications deal-
ing with audiovisual sequences.

Sound source localization

Sound source localization is the most cited application of
audio and visual speech correspondence measure. In [11],
a sliding window performs a scan of the video, looking for
the most probable mouth area corresponding to the audio
track (using a time-delayed neural network). In [13], the
principle of mutual information allows to choose which of
the four faces appearing in the video is the source of the au-
dio track, the authors announce a 82% accuracy (averaged
on 1016 video tests). One can think of an intelligent video-
conferencing systemmaking extensive use of such results, the
camera could zoom in on the person who is currently speak-
ing.

Indexation of audiovisual sequences

Another field of interest is the indexation of audiovisual se-
quences. In [12], the authors combine scores from three sys-
tems (face detection, speech detection, and a measure of cor-
respondence based on the mutual information between the
soundtrack and the value of pixels) to improve their algo-
rithm for detection of monologue. Experiments performed
in the framework of the TREC 2002 video retrieval track [40]
show a 50% relative improvement on the average precision.

Film postproduction

During the postproduction of a film, dialogues are often re-
recorded in a studio. An audiovisual speech correspondence
measure can be of great help when synchronizing the new au-
dio recording with the original video. Suchmeasures can also
be a way of evaluating the quality of a dubbed film into a for-
eign language: does the translation fit well with the original
actor facial motions?
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Figure 4: Identity verification with speech synchrony.

And also

In [31], audiovisual speech correspondence is used as a way
of improving an algorithm for speech separation. The au-
thors of [30] design filters for noise reduction, with the help
of audiovisual speech correspondence.

7. CONCLUSION

This paper has reviewed techniques proposed in the litera-
ture to measure the degree of correspondence between au-
dio and visual speech. However, it is very difficult to com-
pare these methods since no common framework is shared
among the laboratories working in this area. There was a
monologue detection task (where using audiovisual speech
correspondence showed to improve performance in [12]) in
TRECVid 2002 but unfortunately it disappeared in the fol-
lowing sessions (2003 to 2006). Moreover, tests are often per-
formed on very small datasets, sometimes only made of a
couple of videos and difficult to reproduce. Therefore, draw-
ing any conclusions about performance is not an easy task,
the area covered in this review clearly lacks a common evalu-
ation framework.

Nevertheless, experimental protocols and databases do
exist for research in biometric authentication based on talk-
ing faces. We have therefore used the BANCA database and
its predefined Pooled protocol to evaluate the performance
of synchrony measures for biometrics, an EER of 32% was
reached. The fact that this new modality is very little cor-

related to speaker verification and face recognition might
also lead to significant improvement in a multimodal system
based on the fusion of the three modalities [41].

ACKNOWLEDGMENT

The research leading to this paper was supported by the Eu-
ropean Commission under Contract FP6-027026, Knowl-
edge Space of semantic inference for automatic annotation
and retrieval of multimedia content—K-Space.

REFERENCES

[1] G. Potamianos, C. Neti, J. Luettin, and I. Matthews, “Audio-
visual automatic speech recognition: an overview,” in Issues
in Visual and Audio-Visual Speech Processing, G. Bailly, E.
Vatikiotis-Bateson, and P. Perrier, Eds., chapter 10, MIT Press,
Cambridge, Mass, USA, 2004.

[2] T. Chen, “Audiovisual speech processing,” IEEE Signal Process-
ing Magazine, vol. 18, no. 1, pp. 9–21, 2001.

[3] C. C. Chibelushi, F. Deravi, and J. S. Mason, “A review
of speech-based bimodal recognition,” IEEE Transactions on
Multimedia, vol. 4, no. 1, pp. 23–37, 2002.

[4] J. P. Barker and F. Berthommier, “Evidence of correlation
between acoustic and visual features of speech,” in Proceed-
ings of the 14th International Congress of Phonetic Sciences
(ICPhS ’99), pp. 199–202, San Francisco, Calif, USA, August
1999.

[5] H. Yehia, P. Rubin, and E. Vatikiotis-Bateson, “Quantitative as-
sociation of vocal-tract and facial behavior,” Speech Communi-
cation, vol. 26, no. 1-2, pp. 23–43, 1998.



10 EURASIP Journal on Advances in Signal Processing

[6] E. Bailly-Baillière, S. Bengio, F. Bimbot, et al., “The BANCA
database and evaluation protocol,” in Proceedings of the 4th
International Conference on Audioand Video-Based Biometric
Person Authentication (AVBPA ’03), vol. 2688 of Lecture Notes
in Computer Science, pp. 625–638, Springer, Guildford, UK,
January 2003.

[7] J. Hershey and J. Movellan, “Audio-vision: using audio-visual
synchrony to locate sounds,” in Advances in Neural Informa-
tion Processing Systems 11, M. S. Kearns, S. A. Solla, and D. A.
Cohn, Eds., pp. 813–819, MIT Press, Cambridge, Mass, USA,
1999.

[8] H. Bredin, A. Miguel, I. H. Witten, and G. Chollet, “Detect-
ing replay attacks in audiovisual identity verification,” in Pro-
ceedings of the 31st IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP ’06), vol. 1, pp. 621–624,
Toulous, France, May 2006.

[9] J.W. Fisher III and T. Darrell, “Speaker association with signal-
level audiovisual fusion,” IEEE Transactions on Multimedia,
vol. 6, no. 3, pp. 406–413, 2004.

[10] G. Chetty and M. Wagner, ““Liveness” verification in audio-
video authentication,” in Proceedings of the 10th Australian In-
ternational Conference on Speech Science and Technology (SST
’04), pp. 358–363, Sydney, Australia, December 2004.

[11] R. Cutler and L. Davis, “Look who’s talking: speaker detection
using video and audio correlation,” in Proceedings of IEEE In-
ternational Conference on Multimedia and Expo (ICME ’00),
vol. 3, pp. 1589–1592, New York, NY, USA, July-August 2000.

[12] G. Iyengar, H. J. Nock, and C. Neti, “Audio-visual synchrony
for detection of monologues in video archives,” in Proceed-
ings of IEEE International Conference on Multimedia and Expo
(ICME ’03), vol. 1, pp. 329–332, Baltimore, Md, USA, July
2003.

[13] H. J. Nock, G. Iyengar, and C. Neti, “Assessing face and speech
consistency for monologue detection in video,” in Proceed-
ings of the 10th ACM international Conference on Multimedia
(MULTIMEDIA ’02), pp. 303–306, Juan-les-Pins, France, De-
cember 2002.

[14] M. Slaney and M. Covell, “FaceSync: a linear operator for
measuring synchronization of video facial images and audio
tracks,” in Advances in Neural Information Processing Systems
13, pp. 814–820, MIT Press, Cambridge, Mass, USA, 2000.

[15] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker verifi-
cation using adapted Gaussian mixture models,”Digital Signal
Processing, vol. 10, no. 1–3, pp. 19–41, 2000.

[16] N. Sugamura and F. Itakura, “Speech analysis and synthesis
methods developed at ECL in NTT-from LPC to LSP,” Speech
Communications, vol. 5, no. 2, pp. 199–215, 1986.

[17] C. Bregler and Y. Konig, ““Eigenlips” for robust speech recog-
nition,” in Proceedings of the 19th IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing (ICASSP ’94),
vol. 2, pp. 669–672, Adelaide, Australia, April 1994.

[18] M. Turk and A. Pentland, “Eigenfaces for recognition,” Journal
of Cognitive Neuroscience, vol. 3, no. 1, pp. 71–86, 1991.

[19] R. Goecke and B.Millar, “Statistical analysis of the relationship
between audio and video speech parameters for Australian En-
glish,” in Proceedings of the ISCA Tutorial and Research Work-
shop on Audio Visual Speech Processing (AVSP ’03), pp. 133–
138, Saint-Jorioz, France, September 2003.

[20] N. Eveno and L. Besacier, “A speaker independent “liveness”
test for audio-visual biometrics,” in Proceedings of the 9th Eu-
ropean Conference on Speech Communication and Technology
(EuroSpeech ’05), pp. 3081–3084, Lisbon, Portugal, September
2005.

[21] N. Eveno and L. Besacier, “Co-inertia analysis for “liveness”
test in audio-visual biometrics,” in Proceedings of the 4th Inter-
national Symposium on Image and Signal Processing and Anal-
ysis (ISPA ’05), pp. 257–261, Zagreb, Croatia, September 2005.

[22] N. Fox and R. B. Reilly, “Audio-visual speaker identifica-
tion based on the use of dynamic audio and visual features,”
in Proceedings of the 4th International Conference on Audio-
and Video-Based Biometric Person Authentication (AVBPA ’03),
vol. 2688 of Lecture Notes in Computer Science, pp. 743–751,
Springer, Guildford, UK, June 2003.

[23] C. C. Chibelushi, J. S. Mason, and F. Deravi, “Integrated per-
son identification using voice and facial features,” in IEE Collo-
quium on Image Processing for Security Applications, vol. 4, pp.
1–5, London, UK, March 1997.

[24] A. Hyvärinen, “Survey on independent component analysis,”
Neural Computing Surveys, vol. 2, pp. 94–128, 1999.

[25] D. Sodoyer, L. Girin, C. Jutten, and J.-L. Schwartz, “Speech ex-
traction based on ICA and audio-visual coherence,” in Pro-
ceedings of the 7th International Symposium on Signal Process-
ing and Its Applications (ISSPA ’03), vol. 2, pp. 65–68, Paris,
France, July 2003.

[26] P. Smaragdis and M. Casey, “Audio/visual independent com-
ponents,” in Proceedings of the 4th International Symposium on
Independent Component Analysis and Blind Signal Separation
(ICA ’03), pp. 709–714, Nara, Japan, April 2003.

[27] ICA, http://www.cis.hut.fi/projects/ica/fastica/.
[28] Canonical Correlation Analysis. http://people.imt.liu.se/

∼magnus/cca/.
[29] S. Dolédec and D. Chessel, “Co-inertia analysis: an alterna-

tive method for studying species-environment relationships,”
Freshwater Biology, vol. 31, pp. 277–294, 1994.

[30] J. W. Fisher, T. Darrell, W. T. Freeman, and P. Viola, “Learn-
ing joint statistical models for audio-visual fusion and segre-
gation,” in Advances in Neural Information Processing Systems
13, T. K. Leen, T. G. Dietterich, and V. Tresp, Eds., pp. 772–778,
MIT Press, Cambridge, Mass, USA, 2001.

[31] D. Sodoyer, J.-L. Schwartz, L. Girin, J. Klinkisch, and C. Jut-
ten, “Separation of audio-visual speech sources: a new ap-
proach exploiting the audio-visual coherence of speech stim-
uli,” EURASIP Journal on Applied Signal Processing, vol. 2002,
no. 11, pp. 1165–1173, 2002.

[32] L. R. Rabiner, “A tutorial on hidden Markov models and se-
lected applications in speech recognition,” Proceedings of the
IEEE, vol. 77, no. 2, pp. 257–286, 1989.

[33] S. Bengio, “An asynchronous hiddenMarkovmodel for audio-
visual speech recognition,” in Advances in Neural Information
Processing Systems 15, S. Becker, S. Thrun, and K. Obermayer,
Eds., pp. 1213–1220, MIT Press, Cambridge, Mass, USA, 2003.

[34] H. Bredin, G. Aversano, C. Mokbel, and G. Chollet,
“The biosecure talking-face reference system,” in Proceed-
ings of the 2nd Workshop on Multimodal User Authentication
(MMUA ’06), Toulouse, France, May 2006.

[35] K. Messer, J. Matas, J. Kittler, J. Luettin, and G. Maitre,
“XM2VTSDB: the extended M2VTS database,” in Proceedings
of International Conference on Audio- and Video-Based Biomet-
ric Person Authentication (AVBPA ’99), pp. 72–77,Washington,
DC, USA, March 1999.

[36] BT-DAVID, http://eegalilee.swan.ac.uk/.
[37] S. Garcia-Salicetti, C. Beumier, G. Chollet, et al., “BIOMET:

a multimodal person authentication database including face,
voice, fingerprint, hand and signature modalities,” in Proceed-
ings of the 4th International Conference on Audio-and Video-
Based Biometric Person Authentication (AVBPA ’03), pp. 845–
853, Guildford, UK, June 2003.

http://www.cis.hut.fi/projects/ica/fastica/
http://people.imt.liu.se/~magnus/cca/
http://people.imt.liu.se/~magnus/cca/
http://eegalilee.swan.ac.uk/


H. Bredin and G. Chollet 11

[38] A. F. Martin, G. R. Doddington, T. Kamm, M. Ordowski, and
M. Przybocki, “The DET curve in assessment of detection task
performance,” in Proceedings of the 5th European Conference
on Speech Communication and Technology (EuroSpeech ’97),
vol. 4, pp. 1895–1898, Rhodes, Greece, September 1997.

[39] M. E. Sargin, E. Erzin, Y. Yemez, and A. M. Tekalp, “Multi-
modal speaker identification using canonical correlation anal-
ysis,” in Proceedings of the 31st IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP ’06), vol. 1,
pp. 613–616, Toulouse, France, May 2006.

[40] Text Retrieval Conference Video Track. http://trec.nist.gov/.
[41] H. Bredin and G. Chollet, “Audio-visual speech synchrony

measure for talking-face identity verification,” in Proceedings
of the 32nd IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP ’07), Honolulu, Hawaii, USA,
April 2007.
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