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A novel adaptive resolution upconversion algorithm that is robust to compression artifacts is proposed. This method is based
on classification of local image patterns using both structure information and activity measure to explicitly distinguish pixels into
content or coding artifacts. The structure information is represented by adaptive dynamic-range coding and the activity measure is
the combination of local entropy and dynamic range. For each pattern class, the weighting coefficients of upscaling are optimized
by a least-mean-square (LMS) training technique, which trains on the combination of the original images and the compressed
downsampled versions of the original images. Experimental results show that our proposed upconversion approach outperforms
other classification-based upconversion and artifact reduction techniques in concatenation.
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1. INTRODUCTION

With the continuous demand of higher picture quality, the
resolution of high-end TV products is rapidly increasing.
The resolution of broadcasting programs or video on stor-
age discs is usually lower than that of high-definition (HD)
TV. Therefore, those video materials have to be upconverted
to fit the resolution of the HDTV. Due to the bandwidth
limit of the broadcasting channels and the capacity limit of
the storage media, the video materials are always compressed
with various compression standards, such asMPEG1/2/4 and
H.26x. These block-transform-based codecs divide the im-
age or video frame into nonoverlapping blocks (usually with
the size of 8 × 8 pixels), and apply discrete cosine transform
(DCT) on them. The DCT coefficients of neighboring blocks
are thus quantized independently. At high or medium com-
pression rates, the coarse quantization will result in various
noticeable coding artifacts, such as blocking, ringing, and
mosquito artifacts.

Most existing resolution upconversion algorithms ap-
ply content-adaptive interpolation according to the struc-
ture or property of a region [1–7]. For compressed mate-
rials, the coding artifacts will be preserved after upscaling.
These coding artifacts, for example, blocking artifacts, will
be even more difficult to remove than those in the original

low-resolution image, because the coding artifacts will
spread among more pixels and become not trivial to detect
after upscaling. One solution is to reduce the coding artifacts
before applying resolution upscaling. However, most coding
artifact reduction algorithms [8–11] blur details while sup-
pressing various digital artifacts. Those details lost during
artifact reduction cannot be recovered during resolution up-
scaling. We propose to remove coding artifacts and apply res-
olution upconversion simultaneously in this paper. Different
filter coefficients are used for different image regions based
on a classification scheme that utilizes both structure and
an activity metric. The optimal coefficients are obtained by
making the mean square error (MSE) between the reference
pixels and the processed distorted pixels minimized statisti-
cally during the training process. The distortion we use here
is first downsampling then adding coding artifacts by com-
pression.

Most superresolution algorithms [12, 13] in the litera-
ture attempt to recover high-resolution images from low-
resolution images based on multiframe processing. We pro-
pose a single-frame processing solution for resolution up-
conversion of compressed images and video. Therefore, the
proposed technique is more efficient and cost-effective.

The rest of this paper is organized as follows. Section 2
describes the classification method that determines whether
a local region contains information or digital artifacts.
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Table 1: Coarse classification of a region.

DR Entropy (high) Entropy (low)

DR (high) Object edge/highly textured region Strong blockiness

DR (low) Fine texture Mild blockiness/mosquito noise

100 104 108

102 105 52

98 55 50

ADRC

1 1 1

1 1 0

1 0 0

Figure 1: Illustration of ADRC coding.

In Section 3, we present the least-mean-square technique to
obtain the optimized coefficients for each class. Experimen-
tal results and performance evaluation are given in Section 4.
Finally, we conclude our paper in Section 5.

2. PIXEL CLASSIFICATION

Adaptive dynamic-range coding (ADRC) [14] has been suc-
cessfully used for representing the structure of a region. The
ADRC code of each pixel xi in an observation aperture is de-
fined as ADRC(xi) = 0 if V(xi) ≤ Vav, 1 otherwise, where
V(xi) is the value of pixel xi, and Vav is the average of all the
pixel values in the aperture. Figure 1 shows the ADRC coding
of a 3 × 3 aperture. ADRC has been demonstrated to be an
efficient classification technique for resolution upconversion
[1]. However, obviously it is not enough for compressed ma-
terials, because it cannot distinguish object details from cod-
ing artifacts. For example, the ADRC codes of an object edge
could be exactly the same as that of a blocking artifact. There-
fore, local activity measure should be appended to ADRC, in
order to fully differentiate object details from compression
artifacts.

The activity measure we employ is the local entropy cou-
pled by dynamic range of a region. Local entropy has been
shown to be a good measure for distinguishing information
from digital noise [8]. The local entropy is calculated on the
probability density functions (PDFs) of some descriptors in-
side a region. The PDFs are approximated by the histogram
of a descriptor. Considering the context of video processing,
we employ luminance intensity as the descriptor. Therefore,
the entropy calculation can be defined as

H = −
N∑

i=1
PR(i) log2 PR(i), (1)

where i indicates the bin index in the histogram, N is the to-
tal number of bins, and R is a local region around the central

HD images

2D downsample
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Figure 2: The training procedure of the proposed method.

pixel over which the entropy is calculated. A region with high
activity has a distributed histogram, while the histogram of
a region with low activity usually only contains a few peaks.
Note that the distribution of the histogram is dominated by
the local structure of the region, such that noise and cod-
ing artifacts will not affect the overall distribution of the his-
togram.

According to the information theory, H has a higher
value for a spread-out histogram than a peaked one [8], that
is, the entropy value of a complex region tends to be larger
than a smooth region. Entropy H can be also used as a lo-
cal blockiness metric, because blocking artifacts reduce the
variation of intensities, thus decrease the entropy value. Typ-
ically, the entropy value of a region decreases when increasing
the compression rate.

To further quantize a region’s activity or coding artifacts,
entropy should be coupled with dynamic range (DR). DR is
defined as the absolute difference between the maximum and
minimum pixel values of a region. Table 1 depicts a coarse
classification of a region based on the combination of en-
tropy and dynamic range. Here, each 1 bit is used for both
entropy and DR. Ringing artifact can be also differentiated,
because it usually has a medium-valued entropy and a rela-
tively low DR. For more detailed description of the classifica-
tion method based on entropy and DR, please refer to [9].

Accordingly, a pixel and its surrounding region can be
classified based on the structure, which is represented by
ADRC, and the activity measure, which is the local entropy
plus dynamic range.

3. LEAST-MEAN-SQUARE OPTIMIZATION

In this section, the least-mean-square (LMS) optimization
technique is described to produce optimal coefficients for
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Figure 3: The filtering procedure of the proposed method.

each class based on the pixel classification of the previous
section. Figure 2 shows the proposed optimization proce-
dure. Uncompressed HD reference images are first down-
sampled using bilinear interpolation. The downsampled im-
ages are then compressed to introduce coding artifacts. We
refer to the compressed downsampled images as corrupted
images. Each pixel in the corrupted images is then classified
on that pixel’s neighborhood using the classification method
described in the previous section. All the pixels and their
neighborhoods belonging to a specific class and their corre-
sponding pixels in the reference images are accumulated, and
the optimal coefficients are obtained by making the mean
square error (MSE) minimized statistically.

Let FD,c, FR,c be the apertures of the distorted images
and the reference images for a particular class c, respectively.
Then, the filtered pixel FF,c can be obtained by the desired
optimal coefficients as follows:

FF,c =
n∑

i=1
wc(i)FD,c(i, j), (2)

wherewc(i), i ∈ [1 · · ·n], are the desired coefficients, n is the
number of pixels in the aperture, and j indicates a particular
aperture belonging to class c.

The summed square error between the filtered pixels and
the reference pixels is

e2 =
Nc∑

j=1

(
FR,c − FF,c

)2

=
Nc∑

j=1

[
FR,c( j)−

n∑

i=1
wc(i)FD,c(i, j)

]2

,

(3)

where Nc represents the number of pixels belonging to class
c. To minimize e2, the first derivative of e2 to wc(k), k ∈
[1 · · ·n], should be equal to zero:

∂e2

∂wc(k)
=

Nc∑

j=1
2FD,c(k, j)

[
FR,c( j)−

n∑

i=1
wc(i)FD,c(i, j)

]
= 0.

(4)

By solving the above equation using Gaussian elimination,
we will get the optimal coefficients as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

wc(1)

wc(2)
...

wc(n)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Nc∑

j=1
FD,c(1, j)FD,c(1, j)

...
Nc∑

j=1
FD,c(1, j)FD,c(n, j)

Nc∑

j=1
FD,c(2, j)FD,c(1, j) · · ·

Nc∑

j=1
FD,c(2, j)FD,c(n, j)

...
...

...

Nc∑

j=1
FD,c(n, j)FD,c(1, j) · · ·

Nc∑

j=1
FD,c(n, j)FD,c(n, j)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Nc∑

j=1
FD,c(1, j)FR,c( j)

Nc∑

j=1
FD,c(2, j)FR,c( j)

...
Nc∑

j=1
FD,c(n, j)FR,c( j)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(5)

The LMS-optimized coefficients for each class are then stored
in a lookup table (LUT) for future use. Figure 3 shows the fil-
tering procedure of resolution upconversion for compressed
materials using the optimized coefficients retrieved from the
LUT. A more comprehensive explanation of the LMS opti-
mization technique can be found in [1].

4. EXPERIMENTS AND EVALUATION

In this section, the experimental results of the proposed
algorithm are presented. For the optimization procedure,
a set of 500 images is used for training. We demonstrate
the algorithm with the upscaling factor of 2 × 2. There-
fore, the bilinear interpolation with the scaling factor of
2 × 2 is used for downsampling during training. Obviously,
other upconversion factors can also be achieved. The baseline
JPEG software from the Independent JPEG Group website
(http://www.ijg.org) is adopted to be the codec for introduc-
ing coding artifacts. The quality factor of JPEG is set to be 20.
Obviously, other codecs, such as MPEG or H.264, can also
be used. An aperture of 3 × 3 pixels, as depicted in Figure 4,
is used for classification in our implementation. Therefore,
8 bits are needed for ADRC coding, since 1 bit can be saved
by bitinversion [15]. For the activity measure, we use 2 bits
for local entropy and 2 bits for dynamic range. Totally, 12 bits
are used for classification.

http://www.ijg.org
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Table 2: Comparison of numbers of coefficients in the LUT of the three algorithms.

Algorithm Reference [15] + reference [1] Reference [1] + reference [15] Proposed

No. coefficients 4096× 16× 13 + 256× 9 256× 9 + 4096× 16× 13 256× 16× 9

Table 3: MSE comparison of different algorithms.

Sequence Reference [1] Reference [15] + reference [1] Reference [1] + reference [15] Proposed

Hotel 116.28 113.40 108.53 104.92

Parrot 36.13 32.15 35.05 31.92

Girl 66.93 59.85 63.72 59.42

Bicycle 183.48 164.25 170.19 161.43

Helicopter 89.01 89.81 83.07 82.85

Game 208.80 209.74 198.27 192.82

For benchmarking, we compare our algorithm with
two state-of-the-art classification-based resolution upcon-
versions [1] and artifact reduction [15] methods in con-
catenation. ADRC is used for classification in the resolution
upconversion algorithm. Same as our proposed approach,
a 3 × 3 aperture is used for classification and interpola-
tion. The coding artifact reduction method is based on the
classification of structure by adaptive dynamic-range cod-
ing (ADRC) and relative position of a pixel in the coding
block grid. A diamond-shape 13- aperture is used, which re-
quires 12 bits for ADRC and 4 bits for relative position cod-
ing. The drawback of this method is that block grid positions
are not always available, especially for scaled material. For
the cascaded method of first applying resolution upconver-
sion then doing coding artifact reduction, the classification
of coding artifact reduction is carried out on the upscaled
HD signal and the relative position of a pixel in the block
grid is also upscaled accordingly to suit the HD signal. The
coefficients of both methods are obtained by the LMS tech-
nique. These two methods have significant advantages over
other analysis-based filtering techniques. For cost compari-
son, Table 2 shows the numbers of coefficients that need to
be stored in lookup tables (LUT) for each of the three algo-
rithms. The proposed algorithm is much more economical
than the other two in terms of LUT size. Since the training
process is done offline and only needs to be done once, thus
the computational cost is limited for all the three methods.

We test the algorithms on a variety of sequences first
downsampled then compressed using the same setting used
during the training. Figure 5 shows the snapshots of the se-
quences we use. All the test sequences are excluded from the
training set. The objective metric we use is mean square er-
ror (MSE), that is, we calculate the MSE between the origi-
nal HD sequences and the result sequences processed on the
compressed downsampled versions of the original sequences.
Table 3 shows the results of the proposed algorithm in com-
parison to the results of first applying coding artifact reduc-
tion then upconversion and first applying upconversion then

2 j 2( j + 1) 2( j + 2) 2( j + 3) 2( j + 4) 2( j + 5)

2(i + 5)

2(i + 4)

2(i + 3)

2(i + 2)

2(i + 1)

2i

F00 SD pixel

HD pixel

F00 F01 F02

F10 F11 F12

F20 F21 F22

A B

C D

Figure 4: Aperture used in the proposed method. The white pix-
els are interpolated HD pixels (FHD). The black pixels are SD pixels
(FSD), with F12 as a shorthand notation for FSD(1, 2) and so forth.
The HD pixel A that corresponds to FHD(2(i+ 2), 2( j + 2)), is inter-
polated using nine SD pixels (F00 up to F22).

artifact reduction. The result of resolution upconversion us-
ing the method in [1] without applying artifact reduction is
also shown for reference. From the results, one can see that
the proposed algorithm outperforms the other two concate-
nated methods for all sequences. The results also reveal that
the order of applying upconversion and artifact reduction af-
fects the performance of the concatenated method. For some
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(a) Hotel (b) Parrot (c) Girl

(d) Bicycle (e) Helicopter (f) Game

Figure 5: Snapshots of test sequences for experiments.

(a) (b) (c)

Figure 6: The cutouts of the girl sequence processed using the three methods: (a) first artifact reduction then resolution upconversion; (b)
first resolution upconversion then artifact reduction; (c) the proposed method.

sequences, applying artifact reduction first gives better re-
sults; for other sequences, vice verse.

For subjective comparison, Figure 6 shows the results of
the three methods on the girl sequence. It is easy to see that
the result of first applying upconversion then artifact reduc-
tion contains more residual artifacts than the proposed algo-
rithm, because upscalingmakes coding artifacts spread out in
more pixels and the enlarged coding artifacts are more diffi-
cult to remove. The result of first applying artifact reduction
then resolution upconversion is blurrier than our proposed

algorithm, because the artifact reduction step blurs some de-
tials, which cannot be recovered by the upscaling step.

5. CONCLUSION

In this paper, a compression artifacts robust resolution up-
conversion approach is proposed. Structure and activity in-
formation are employed to classify an aperture into object
details or coding artifacts. Based on the classification, a least-
mean-square optimization technique is used to obtain the
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optimized weighting coefficients for upscaling. The opti-
mization is done using a training set composed of the origi-
nal HD images and the compressed downsampled versions
of the original images. The experimental results are com-
pared to two classification-based artifact reduction and res-
olution upconversion algorithms in concatenation. Our pro-
posed approach outperforms the other two both objectively
and subjectively.
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