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A method for designing stable circularly symmetric two-dimensional digital filters is presented. Two-dimensional discrete transfer
functions of the rotated filters are obtained from stable one-dimensional analog-filter transfer functions by performing rotation
and then applying the double bilinear transformation. The resulting filters which may be unstable due to the presence of nonessen-
tial singularities of the second kind are stabilized by using planar least-square inverse polynomials. The stabilized rotated filters are
then realized by using the concept of generalized immittance converter. The proposed method is simple and straight forward and
it yields stable digital filter structures possessing many salient features such as low noise, low sensitivity, regularity, and modularity
which are attractive for VLSI implementation.
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1. INTRODUCTION

Two-dimensional (2D) digital filters find applications in
many areas such as geophysics, robotics, biomedicine, im-
age processing, and prospecting for oil [1, 2]. A special class
of 2D infinite impulse response (IIR) digital filters whose
magnitude responses are approximately circularly symmet-
ric can be realized by cascading a number of elementary fil-
ters known as rotated filters [3, 4]. A rotated filter is designed
by rotating a stable 1D analog filter and then using the dou-
ble bilinear transformation to obtain the corresponding dig-
ital filter. However, the stability of these rotated digital filters
is not guaranteed due to the presence of nonessential sin-
gularities of the second kind [5, 6]. To overcome this prob-
lem, a new type of rotated filters known as pseudorotated fil-
ters has been proposed in [7]. Methods for realizing rotated
and pseudorotated digital filters by using the concept of gen-
eralized immittance converter (GIC) have been reported in
[8, 9].

In this paper, a new method is proposed for realizing sta-
ble 2D rotated GIC digital filters using planar least-square
inverse (PLSI) polynomials [10–14]. It is shown [10–14] that
an unstable 2D IIR digital filter can be stabilized by replac-
ing its denominator polynomial, say B(z1, z2), by a new poly-
nomial B′′(z1, z2) which is the double PLSI polynomial of

B(z1, z2) and the magnitude response of the resulting stable
filter would be approximately equal to that of the original un-
stable filter. Though this approach is not valid for a general
2D polynomial, it is shown in this paper that the denomina-
tor polynomials of the 2D discrete transfer functions of the
rotated filters belong to a specific class of 2D polynomials for
which the PLSI-based stabilization method can be applied.

2. ROTATED FILTERS

Consider a stable 1D analog filter transfer function of the
form

H(s) = A0

∏
H1(s)

∏
H2(s)

= A0

[ m∏

j=1

s + aj

s + bj

][ n∏

j=1

s2 + djs + f j
s2 + gjs + ej

]
,

(1)

where aj , bj , dj , f j , gj , and ej are real constants.
The discrete transfer functions H1(z1, z2) and H2(z1, z2)

corresponding to filters represented by H1(s) and H2(s) can
be obtained by performing rotation with s = c1s1+c2s2, where
c1 and c2 are real positive constants and then applying the
double bilinear transformation of [4]

si = 2
Ti

1− zi
1 + zi

for i = 1, 2. (2)
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The general forms of H1(z1, z2) and H2(z1, z2) obtained by
using the above procedure will be as shown:

H1
(
z1, z2

) = N1
(
z1, z2

)

D1
(
z1, z2

) , (3a)

where

N1
(
z1, z2

) =
[
1 z1

][α00 α01
α10 α11

][
1
z2

]
, (3b)

D1
(
z1, z2

) =
[
1 z1

][β00 β01
β10 β11

][
1
z2

]
(3c)

H2
(
z1, z2

) = N2
(
z1, z2

)

D2
(
z1, z2

) , (3d)

where

N2
(
z1, z2

) =
[
1 z1 z21

]
⎡
⎢⎣
α00 α01 α02
α10 α11 α12
α20 α21 α22

⎤
⎥⎦

⎡
⎢⎣
1
z2
z22

⎤
⎥⎦ , (3e)

D2
(
z1, z2

) =
[
1 z1 z21

]
⎡
⎢⎣
β00 β01 β02
β10 β11 β12
β20 β21 β22

⎤
⎥⎦

⎡
⎢⎣
1
z2
z22

⎤
⎥⎦ . (3f)

αii and βii in (3) represent real constants.
Though the analog filter transfer functions of (1) are sta-

ble, the discrete transfer functions H1(z1, z2) and H2(z1, z2)
of (3) can become unstable if nonessential singularities of the
second kind are present [5, 6]. Hence it is necessary to stabi-
lize these transfer functions prior to their realization. For this
purpose, we use an approach based on PLSI polynomials.

3. USE OF PLSI POLYNOMIALS FOR STABILIZATION

Shanks et al. [10] have proposed a technique based on PLSI
polynomials to stabilize 2D recursive filters in such a way that
the magnitude responses of the stabilized filters are approx-
imately equal to those of the original unstable filters. This
technique is based on the conjecture that the PLSI polyno-
mial of an arbitrary unstable 2D polynomial is stable. Thus if
D(z1, z2) is the denominator polynomial of an unstable filter,
by replacing it with the double PLSI polynomial of D(z1, z2),
we would obtain a stable filter with magnitude response close
to that of the original unstable filter [10]. Shanks’s conjecture
has not yet been proved for a general case [11–14]. However,
this conjecture has been proved for specific polynomials of
the types D1(z1, z2) and D2(z1, z2) of (3) [13, 14].

Let D′1(z1, z2) and D′2(z1, z2) be the PLSI polynomials of
D1(z1, z2) and D2(z1, z2) of (3c) and (3f), respectively. Let
us assume that D′1(z1, z2) and D′2(z1, z2) also have the same
forms as the original polynomials D1(z1, z2) and D2(z1, z2),
respectively. In other words, we assume that (3c) and (3f)
with different sets of coefficients, say β′ii, can represent the
PLSI polynomials D′1(z1, z2) and D′2(z1, z2), respectively.

The coefficients β′ii of these PLSI polynomials can be ob-
tained from the coefficients βii of the original polynomials by
solving a matrix equation of the form [13, 14]

Γβ′ii = βii, (4)

where Γ is a centrosymmetric matrix whose elements repre-
sent the autocorrelation coefficients of the original polyno-
mial.

For obtaining the coefficients β′ii of the first-order PLSI
polynomial D′1(z1, z2), (4) takes the form [13, 14]

⎡
⎢⎢⎢⎣

r0 r1 r3 r4
r1 r0 r2 r3
r3 r2 r0 r1
r4 r3 r1 r0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

β′00
β′01
β′10
β′11

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

β00
0
0
0

⎤
⎥⎥⎥⎦ , (5a)

where ri are the autocorrelation coefficients of the polyno-
mial D1(z1, z2) given by

r0 = β200 + β201 + β210 + β211,

r1 = β00β01 + β10β11,

r2 = β01β10,

r3 = β00β10 + β01β11,

r4 = β00β11.

(5b)

Similarly for obtaining the coefficients β′ii of the second-order
PLSI polynomial D′2(z1, z2), we need to solve the following
equation [13, 14]:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r0 r1 r2 r5 r6 r7 r10 r11 r12
r1 r0 r1 r4 r5 r6 r9 r10 r11
r2 r1 r0 r3 r4 r5 r8 r9 r10
r5 r4 r3 r0 r1 r2 r5 r6 r7
r6 r5 r4 r1 r0 r1 r4 r5 r6
r7 r6 r5 r2 r1 r0 r3 r4 r5
r10 r9 r8 r5 r4 r3 r0 r1 r2
r11 r10 r9 r6 r5 r4 r1 r0 r1
r12 r11 r10 r7 r6 r5 r2 r1 r0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β′00
β′01
β′02
β′10
β′11
β′12
β′20
β′21
β′22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β00
0
0
0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(6)

where ri are the autocorrelation coefficients of D2(z1, z2).
The transfer functions of the rotated filters are stabi-

lized by replacing the denominator polynomials D1(z1, z2)
and D2(z1, z2) by their double PLSI polynomials D1s(z1, z2)
and D2s(z1, z2), respectively. The coefficients of D1s(z1, z2)
and D2s(z1, z2) can be obtained from those of D1(z1, z2) and
D2(z1, z2), respectively, by going through a two-step proce-
dure given below.

(i) Determine the coefficients of D′1(z1, z2) and D′2(z1, z2)
from those of D1(z1, z2) and D2(z1, z2) by applying (5)
and (6), respectively.

(ii) Determine the coefficients ofD1s(z1, z2) andD2s(z1, z2)
from those of D′1(z1, z2) and D′2(z1, z2) by applying (5)
and (6), respectively, for the second time.

At the end of step (ii), we obtain the stabilized transfer func-
tions of the rotated filters which are shown in (7) and (9):

H1s
(
z1, z2

) = N1
(
z1, z2

)

D1s
(
z1, z2

) , (7)
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Figure 1: First-order CGIC-PA rotated digital filter structure.
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Figure 2: Second-order CGIC-PA rotated digital filter structure.

where

N1
(
z1, z2

) = α00 + α01z2 + α10z1 + α11z1z2,

D1s
(
z1, z2

) = β′′00 + β′′01z2 + β′′10z1 + β′′11z1z2,
(8)

H2s
(
z1, z2

) = N2
(
z1, z2

)

D2s
(
z1, z2

) , (9)

where

N2
(
z1, z2

) = α00 + α01z2 + α02z
2
2 + α10z1 + α11z1z2

+α12z1z22 + α20z
2
1 + α21z

2
1z2 + α22z

2
1z

2
2,

D2s
(
z1, z2

) = β′′00 + β′′01z2 + β′′02z
2
2 + β′′10z1 + β′′11z1z2

+β′′12z1z
2
2 + β′′20z

2
1 + β′′21z

2
1z2 + β′′22z

2
1z

2
2 .

(10)

As illustrated in [10], when the PLSI technique is applied to
the unstable filter, the poles are moved away from the unit bi-
disk, thus removing the nonessential singularity of the sec-
ond kind if it is present. This concept holds good for filters of
any order.

4. REALIZATION OF ROTATED FILTERS
USING GIC CONCEPT

It is known that the 1D andMD digital filters designed by us-
ing the concept of GIC have many salient features such as low
noise, low sensitivity, modularity, and absence of limit cycles
[8, 9, 15, 16]. The GIC digital filters are basically wave digital
filters derived from reference analog configurations compris-
ing GICs and resistors [15]. The method reported in [9, 16]
can be used to realize 2D GIC digital filters directly from the

given discrete transfer functions without the need for obtain-
ing the analog reference configurations. The GIC digital filter
structures which realize the transfer functions of (7) and (9)
are shown in Figures 1 and 2, respectively, [9]. These filter
structures make use of two types of modules known as cur-
rent conversion GIC and parallel adaptors [9, 15, 16]. The
multiplier constants mυ and kυ of Figures 1 and 2 can be de-
termined by using the procedure reported in [9, 16].

5. EXAMPLE

Consider a first-order stable analog filter

H1(s) = 1
s + 0.3048

. (11)

Applying the transformation s = c1s1 + c2s2 with c1 = 0.1564
and c2 = 0.9877 in (11), we get

H1
(
s1, s2

) = 1
0.1564s1 + 0.9877s2 + 0.3048

. (12)

Applying the double bilinear transformation of (2) with
T1 = T2 = 1s, we get

H1
(
z1, z2

) = N1
(
z1, z2

)

D1
(
z1, z2

) , (13)

where

N1
(
z1, z2

) = 1 + z1 + z2 + z1z2,

D1
(
z1, z2

) = 2.5930− 1.3577z1 + 0.3048z2 − 1.9834z1z2.
(14)
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Figure 3: Mapping of z2 unit circle onto z1 plane for the unstable
filter.

By using the stability conditions of a first-order 2D polyno-
mial given in [10], we conclude that H1(z1, z2) of (13) is un-
stable. Replacing D1(z1, z2) of (13) by its double PLSI poly-
nomial, we get

H1s
(
z1, z2

) = N1
(
z1, z2

)

D1s
(
z1, z2

) , (15)

where

D1s
(
z1, z2

)=(− 1.3074 + 0.2434z2 − 0.1710z1 + 0.3671z1z2
)
.

(16)

H1s(z1, z2) represents a stable filter as it satisfies the stabil-
ity conditions given in [10]. The stability of the 2D transfer
functions of (13) and (16) can also be verified by mapping
the z2 unit circle onto z1 plane to check whether the follow-
ing theorem is satisfied [10].

Theorem1. Given that B(z1, z2) is a polynomial in (z1, z2), for
the coefficients of expansion of 1/B(z1, z2) in a positive powers
of z1 and z2 to converge absolutely, it is necessary and sufficient
that B(z1, z2) is not zero for |z1| and |z2| simultaneously less
than or equal to one.

Using the procedure described in [10], the contour plots
of the transfer functions are drawn as shown in Figures 3 and
4, where the z2 unit circle is mapped onto the z1 plane. We
note from Figures 3 and 4 that for the unstable filter, the z1
and z2 unit circles intersect whereas for the stable filter, they
do not [10]. The normalized magnitudes of H1(e jω1 , e jω2 )
andH1s(e jω1 , e jω2 ) are shown in Figures 5 and 6, respectively.
Figure 7 shows the absolute value of the error |ε| between
the magnitudes ofH1(e jω1 , e jω2 ) andH1s(e jω1 , e jω2 ). The GIC
filter realizing H1s(z1, z2) is obtained by using the procedure
given in [9, 16].
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Figure 4: Mapping of z2 unit circle onto z1 plane for the stable filter.

0.5
1

0
−0.5

−1
ω2

−1
−0.5

0
0.5

1

ω1

0

0.2

0.4

0.6

0.8

1

|H
1
(e

jω
1
,e

jω
2
)|

Figure 5: Normalized magnitude H1(e jω1 , e jω2 ).
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Figure 6: Normalized magnitude H1s(e jω1 , e jω2 ).
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Figure 7: Plot of the error in magnitude response.

6. CONCLUSIONS

A method for realizing stable circularly symmetric 2D GIC
digital filters has been presented. The proposed method
makes use of PLSI polynomials for stabilizing the rotated fil-
ters. This procedure enables one to stabilize filters obtained
with magnitude characteristics close to those of the original
unstable filters. The steps involved in the stabilization and
implementation of the rotated GIC filters can be carried out
using a computer program. Since the GIC filter structures
possess regularity and modularity, they are considered to be
attractive for VLSI implementation.

REFERENCES

[1] K. R. Castleman, Digital Image Processing, Prentice-Hall, En-
glewood Cliffs, NJ, USA, 1996.

[2] R. A. Stein and N. R. Bartley, “Continuously time-variable re-
cursive digital band-pass filters for seismic signal processing,”
Geophysics, vol. 48, no. 6, pp. 702–712, 1983.

[3] J. M. Costa and A. N. Venetsanopoulos, “Design of circularly
symmetric two-dimensional recursive filters,” IEEE Transac-
tions on Acoustics, Speech, and Signal Processing, vol. 22, no. 6,
pp. 432–443, 1974.

[4] D. M. Goodman, “A design technique for circularly symmetric
low-pass filters,” IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol. 26, no. 4, pp. 290–304, 1978.

[5] D. Goodman, “Some stability properties of two-dimensional
linear shift-invariant digital filters,” IEEE Transactions on Cir-
cuits and Systems, vol. 24, no. 4, pp. 201–208, 1977.

[6] P. K. Rajan, H. C. Reddy, M. N. S. Swamy, and V. Ra-
machandran, “Generation of two-dimensional digital func-
tions without non-essential singularities of the second kind,”
IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol. 28, no. 2, pp. 216–223, 1980.

[7] G. V. Mendonca, A. Antoniou, and A. Venetsanopoulos, “De-
sign of two-dimensional pseudorotated digital filters satisfying
prescribed specifications,” IEEE Transactions on Circuits and
Systems, vol. 34, no. 1, pp. 1–10, 1987.

[8] T. Venkateswarlu and C. Eswaran, “Design of 2-D pseudoro-
tated digital filters with multiple ouputs,” IEEE Transactions on
Circuits and Systems II, vol. 46, no. 2, pp. 177–179, 1999.

[9] K. Rameshwaran and C. Eswaran, “Design of two-dimensional
pseudorotated digital filters using concept of generalized im-
mittance converter,” Circuits, Systems, and Signal Processing,
vol. 22, no. 4, pp. 367–376, 2003.

[10] J. L. Shanks, S. Treitel, and J. Justice, “Stability and synthesis of
two-dimensional recursive filters,” IEEE Transactions on Audio
and Electroacoustics, vol. 20, no. 2, pp. 115–128, 1972.

[11] P. S. Reddy, D. R. R. Reddy, and M. N. S. Swamy, “Proof of
a modified form of Shanks’ conjecture on the stability of 2-D
planar least square inverse polynomials and its implications,”
IEEE Transactions on Circuits and Systems, vol. 31, no. 12, pp.
1009–1015, 1984.

[12] P. Delsarte, Y. Genin, and Y. Kemp, “Comments on “proof of
a modified form of Shanks’ conjecture on the stability of 2-D
planar least square inverse polynomials and its implications”,”
IEEE Transactions on Circuits and Systems, vol. 32, no. 9, pp.
966–966, 1985.

[13] B. D. O. Anderson and E. I. Jury, “Proof of a special case of
Shanks’ conjecture,” IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. 24, no. 6, pp. 574–575, 1976.

[14] E. M. A. Gnanamuthu and P. S. Reddy, “The PLSI method of
stabilizing 2-D recursive digital filters—a complete solution,”
Asian Journal of Information Technology, vol. 3, pp. 628–641,
2004.

[15] A. Antoniou,Digital Signal Processing: Signals, Systems and Fil-
ters, McGraw-Hill, New York, NY, USA, 2005.

[16] C. Eswaran and K. Rameshwaran, “A new realization method
for multidimensional GIC digital filters,” IEEE Transactions on
Circuits and Systems I, vol. 49, no. 1, pp. 66–69, 2002.

Ezra Morris Abraham Gnanamuthu re-
ceived his B.Eng. degree from Bharathiar
University, India, and M.Eng. degree from
Anna University, India, in 1991 and 1993,
respectively. He has over 14 years of ex-
perience in the field of engineering educa-
tion. He has worked with various colleges
and universities in India and Malaysia. Cur-
rently, he is a research scholar with Mul-
timedia University, Malaysia. He has pub-
lished around 17 papers in leading international conferences and
journals. His research interests include digital signal processing and
mobile communication. He has supervised one M.S. by research
student in the field of mobile communication. He is a Senior Mem-
ber of IEEE.

C. Eswaran received his B.Tech., M.Tech.,
and Ph.D. degrees from the Indian Insti-
tute of Technology Madras, India, where
he worked as a Professor in the Depart-
ment of Electrical Engineering until January
2002. Currently, he is working as a Profes-
sor in the Faculty of Information Technol-
ogy, Multimedia University, Malaysia. He is
also serving as the Chairman for the cen-
ter of excellence, Multimedia Computing, at
this university. Dr. Eswaran was a Research Fellow/Visiting Fac-
ulty in Ruhr University Bochum, Germany, Concordia University,
Canada, University of Victoria, Canada, and Nanyang Technologi-
cal University, Singapore. Dr. Eswaran has supervised successfully
more than twenty Ph.D./M.S. students in the areas of digital signal
processing, communications, neural networks, information sys-
tems, and biomedical engineering. He has published more than



6 EURASIP Journal on Advances in Signal Processing

120 research papers in these areas in reputed international jour-
nals and conferences. He has also carried out several sponsored re-
search projects and served as industrial consultant in these areas.
Dr. Eswaran is a Senior Member of IEEE.

K. Ramar received the B.Eng. degree from
University of Madras in 1964, and M.Tech.
and Ph.D. degrees from Indian Institute
of Technology Madras, India, in 1968 and
1972, respectively. He worked as a Professor
in the Department of Electrical Engineer-
ing, Indian Institute of Technology Madras,
until December 2002. He has more than 40
years of teaching and research experience.
He is currently a Professor in the Faculty
of Engineering, Multimedia University, Malaysia. He has published
more than 60 papers in leading international journals and confer-
ences. His fields of interest include power system operation and
control, computer application to power systems, power systems
protection, and fault location in overhead transmission lines. He
is a Senior Member of IEEE.


	INTRODUCTION
	ROTATED FILTERS
	USE OF PLSI POLYNOMIALS FOR STABILIZATION
	REALIZATION OF ROTATED FILTERSUSING GIC CONCEPT
	EXAMPLE
	CONCLUSIONS
	REFERENCES

