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This paper proposes a new algorithm for the direction of arrival (DOA) estimation of P radiating sources. Unlike the classical
subspace-based methods, it does not resort to the eigendecomposition of the covariance matrix of the received data. Indeed, the
proposed algorithm involves the building of the signal subspace from the residual vectors of the conjugate gradient (CG) method.
This approach is based on the same recently developed procedure which uses a noneigenvector basis derived from the auxiliary
vectors (AV). The AV basis calculation algorithm is replaced by the residual vectors of the CG algorithm. Then, successive orthogo-
nal gradient vectors are derived to form a basis of the signal subspace. A comprehensive performance comparison of the proposed
algorithm with the well-known MUSIC and ESPRIT algorithms and the auxiliary vectors (AV)-based algorithm was conducted.
It shows clearly the high performance of the proposed CG-based method in terms of the resolution capability of closely spaced
uncorrelated and correlated sources with a small number of snapshots and at low signal-to-noise ratio (SNR).

Copyright © 2007 Hichem Semira et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

1. INTRODUCTION

Array processing deals with the problem of extracting infor-
mation from signals received simultaneously by an array of
sensors. In many fields such as radar, underwater acoustics
and geophysics, the information of interest is the direction of
arrival (DOA) of waves transmitted from radiating sources
and impinging on the sensor array. Over the years, many
approaches to the problem of source DOA estimation have
been proposed [1]. The subspace-based methods, which re-
sort to the decomposition of the observation space into a
noise subspace and a source subspace, have proved to have
high-resolution (HR) capabilities and to yield accurate es-
timates. Among the most famous HR methods are MUSIC
[2], ESPRIT [3], MIN-NORM [4], and WSF [5]. The per-
formance of these methods however degrades substantially
in the case of closely spaced sources with a small number
of snapshots and at a low SNR. These methods resort to the
eigendecomposition (ED) of the covariance matrix of the re-
ceived signals or a singular value decomposition (SVD) of
the data matrix to build the signal or noise subspace, which
is computationally intensive specially when the dimension of
these matrices is large.

The conjugate gradient (CG)-based approaches were ini-
tially proposed in the related fields of spectral estimation and
direction finding in order to reduce the computational com-
plexity for calculating the signal and noise subspaces. Indeed,
previous works [6-8] on adaptive spectral estimation have
shown that the modified CG algorithm appears to be the
most suitable descent method to iteratively seek the mini-
mum eigenvalue and associated eigenvector of a symmetric
matrix. In [8], a modified CG spectral estimation algorithm
was presented to solve the constrained minimum eigenvalue
problem which can also be extended to solve the general-
ized eigensystem problem, when the noise covariance matrix
is known a priori. In the work of Fu and Dowling [9], the
CG method has been used to construct an algorithm to track
the dominant eigenpair of a Hermitian matrix and to pro-
vide the subspace information needed for adaptive versions
of MUSIC and MIN-NORM. In [10], Choi et al.have intro-
duced two alternative methods for DOA estimation. Both
techniques use a modified version of the CG method for it-
eratively finding the weight vector which is orthogonal to the
signal subspace. The first method finds the noise eigenvec-
tor corresponding to the smallest eigenvalue by minimizing
the Rayleigh quotient of the full complex-valued covariance
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matrix. The second one finds a vector which is orthogonal to
the signal subspace directly from the signal matrix by com-
puting a set of weights that minimizes the signal power of the
array output. Both methods estimate the DOA in the same
way as the classical MUSIC estimator. In [11], an adaptive al-
gorithm using the CG with the incorporation of the spatially
smoothing matrix has been proposed to estimate the DOA
of coherent signals from an adaptive version of Pisarenko. In
almost all research works, the CG has been used in a similar
way to the ED technique in the sense that the objective is to
find the noise eigenvector and to implement any subspace-
based method to find the DOA of the radiating sources.

In this paper, the CG algorithm, with its basic version
given in [12], is applied to generate a signal subspace basis
which is not based on the eigenvectors. This basis is rather
generated using the residual vectors of the CG algorithm.
Then, using the localization function and rank-collapse cri-
terion of Grover et al. in [13, 14], we form a DOA estimator
based on the collapse of the rank of an extended signal sub-
space from P + 1 to P (where P is the number of sources).
This results in a new high-resolution direction finding tech-
nique with a good performance in terms of resolution capa-
bility for the case of both uncorrelated and correlated closely
spaced sources with a small number of snapshots and at low
SNR.

The paper is organized as follows. In Section 2, we in-
troduce the data model and the DOA estimation problem.
In Section 3, we present the CG algorithm. Our proposed
CG-based algorithm for the DOA estimation problem fol-
lowing the same steps in [13, 14] is presented in Section 4.
After simulations with comparison of the new algorithm to
the MUSIC, ESPRIT, and AV-based algorithms in Section 5,
a few concluding remarks are drawn in Section 6.

2. DATA MODEL

We consider a uniformly spaced linear array having M om-
nidirectional sensors receiving P (P < M) stationary ran-
dom signals emanating from uncorrelated or possibly cor-
related point sources. The received signals are known to be
embedded in zero mean spatially white Gaussian noise with
unknown variance o2, with the signals and the noise being
mutually statistically independent. We will assume the sig-
nals to be narrow-band with center frequency v. The kth
M-dimensional vector of the array output can be represented
as

P
x(k) = > a(6;)sj(k) +n(k), (1)
j=1

where s;(k) is the jth signal, n(k) € C€M*1 is the additive
noise vector, and a(6;) is the steering of the array toward di-
rection 6; that is measured relatively to the normal of the
array and takes the following form:

a(e}) — [1, ejZHVQTj)ejZHZVOTj’ o eer[(M—l)voT‘,»]T’ (2)

where 7; = (d/c)sin(0;), with ¢ and d designating the sig-
nal propagation speed and interelement spacing, respectively.
Equation (1) can be rewritten in a compact form as

x(k) = A(®)s(k) +n(k) (3)
with
A©) = [a(6)),a(6:),...,a(6p)],
s(k) = [s1(k),2(K), ..., sp(K)]", v
where ® = [0, 0,...,0p]. We can now form the covariance

matrix of the received signals of dimension M x M
R = E[x(k)x" (k)] = A(@)RA(O)" + ¢°I, (5)

where (-) and I denote the transpose conjugate and the
M x M identity matrix, respectively. Ry = E[s(¢)s" (t)] is the
signal covariance matrix, it is in general a diagonal matrix
when the sources are uncorrelated and is nondiagonal and
possibly singular for partially correlated sources. In practice,
the data covariance matrix R is not available but a maximum
likelihood estimate R based on a finite number K of data
samples can be used and is given by

K
R= 2 S x(bx" (k). (6)
K=

3. CONJUGATE GRADIENT (CG) ALGORITHM

The method of conjugate gradients (CG) is an iterative inver-
sion technique for the solution of symmetric positive definite
linear systems. Consider the Wiener-Hopf equation

Rw = b, (7)

where R € CM*M js symmetric positive definite. There are
several ways to derive the CG method. We here consider
the approach from [12] which minimizes the following cost
function:

O(w) = wRw — 2Re (bTw). (8)

Algorithm 1 depicts a basic version of the CG algorithm. a; is
the step size that minimizes the cost function ®(w), §; pro-
vides R-orthogonality for the direction vector d;, g; is the
residual vector defined as

g =b—Rw; = —VO(w;) 9)

with V(®) denoting the gradient of function ® and i denot-
ing the CG iteration.

After D iterations of the conjugate gradient algorithm the
set of search directions {d;,d,,...,dp} and the set of gradi-
ents (residuals) Gegp = 18cg0> &g 1>--->8egD-11 have some
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wo =0,d; = 8eg0 = b, Po = gﬁé,ogcg,o
fori=1to D do
V; = Rd,
Pi-1
%= déIV,‘

W; =W + (X,‘di

8egi = Begi-1 — AiVi
pi = g?g,igcg,i
2
Pi |Igcg.|
= = 2
Pi-1 (| gcg,i-11]
z+l ﬁld + gcgz
End for

ALGorITHM 1: Basic conjugate gradient algorithm.

properties summarized as follows [12]:

(i) R-orthogonality or conjugacy with respect to R of the
vectors d;, that is, d,-HRdj =0, foralli # j,

(ii) the gradient vectors are mutually orthogonal, that is,
gg,igcg,j =0, foralli # j,

“en H
(iil) gegid;
(iv) if the gradient vectors gegi, i = 0,...,D — 1, are nor-

malized, then the transformed covariance matrix Tp =

Gg,DRGcg,D of dimension D X D is a real symmetric
tridiagonal matrix;

(v) Dp=span{dy,dy,...,dp} =span{Gep} = KP(R,b),

where KXP(R,b) = span{[b,Rb,R?b,...,RP~'b]} is the
Krylov subspace of dimension D associated with the pair
(R,b) [12].

After D iterations, the CG algorithm produces an iter-
ative method to solve the reduced rank Wiener solution of
(7). Note that the basic idea behind the rank reduction is to
project the observation data onto a lower-dimensional sub-
space (D < M), defined by a set of basis vectors [15]. It is then
worth noting that other reduced rank solutions have been
obtained via the auxiliary vectors-based (AV) algorithm and
the powers of R (POR) algorithm [15]. These algorithms the-
oretically and asymptotically yield the same solution as the
CG algorithm since they proceed from the same minimiza-
tion criterion and the same projection subspace [16]. How-
ever, as the ways of obtaining the solution differ, these meth-
ods are expected to have different performance in practical
applications.

In the following, we propose a new DOA estimator from
the CG algorithm presented above.

=0, forall j <1,

4. PROPOSED DOA ESTIMATION ALGORITHM

In this section, the signal model (1)—(5) is considered and
an extended signal subspace of rank P + 1 nonbased on the
eigenvector analysis is generated using the same basis proce-

dure developed in the work of Grover et al. [13, 14]. Let us
define the initial vector b(0) as follows:

Ra(0)

b(6) = JIRa(o)]”

(10)

where a(6) is a search vector of the form (2) depending on
0 € [—90°,90°]. When the P sources are uncorrelated and
0 =0;forj=1,...,P,wehave

Ra(6;) = (E[s}IM +d%)a(6;)

P
+ > E[s

I=1;1#j

oya@)ate).

It appears that b(0;) is a linear combination of the P sig-
nal steering vectors and thus it lies in the signal subspace of
dimension P. However, when 0 # 0; for j € {1,...,P},

Ra(0) = ZE 6,)a(0))a(6;) + a*a(0). (12)

b(0) is then a linear combination of the P + 1 steering
vectors {a(0),a(0;),a(6,),...,a(0p)} and therefore it belongs
to the extended signal subspace of dimension P + 1 which
includes the true signal subspace of dimension P plus the
search vector a(0).

For each initial vector described above (10) and after per-
forming P iterations (D = P) of the CG algorithm, we form
a set of residual gradient vectors {0, 8cg 1> - - >8eg P 18cg,P
(all these vectors are normalized except gegp). Therefore, it
can be shown (see Appendix A) that if the initial vector b(8)
is contained in the signal subspace, then the set of vectors
Gegr = {8eg0>8cg1>--+>8egp—11 Will also be contained in the
column space of A(®), hence, the orthonormal matrix Gcg’pl
spans the true signal subspace for 6 = 0;, j = 1,2,..., P, that
is,

span {Gegp} = span {A(O)} (13)

and the solution vector w = R™'b = a(0)/||Ra(0)]| also lies
in the signal subspace

W € Span {8cg 0, 8eg 1>+ - - > Geg.P—11- (14)

LIf we perform an eigendecomposition of the tridiagonal matrix Tp =
G?g)PRGCg,p, we have Tp = Zipzl /\ieief{, then the P eigenvalues A;, i =
1,..., P, of Tp are the P principal eigenvalues of the covariance matrix R,
and the vectors y; = Gegpej, i = 1,..., P, (where e; is the ith eigenvector
of Tp and y; are the Rayleigh-Ritz vectors associated with KL (R, b)) are
asymptotically equivalent to the principal eigenvectors of R [17].
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Now, when 0 # 0; for j € {1,...,P}, Gcg,pﬂ2 spans the ex-
tended subspace yielding (see Appendix A)

span {Gegpi1} = span {A(@®),a(6)}. (15)
In this case, w is also in the extended signal subspace, that is,

W € Span {8eg 0> 8egl>- - - > eg P - (16)

Proposition 1. After P iterations of the CG algorithm the fol-
lowing equality holds for 0 = 0;, j = 1,2,...,P:

g1p(0) = 0, (17)

where g p is the residual CG vector left unnormalized at itera-
tion P.

Proof. Since the gradient vectors g ; generated by the CG
algorithm are orthogonal [12], span{g.g0,gcg1>--->8cgp} 1S
of rank P+ 1. Using the fact that when 6 = 0, j = 1,2,..., P,

span {geg 0> &g 1>- - - » 8eg,p—1) = span {A(O)}. (18)

Then

span {80, e 1>- - - » eg,P—1> Beg,P) = span {A(O), gegp ).
(19)

From Appendix A, it is shown that each residual gradient
vector generated by the CG algorithm when the initial vector
is in the signal subspace span{A(®)} will also belong to the
signal subspace. This is then the case for g p. Therefore, the
rank of span{gc 0, 8eg 1>- - - »Zeg.P-1>8eg,p} Teduces to P yield-
ing that in this case g, p should be zero or a linear combina-
tion of the other gradient vectors which is not possible since
it is orthogonal to all of them. O

In view of Proposition 1, we use the following localiza-
tion function as defined in [14, equation (22)]:

1

Pr(0™) = ,
||gg,P(9("))Gcg,P+1 (6¢=1)] |2

(20)

where Gegpi1 (6™M) is the matrix calculated at step n by per-
forming D = P iterations of the CG algorithm with initial

2 We can show that the eigenvalues of the (P + 1) x (P + 1) matrix Tpy; =
Gg,PHRGCg,pH (the last vector geg p is normalized) are {A,...,Ap, %},
where the eigenvalues A;,i = 1,..., P, are the P principal eigenvalues of R
and ¢? is the smallest eigenvalue of R. The first P RR vectors from the set
Vi = Gegpieii=1,..., P, are asymptotically equivalents to the principal
eigenvectors of R [17], and the last (RR) vector associated to 02 is orthog-
onal to the principal eigenspace (belonging to the noise subspace), that is,

yE L A(0) = 0.

residual vector gcg,o(ﬁ(”)) = b(0"™) as defined in (10), that is,

> 8cg,P (H(n) )]
(21)

0 = nA withn = 1,2,3,...,180°/A° and A is the search
angle step.

Note that the choice of using 1/[|ge,p(6) || as a local-
ization function was first considered. Since the results were
not satisfactory enough, (20) was finally preferred. Accord-
ing to the modified orthonormal AV [16], the normalized
gradient CG and the AV are identical because the AV recur-
rence is formally the same as Lanczos recurrence [12]. Thus,
if the initial vector g0 in CG algorithm is parallel to the
initial vector in AV, then all successive normalized gradients
in CG will be parallel to the corresponding AV vectors (see
Appendix B). Let gui, i = 0,...,P — 1, represent the or-
thonormal basis in AV procedure and the last unormalized
vectors by gav,p. Then, it is easy to show that the CG spectra
are related to the AV spectra by

Gcg,P+l (g(n)) = [gcg,O (e(n)), gcg,l (e(n))’ s

Pc(0) = (Jep (6) |
% (Ilgtt 5 (87) gavo (61|
4t }Cp(g(ﬂ—l)) |2

< Ilgtt (0" (7))
(22)

where

 llgeer (0] ap(6®)

lcp(6™) | | up—1 (0™) | 5, (60) ,

(23)

the difference, therefore, between the AV [13, 14] and CG
spectra is the scalars lcp(81)]2 calculated at steps n — 1
and n due to the last basis vector that is unnormalized (see
Appendix B for the details). It is easy to show that we can ob-
tain a peak in the spectrum if o = 0;,j=1,...,P, because
the last vector in the basis gcg,p(ﬁ(”)) = 0. However, when
0" £ 0;,j = 1,...,P, geup(0™) is contained in the ex-
tended signal subspace span{A(®),a(0")} and the follow-
ing relation holds:

span {Gegp+1 (07 V)} = span {A(®),a(6""")}.  (24)

We can note that Hgip(e("))Gcg,pH (0=D)|| # 0 except when
gcg,p(G(")) is proportional to a(9") and a(8") is orthogonal
both to A(®) and a(0"~V) which can be considered as a very
rare situation in most cases.

In real situations, R is unknown and we use rather the
sample average estimate R as defined in (6). From (20), it
is clear that when 6" = 6;, j = 1,...,P, we will have

|I§gp(6(”))écg,p+1(€(”‘l))H not equal to zero but very small
and P (6M) very large but not infinite.

Concerning the computational complexity, it is worth
noting that the proposed algorithm (it is also the case for the
AV-based algorithm proposed in [13, 14]) is more complex
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than MUSIC since the gradient vectors forming the signal
subspace basis necessary to construct the pseudospectrum
must be calculated for each search angle. The proposed al-
gorithm is therefore interesting for applications where a very
high resolution capability is required in the case of a small
number of snapshots and a low signal-to-noise ratio (SNR).
This will be demonstrated through intensive simulations in
the next section. Also note that when the search angle area is
limited, the new algorithm has a comparable computational
complexity as MUSIC.

5. SIMULATION RESULTS

In this section, computer simulations were conducted with a
uniform linear array composed of 10 isotropic sensors whose
spacing equals half-wavelength. There are two equal-power
plane waves arriving on the array. The internal noises of
equal power exist at each sensor element and they are statis-
tically independent of the incident signal and of each other.
Angles of arrival are measured from the broadside direction
of the array. First, we fix the signal angles of arrival at —1° and
1° and the SNR’s at 10 dB. In Figure 1, we examine the pro-
posed localization function or pseudo-spectrum when the
observation data record K = 50 compared with that of the
AV-based algorithm [13, 14, 18, 19] and of MUSIC. The CG
pseudo-spectrum resolves the two sources better than the AV
algorithm where the MUSIC algorithm completely fails. No-
tice that the higher gain of CG method is due to the factor ¢,
which depends on the norm of the gradient.

In the following, in order to analyze the performance of
the algorithms in terms of the resolution probability, we use
the following random inequality [20]:

—_

P (Om) — E(OK(QI) +Px(6)) <0, (25)

where 6, and 60, are the angles of arrivals of the two signals
and 6,, denotes their mean. P (0) is the pseudo-spectrum
defined in (20) as a function of the angle of arrival 6.

To illustrate the performance of the proposed algorithm
two experiments were conducted.

Experiment I (uncorrelated sources). In this experiment, we
consider the presence of two uncorrelated complex Gaussian
sources separated by 3°. In Figures 2 and 3, we show the
probability of resolution of the algorithms as a function of
the SNR (when K = 50) and the number of snapshots (with
SNR = 0dB), respectively. For purpose of comparisons, we
added the ESPRIT algorithm [3]. As expected, the resolution
capability of all the algorithms increases as we increase the
number of snapshots K and the SNR. We also clearly note
the complete failure of MUSIC as well as ESPRIT to resolve
the two signals compared to the two algorithms CG and AV
(Krylov subspace-based algorithms). The two figures show
that the CG-based algorithms outperforms its counterparts
in terms of resolution probability.

120 |

100 |

80

60

40 ¢

Gain (dB)

Angle of arrival (°)

— CG
.\
MUSIC

FiGure 1: CG, AV, and MUSIC spectra (6, = —1°, 6, = 1°, SNRI =
SNR2 = 10dB, K = 50).
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FIGURE 2: Probability of resolution versus SNR (separation 3°, K =
50).

Experiment 2 (correlated sources). In this experiment, we
consider the presence of two correlated random complex
Gaussian sources generated as follows:

s; ~ N (0,02), s> =181 +V1 —r2s3, (26)

where s5 ~ N (0, 0¢) and r is the correlation coefficient. Fig-
ures 4 and 5 show the probability of resolution of the algo-
rithms for high correlation value » = 0.7 with and without
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(separation 3°, SNR = 0dB).
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FIGURE 4: Probability of resolution versus SNR (separation 3°, K =
50, r = 0.7).

forward/backward spatial smoothing (FBSS) [21]. Figure 4
plots the probability of resolution versus SNR for a fixed
record data K = 50 and Figure 5 plots the probability of
resolution versus number of snapshots for an SNR = 5dB.
The two figures demonstrate that the CG-basis estimator still
outperforms the AV-basis estimator in probability of resolu-

Probability of resolution

10 20 30 40 50 60 70 80 90 100
Number of snapshots

—— CG with F/B spatial smoothing
— CG
-~ AV with F/B spatial smoothing
--- AV
-o - ESPRIT with F/B spatial smoothing
--= ESPRIT
¢ MUSIC with F/B spatial smoothing
--- MUSIC

FIGURE 5: Probability of resolution versus number of snapshots
(separation 3°, SNR = 5dB, r = 0.7).

tion in the case of correlated sources with or without FBSS.
WEe also note that the CG-based and the AV-based estimators
(without FBSS) have better performance than MUSIC and
ESPRIT with FBSS, at low SNR and whatever the record data
size (Figure 5).

Finally, we repeat the previous simulations for highly cor-
related sources (r = 0.9). Atlow SNR (see Figure 6), we show
that the CG-based method even without FBSS still achieves
better results than the AV-based method and over MUSIC
and ESPRIT with or without FBSS (<8 dB for ESPRIT with
spatial smoothing). In Figure 7, the proposed algorithm re-
veals again higher performance over MUSIC and ESPRIT
with or without FBSS; which is unlike its counterpart the
AV-based algorithm where it has less resolution capability
compared to ESPRTT with FBSS for data record K < 70. We
can also notice the improvement of resolution probability for
both the CG and AV-based algorithms with FBSS.

6. CONCLUSION

In this paper, the application of the CG algorithm to the DOA
estimation problem has been proposed. The new method
does not resort to the eigendecomposition of the observa-
tion data covariance matrix. Instead, it uses a new basis
for the signal subspace based on the residual vectors of the
CG algorithm. Numerical results indicate that the proposed
algorithm outperforms its counterparts which are the AV
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algorithm, the classical MUSIC and ESPRIT, in terms of res-
olution capacity at a small record data and low SNR.

APPENDICES
A.

Let us assume that b(6) € span{A(®),a(0)}. It follows from
Algorithm 1 that
g1 = b(0) — a1Rb(0) (A.1)

also belongs to span{A(®),a(0)} since
p
Rb(0) = > E[s}](a(6;)"b(0))a(6;) +a*b(8)  (A.2)
j=1

is a linear combination of vectors of span{A(®),a(8)}. Then
dy = ge1 —fi1d1 also belongs to span{A(@®),a(8)} (withd, =
b(0)). In the same way, we have

8eg2 = 8egl — H2V2 (A.3)
with

v2 = Rdy (A4)
also belonging to the extended signal subspace since

P
Rd, = > E[s?](a(ej)Hdz(G))a(Gj) +0°dy(0).  (A5)

j=1

10 20 30 40 50 60 70 80 90 100
Number of snapshots

—+— CG with F/B spatial smoothing
— CG
- e~ AV with F/B spatial smoothing
--- AV
-o - ESPRIT with F/B spatial smoothing
--— ESPRIT
¢ MUSIC with F/B spatial smoothing
MUSIC

FIGURE 7: Probability of resolution versus number of snapshots
(separation 3°, SNR = 5dB, r = 0.9).

More generally, it is then easy to check that when g, ;1 and
deg i1 are vectors of span{A(®),a(0)}, then g, ; and dg; are
also vectors of span{A(®),a(6)}. Now when 6 = 6}, the ex-
tended subspace reduces to span{A(@®)}.

Let gay,i be the auxiliary vector (AV) [18, 19]; it was shown in
[16] that a simplified recurrence for gyy,i+1, i > 1, is given by

(I- Y1) B8l ) Rgavi

Sav,i+l = i > (Bl)
||(I =Dl gav,lgg,l)RgaVJH
R v,0 T V. ;Ix—{r R V.
ol = 8av0 — 8av0 (Bav.oRgavo) (B.2)

| |Rgav,0 — 8av,0 (gaP{r,oRgav,O) || ’

where g, is the first vector in the AV basis. Notice that the
auxiliary vectors are restricted to be orthonormal in contrast
to the nonorthogonal AV work in [19, 22]. Recall that if ini-
tial vectors are equals, that is,

gav.0 = 8ego = b(0), (B.3)
then it is easy to show from Algorithm 1 that
gcg,l Rgcg,O - gcg,O(g?g,oRgcg,O) (B4)

lgrl] ~ TReso — o (hoRgea) |~ ="
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From (B.1) we can obtain

||ti]|gav,i+1 = Rgav,i — (g:{z,iRgav,i)gav,i - (ggr,ifleav,i)gav,i—l
5igav,i+1 = Rguv,i — Yigav,i — 8i71gav,i71-

(B.5)

Thus, the last equation (B.5) is the well-known Lanczos re-
currence [12], where ||t;|| = ||[(I — ZLH gav,zgg)l)RgaV,ill and
the coefficients y; and &; are the elements of the tridiagonal
matrix GaV,RGav,i, where G,y,; is the matrix formed by the i
normal AV vectors. From the interpretation of Lanczos al-
gorithm, if the initial gradient CG algorithm g is parallel
to the initial g,y,0, then all successive normalized gradients in
CG are the same as the AV algorithm [12], that is,

i 8Begi
1
D gl

From the expression for the CG algorithm, we can express
the gradient vectors g, ;1 in terms of the previous gradient
vectors using line 6 and 9 of Algorithm 1, then we can write

Begitl _ Rgegi + ( 1 N @)gcgl 3

®it+1 Hit1 &

Gavi = i>1. (B.6)

;jgcg,i—l- (B7)

Multiplying and dividing each term of (B.7) by the norm of
the corresponding gradient vector results in [23]

\ ﬁi‘*'l gcg,i+1

®it+1 ||gcg,i+lH
N - - gcgz (L + &) gcg,i - @ gcg,i—l )
||gcg>r|| it1 ||8Cg>i|| Qi ||gcg,i*1||
(B.8)
If (B.8) is identified with (B.5), it yields
S = ﬁ)
®i+1
Hit1 &

1
V1 = SavoRgavo = -

We will now prove the relation between the unormalized last
vectors g p and gy,p. From [13], the last unnormalized vec-
tor in AV algorithm is given by

pP-2
gav,p = (71)P+1HP71 (I - Z gav,lgg,)l) Rgav,P—ly
I=P-1
(B.10)
where
H
Sav iRgaV,if 1 .
i= U 1>1, (B.11)
SR ggr,iRgav,i
H
Rgav
= Beut Bavd (B.12)
gav,leav,l

Using (B.5) and (B.9), (B.12) can be rewritten as

(B.13)

:&:ﬁ%1+m)l
“ Y2 oy \ay o)

and a new recurrence for y; can be done with the CG coeffi-
cients as

P B)T

P = Ui B.14
b= pin Xit1 \®i+1 & ( )

hence from (B.6), we can obtain
8o p = (_ )P ||gcg,P|| ap (BIS)

Tuoa| [ %"

so the difference between the last unnormalized CG basis and
the last unormalized AV basis is the scalar

| |gcg» ap

|- 1|\/ﬁ7p.

_( I)P

(B.16)
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