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We present a new subband affine projection (SAP) algorithm for the adaptive acoustic echo cancellation with long echo path
delay. Generally, the acoustic echo canceller suffers from the long echo path and large computational complexity. To solve this
problem, the proposed algorithm combines merits of the affine projection (AP) algorithm and the subband filtering. Convergence
speed of the proposed algorithm is improved by the signal-decorrelating property of the orthogonal subband filtering and the
weight updating with the prewhitened input signal of the AP algorithm. Moreover, in the proposed algorithms, as applying the
polyphase decomposition, the noble identity, and the critical decimation to subband the adaptive filter, the sufficiently decomposed
SAP updates the weights of adaptive subfilters without a matrix inversion. Therefore, computational complexity of the proposed
method is considerably reduced. In the SAP, the derived weight updating formula for the subband adaptive filter has a simple form
as ever compared with the normalized least-mean-square (NLMS) algorithm. The efficiency of the proposed algorithm for the
colored signal and speech signal was evaluated experimentally.
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1. INTRODUCTION

Adaptive filtering is essential for acoustic echo cancellation.
Among the adaptive algorithms, least-mean-square (LMS) is
the most popular algorithm for its simplicity and stability.
However, when the input signal is highly correlated and the
long-length adaptive filter is needed, the convergence speed
of the LMS adaptive filter can be deteriorated seriously [1, 2].
To overcome this problem, the affine projection (AP) algo-
rithm was proposed [3–11]. The improved performance of
the AP algorithm is characterized by an updating-projection
scheme of an adaptive filter on a P-dimensional data-related
subspace. Since the input signal is prewhitened by this pro-
jection on an affine subspace, the convergence rate of the AP
adaptive filter is improved. However, a large computational
complexity is a major drawback for its implementation, be-
cause P-ordered AP adaptive filter is based on the data ma-
trix that consists of the last P+1 input vectors and it requires
matrix inversion in weight updating.

The orthogonal subband filtering (OSF) is an alterna-
tive method that can whiten the input signal [12–15]. The
OSF can be considered a kind of projection operation. It is

similar in the view of decorrelating property to the affine
projection scheme. Therefore, in subband structure with or-
thogonal analysis filter banks, the convergence speed of the
subband adaptive filter (SAF) is improved by the weight up-
dating with prewhitened inputs that result from the OSF.
Recently, for fast convergence and efficient implementation,
there has been increasing interest in the combining advan-
tages of the AP and the SAF [16–21]. These algorithms, for
reducing computational complexity, are based on the fast
variant of AP (FAP) instead of the conventional AP. The FAP-
based algorithms use various iterative methods to avoid the
matrix inversion in weight updating. However, in the FAP-
based algorithms, the performances are deteriorated by the
approximated errors of the iterative method and the compu-
tational complexity is still complex for the implementation.

In this paper, we present a new subband affine projection
(SAP) algorithm to improve convergence speed and reduce
computational complexity of the AP algorithm. The SAP is
based on the subband structure [13] that uses critically deci-
mated adaptive filters with the polyphase decomposition and
the noble identity. A new criterion is also presented for ap-
plying AP algorithm to polyphase decomposed adaptive filter
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Figure 1: Fullband system identification for adaptive acoustic echo
canceller.

(adaptive subfilter) in each subband. In this algorithm, the
derived weight updating formula for the subband adaptive
filter has a simple form as compared with the normalized
least-mean-square (NLMS) algorithm, and the weights of the
adaptive subfilter are updated with the input prewhitened by
the OSF in each subband. To evaluate the performance of the
proposed SAP, computer simulations are performed for sys-
tem identification model of echo cancellation problem.

The outline of this paper is as follows. In Section 2, the
conventional AP algorithm is reviewed. In Section 3, we de-
rive the new subband affine projection algorithm and de-
scribe the convergence analysis and computational complex-
ity of the proposed algorithm. Section 4 describes simulation
results, and Section 5 contains the conclusions.

2. AFFINE PROJECTION ALGORITHM

Consider the adaptive acoustic echo cancellation (AEC) sys-
tem and the block diagrams of system identification for
the AEC in fullband structure as shown in Figure 1. In
Figure 1(b), the adaptive filter attempts to estimate a desired
signal d(k) which is linearly related to the input signal u(k)
by model

d(k) = s∗Tu(k) + r(k), (1)

where s∗ is the echo path that we wish to estimate and r(k)
is the measurement noise that is the independent identically
distributed (i.i.d.) random signal with zero mean and vari-
ance σ2r . The input signal u(k) is assumed to be a zero-mean

wide-sense stationary (WSS) autoregressive (AR) process of
order P, then the input signal u(k) is described by

u(k) =
P∑

l=1
alu(k − l) + f (k), (2)

where f (k) is a WSS white process with variance σ2f . Let u(k)
be a vector of N samples of AR process described in (3), we
can rewrite the AR signal as

u(k) =
P∑

l=1
alu(k − l) + f(k) = Ua(k)a + f(k), (3)

where the matricesUa(k) = [u(k − 1) u(k − 2) · · · u(k−
P)], u(k − l) = [u(k − l) u(k − l − 1) · · · u(k − l−
N + 1)]T and, f(k) = [ f (k) f (k − 1) · · · f (k −N + 1)]T .

In the system identification for the fullband AEC as
shown in Figure 1(b), y(k) is the output signal of the adap-
tive filter at iteration k. The error signal is defined by e(k) =
d(k)− y(k). The P-order AP adaptive filter uses (P + 1)×N
data matrix and the optimization criterion for designing the
adaptive filter is given by [2, 22],

minimize
∥∥s(k + 1)− s(k)

∥∥2

subject to d(k) = UT(k)s(k + 1),
(4)

where

U(k) =
[
u(k) u(k − 1)u(k − 2) · · · u(k − P)

]

=
[
u(k) Ua(k)

]
.

(5)

It is well known that the AP algorithm is the undetermined
optimization problem. Generally, Lagrangian theory is used
for solving this optimization problem with equality con-
straints [2, 22, 23]. From (4), the weights of the adaptive filter
are updated by the AP algorithm as in

s(k + 1) = s(k) + μU(k)
[
U(k)TU(k)

]−1
e(k),

e(k) = d(k)− y(k) =
[
e(k) e(k − 1) · · · e(k − P)

]T
,

d(k) = U(k)Ts∗ =
[
d(k) d(k − 1) · · · d(k − P)

]T
,

y(k) = U(k)Ts(k).
(6)

Parameters N and P are the length of the adaptive filter and
the projection order, respectively. The step size μ is the re-
laxation factor. In P-order AP algorithm of (6), AR(P) input
signal is decorrelated by the P times orthogonal projection
operations with projection matrix as follows:

PUa(k) = Ua(k)
[
UT

a (k)Ua(k)
]−1

UT
a (k), (7)

which achieves the projection operation onto the subspace
spanned by the columns of Ua(k). Thus, the AP adaptive fil-
ter weights are updated by prewhitened input signals.
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Figure 2: Subband system identification for adaptive acoustic echo canceller.

3. SUBBAND AFFINE PROJECTION ALGORITHM

Using polyphase decomposition and the noble identity [12],
the fullband system of Figure 1 can be transformed into M-
subband system [13]. Figure 2 shows the M-subband adap-
tive acoustic echo cancellation (SAEC) system and the block
diagram of system identification for the SAEC. In [15], the
excellency of this subband structure has been analyzed and
is alias free, always stable, and reasonable for implementa-
tion. In Figure 2, using orthogonal analysis filters (OAFs)
h0 · · · hM−1, the input signal u(k) and the desired signal
d(k) are partitioned into new signals denoted by um(k) and

dm(k), respectively. We can describe as

um(k) = hTm
[
Usa(k)a + fs(k)

] = hTmUsa(k)a + fm(k),

dm(k) = hTmd(k),
(8)

where Usa(k) = [usa(k − 1) usa(k − 2) · · · usa(k − P)],
usa(k − l) = [u(k − l) u(k − l − 1) · · · u(k − l − L + 1)]T ,
fs(k) = [ f (k) f (k − 1) · · · f (k − L + 1)]T , and L is the
length of analysis filters. The notation (↓ M) means a dec-
imation by M. Note that the decimated signals umn(k) =
um(Mk − n) and fmn(k) = fm(Mk − n) are the subband
polyphase components of um(k) and fm(k), respectively.
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These subband polyphase component vectors can be pre-
sented by

umn(k) =
[
umn(k) umn(k − 1) · · · umn(k − Ps)

]T
,

fmn(k) =
[
fmn(k) fmn(k − 1) · · · fmn(k − Ps)

]T
,

(9)

where the subscript mn is the subband-decomposed poly-
phase index (m and n = 0, 1, . . . ,M − 1). In M-subband
structure, the adaptive filter can be represented in terms of
polyphase components as

S(z) = S0
(
zM
)
+ z−1S1

(
zM
)
+ · · · + z−iSi

(
zM
)
. (10)

Based on the principle of minimum disturbance [2] and the
criterion of (4) for the fullband AP adaptive filter, we formu-
late a criterion for the M-subband AP filters as one of opti-
mization subject to multiple constraints, as follows:

minimize f
[
s(k)

] = ∥∥s0(k + 1)− s0(k)
∥∥2

+ · · · + ∥∥sM−1(k + 1)− sM−1(k)
∥∥2

subject to dm(k) =
M−1∑

n=0
UT

mn(k)sn(k + 1)

form = 0, 1, . . . ,M − 1.
(11)

From this criterion, we define the cost function for the AP
algorithm in the two-subband (M = 2) structure shown in
Figure 3 as

J(k) = ∥∥s0(k + 1)− s0(k)
∥∥2 +

∥∥s1(k + 1)− s1(k)
∥∥2

+
[
d0(k)−UT

00(k)s0(k + 1)−UT
01(k)s1(k + 1)

]T
λ0

+
[
d1(k)−UT

10(k)s0(k + 1)−UT
11(k)s1(k + 1)

]T
λ1,
(12)

Umn(k) =
[
umn(k) umn(k − 1) · · · umn

(
k − Ps

)]
,

(13)

where λ0 and λ1 are the Lagrange multiplier vectors, and Ns

and Ps are the length of the adaptive subfilter and the pro-
jection order in each subband, respectively. In (12), the cost
function is quadratic, and also, it is convex since its Hessian
matrix is positive definite [2, 23]. Therefore, the proposed
cost function has a global minimum solution. From (12), we
can get the partial derivatives of the cost function with re-
spect to s0(k + 1) and s1(k + 1), and set the results to zeroes
as [2]

∂J(k)
∂s0(k + 1)

= 2
[
s0(k + 1)− s0(k)

]−U00(k)λ0 −U10(k)λ1 = 0,

∂J(k)
∂s1(k + 1)

= 2
[
s1(k + 1)− s1(k)

]−U01(n)λ0 −U11(n)λ1 = 0.
(14)
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Figure 3: System identificationmodel for two-subband adaptive fil-
ter.

To find the Lagrange vectors λ0 and λ1 that minimize the cost
function of (12) with respect to s0(k + 1) and s1(k + 1), the
error vectors in each subband are expressed as

e0(k) = 1
2

[
UT

00(k)U00(k) +UT
01(k)U01(k)

]
λ0

+
1
2

[
UT

00(k)U10(k) +UT
01(k)U11(k)

]
λ1,

e1(k) = 1
2

[
UT

10(k)U00(k) +UT
11(k)U01(k)

]
λ0

+
1
2

[
UT

10(k)U10(k) +UT
11(k)U11(k)

]
λ1.

(15)

From (15), λ0 and λ1 can be represented in matrix form as

[
λ0

λ1

]
= 2

[
A0(k) B(k)

BT(k) A1(k)

]−1 [
e0(k)

e1(k)

]
, (16)

where

A0(k) = UT
00(k)U00(k) +UT

01(k)U01(k),

A1(k) = UT
10(k)U10(k) +UT

11(k)U11(k),
(17)

B(k) = UT
00(k)U10(k) +UT

01(k)U11(k). (18)

In (16), the matrix B(k) in the off-diagonal is an undesir-
able cross-term that is produced by the signals of different
subbands. To eliminate this cross-term, we define Gm(k) =
E{Am(k)} and K(k) = E{B(k)} (E{·} denotes the expecta-
tion of {·}). The matrix Gm(k) in the main diagonal is the
sum of Ps×Ps Grammian matrices that consist of sample au-
tocorrelations Rm(k) (for m = 0 or 1). Therefore, G0(k) and
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G1(k) can be written as

G0(k) = E
{
A0(k)

}

= E
{
UT

00(k)U00(k) +UT
01(k)U01(k)

}

= R0(k) + R0(k − 1) + · · · + R0
(
k −Ns + 1

)
,

G1(k) = E
{
A1(k)

}

= E
{
UT

10(k)U10(k) +UT
11(k)U11(k)

}

= R1(k) + R1(k − 1) + · · · + R1
(
k −Ns + 1

)
.

(19)

Whereas, the matrix K(k) in the off-diagonal is the sum of
Ps × Ps sample cross-correlations C(k) that consist of signals
of different subband components. The matrix K(k) can be
written as

K(k) = E
{
B(k)

}

= E
{
UT

00(k)U10(k) +UT
01(k)U11(k)

}

= C(k) + C(k − 1) + · · · + C
(
k −Ns + 1

)
.

(20)

In (20), each element of K(k) can be obtained as a sum
of inner products of different subband components. We can
write each element as

γu00u10+u01u11 (k, l) = E
{
uT00(k)u10(l) + uT01(k)u11(l)

}
. (21)

Assuming that the input signal is wide-sense stationary and
ergodic, the cross-correlation at zero lag, γu00u10+u01u11 (k, l),
can be expressed as

γu00u10+u01u11 (0) =
[
uT00(k)u10(k) + uT01(k)u11(k)

]

Ns
. (22)

For analytical simplicity, we further assume that the input
signal is white and its spectrum is flat in each subband
as shown in Figure 4. From these assumptions, E{uT00u00 +
uT01u01} = σ2u0 (σ2u0 is the variance of subband signal hT0 u)
and E{uT00u10 + uT01u11} = 0. For colored inputs, E{uT00u10 +
uT01u11} �= 0. However, if the frequency responses of the anal-
ysis filters do not overlap significantly, it is always true that
E{uT00u10 + uT01u11} � E{uT00u00 + uT01u01} as before. This
means that the elements of B(k) are very small compared
with the elements ofA0(k) andA1(k). Therefore, we can con-
sider B(k) ≈ 0.

With the above approximations, (16) can be simplified as

[
λ0
λ1

]
= 2

[
A0(k) B(k)
BT(k) A1(k)

]−1 [
e0(k)
e1(k)

]

≈ 2

[
A0(k) 0

0 A1(k)

]−1 [
e0(k)

e1(k)

]
.

(23)

From (17) and (23), the Lagrange vectors λ0 and λ1 are ob-
tained as

λ0 = 2
[
UT

00(k)U00(k) +UT
01(k)U01(k)

]−1
e0(k),

λ1 = 2
[
UT

10(k)U10(k) +UT
11(k)U11(k)

]−1
e1(k).

(24)

Substituting (24) into (14), we can obtain the weight updat-
ing formulae of the SAP algorithm in the two-subband case
as follows:

s0(k + 1)

= s0(k) + μ
[
U00(k)A−10 (k)e0(k) +U10(k)A−11 (k)e1(k)

]
,

s1(k + 1)

= s1(k) + μ
[
U01(k)A−10 (k)e0(k) +U11(k)A−11 (k)e1(k)

]
.

(25)

3.1. Extension to theM-subband case

To generalize (25), we consider the M-subband structure
shown in Figure 2(b) [13]. The cost function for this case is
defined as an extension of (12),

J(k) =
M−1∑

m=0

(
∥∥sm(k + 1)− sm(k)

∥∥2

+

[
dm(k)−

M−1∑

n=0
UT

mn(k)sn(k + 1)

]T

λm

)

forM = 2, 3, . . . .
(26)

Using (25), the proposed weight updating formula for theM-
subband case can be expressed in terms of the matrix forms
as follows:

S(k + 1) = S(k) + μX(k)Π−1(k)E(k), (27)

where

S(k) =
[
sT0 (k) sT1 (k) · · · sTM−1(k)

]T
,

X(k) =

⎡
⎢⎢⎢⎢⎢⎣

U00(k) U10(k) · · · U(M−1)0(k)
U01(k) U11(k) · · · U(M−1)1(k)

...
...

. . .
...

U0(M−1)(k) U1(M−1)(k) · · · U(M−1)(M−1)(k)

⎤
⎥⎥⎥⎥⎥⎦
,

X(k) isMNs ×MPs matrix,



6 EURASIP Journal on Advances in Signal Processing

Π(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A0(k) 0 · · · 0

0 A1(k)
...

...
. . . 0

0 · · · 0 A(M−1)(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

Π(k) isMPs ×MPs matrix,

E(k) =

⎡
⎢⎢⎢⎢⎢⎣

e0(k)

e1(k)
...

eM−1(k)

⎤
⎥⎥⎥⎥⎥⎦
, E(k) isMPs × 1 vector.

(28)

3.2. The projection order reduced by signal
partitioning

The AP algorithm of (6) is rewritten with a direction vector
Φ(k) as follows [24]:

s(k + 1) = s(k) + μ
Φ(k)

ΦT(k)Φ(k)
e(k), (29)

Φ(k) = u(k)−Ua(k)â(k),

â(k) = [UT
a (k)Ua(k)

]−1
UT

a (k)u(k).
(30)

In (29), the AP algorithm updates the adaptive filter weights
s(k) in direction of a vectorΦ(k). The direction vector is the
error vector in estimation (in least-squares sense) and it is
orthogonal to the last P input vectors. Similarly, in (27), the
SAP algorithm updates the adaptive subfilter weights sm(k)
in direction of a vectorΦm(k) given by

Φm(k) =
M−1∑

m=0
Φmn(k), (31)

where each subdirection vector for the adaptive subfilters is
given by

Φmn(k) = umn(k)−Uamn(k)âmn(k), (32)

âmn(k) =
[
UT

amn(k)Uamn(k)
]−1

UT
amn(k)umn(k), (33)

[4pt]Uamn(k)=
[
umn(k − 1) umn(k − 2) · · · umn

(
k − Ps

)]
.

(34)

In (33), âmn(k) is the subband least-squares estimate of the
parameter vector a, and it is transformed by orthogonal sub-
band filtering.Φmn(k) is orthogonal to the past Ps input vec-
tors umn(k − 1),umn(k − 2), . . . ,umn(k − Ps). From (31) and
(32), we can know that the weights of the adaptive subfil-
ter are updated to the orthogonal direction of the past MPs
decomposed subband input vectors. In the fullband AP algo-
rithm, AR(P) input signal is decorrelated by the projection
matrix as shown in (7). Similarly, each subband input signal
is decorrelated by the subband projectionmatrices as follows:

PUamn(k) = Uamn(k)
[
UT

amn(k)Uamn(k)
]−1

UT
amn(k). (35)

To decorrelate the AR(P) input signal, the fullband AP al-
gorithm performs the P times projection operations with the
corresponding past P input vectors. In the proposed method,
on the other hand, the projection operation with lower or-
der (Ps < P) is sufficient for the signal decorrelating. Be-
cause the input signal is prewhitened by the subband par-
titioning, therefore, the spectral dynamic range of each sub-
band signal is decreased. Moreover, the length of the adap-
tive subfilter becomes Ns = N/M by applying the polyphase
decomposition and the noble identity to the maximally dec-
imated adaptive filter. In weight updating of AP adaptive fil-
ter, the order of projection governs the convergence rate of
adaptive algorithm and it depends on the length of the AP
adaptive filter as well as the degree of the input correlation.
A high order of projection is required for the long adaptive
filter, whereas, lower order of projection is sufficient for the
shortened adaptive filter. Therefore, the projection order for
the shortened adaptive subfilter can be Ps ≈ P/M. When the
size of the data matrix is N × (P + 1) in the fullband, it can
be Ns × (Ps + 1) ≈ (N/M) × (P/M) in the subband. More-
over, in view of the computational complexity of the SAP,
the weights of the adaptive subfilters in the subband struc-
ture are updated at a low rate that is provided by maximal
decimation. Consequently, computational complexity of the
proposed method is much less than that of fullband AP.

Now, we consider a simple implementation technique of
the proposed SAP. Although a computational complexity of
the proposedmethod is reduced, it still remains the inversion
problem of matrix. In the AP algorithm, the projection order
is typicallymuch smaller than the length of the adaptive filter.
By partitioning the P-order fullband AP into P-subbands, we
obtain the simplified SAP (SSAP) with N/P × 1 data vectors
for weight updating instead of data matrices. Consequently,
the weight updating formula for each subband adaptive sub-
filter is similar to that of the NLMS adaptive filter and the
matrix inversion is not required. Now, we assume that the
projection order in the fullband is 2 (P = 2). By partitioning
into two-subbands, (25) are simply rewritten as

s0(k + 1) = s0(k) + μ
[
u00(k)e0(k)

σ2u0 (k)
+
u10(k)e1(k)

σ2u1 (k)

]
,

s1(k + 1) = s1(k) + μ
[
u01(n)e0(k)

σ2u0 (k)
+
u11(k)e1(k)

σ2u1 (k)

]
,

(36)

where σ2um(k) is the variance of input signal in each subband.
Note that the computational complexity for the subband

partitioning is much less than that for calculating the inverse
matrix. In a practical implementation, the SSAP gives con-
siderable savings in computational complexity.

3.3. Convergence of themeanweight vector

To analyze the convergence behavior of the proposed SAP, we
first define the mean-square deviation as

D(k) = E
{∥∥s̃(k)

∥∥2} = E
{∥∥s∗ − s(k)

∥∥2}. (37)
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Table 1: Comparison of the computational complexities; N is the length of adaptive filter or unknown system (filter), L is the length of
analysis and synthesis filters,M is the number of subbands, P is the projection order, and D is the size of data frame in LC-GSFAP.

Algorithms Multiplications/iteration
Multiplications/iteration

for L = 64, N = 512,M = 4, P = 4, D = 2

SNLMS [13] 3N + 2M(L + 2) 2064

Fullband AP [3] P3/2 + 3NP2 +NP +N 27 168

Subband M
(
P2 + P +N + (2P +N)/D + 1

)
3160

LC-GSFAP [19] +2ML

The proposed SAP
P3/
(
2M3

)
+NP2(M + 1)/M3

≈ 2305

+NP(P +M + 1)/M2 + 2ML

The SSAP 3N + 2P(L + 2) 2064

For analytical simplicity, we consider the two-subband case.
The polyphase components of the unknown filter, s∗0 and s∗1 ,
can be represented as

S∗(z) = S∗0
(
z2
)
+ z−1S∗1

(
z2
)
. (38)

From (27), we can get

S̃(k + 1) = S̃(k)− μX(n)Π−1(k)E(k), (39)

where S̃(k) = [s̃T0 (k) s̃T1 (k)]T , for s̃0(k) = s∗0 − s0(k) and
s̃1(k) = s∗1 − s1(k). Taking the squared-Euclidean norm on
both sides of (39), the weight updating formula can be rep-
resented as (assume that XT(k)X(k) ≈ Π(k))
∥∥S̃(k + 1)

∥∥2 − ∥∥S̃(k)∥∥2

= μ2ET(k)Π−1(k)E(k)− 2μ
∥∥S̃T(k)X(k)Π−1(n)E(k)

∥∥,

(40)

and taking the expectation on both sides of (40), we can get

D(k + 1)−D(k)

= μ2E
{
ET(k)Π−1(k)E(k)

}− 2μE
{∥∥ξ(k)Π−1(k)E(k)

∥∥},

(41)

where

ξ(k) = S̃T(k)X(k). (42)

For the proposed algorithm to be stable, the mean-square de-
viationD(k) must decreasemonotonically with an increasing
number of iterations n implying that D(k + 1) − D(k) < 0.
Therefore, the step size μ has to fulfill the condition

0 < μ <
2E
{∥∥ξ(k)Π−1(k)E(k)

∥∥}

E
{
ET(k)Π−1(k)E(k)

} . (43)

In (43), ξ(k) = S̃T(k)X(k) is the undisturbed error vector.
If we consider the situation where the disturbance is negli-
gible, the disturbed error vector is equal to the error vector

ET(k). Hence, in the absence of disturbance, the necessary
and sufficient condition for the convergence in the mean-
square sense is that the step-size parameter must satisfy the
double inequality

0 < μ < 2. (44)

3.4. Computational complexity

The computational complexities per iteration in terms of the
number of multiplications for the proposed SAP and the
SSAP, the fullband AP [3], the subband NLMS (SNLMS)
[13], and the subband LC-GSFAP [19] are shown in Table 1.
When the fullband sampling rate is Fs = 1/Ts, the weights
of the adaptive filter in the subband structure are updated
at a lower rate, 1/MTs. In the AP and the SAP, matrix inver-
sions were assumed to be performed with standard LU de-
composion:O3/2multiplications [17], whereO is the rank of
a square matrix, and it is equal to the projection order in AP
(O = P or Ps). In SSAP that partitioned into P-subband, the
length of the subband adaptive filter isNs = N/M|M=P = N/P
and the projection order in each subband is Ps = P/M|M=P =
1. In applications, such as adaptive echo cancellation, the
length of analysis filters is typically much smaller than the
length of the adaptive filter. Consequently, it can be seen that
the proposed algorithm is muchmore efficient than the other
algorithms.

4. SIMULATION RESULTS

To evaluate the performance of the proposed SAP algorithm,
we carry out computer simulations in acoustic echo cancel-
lation scenario. The length of the unknown system shown in
Figure 5 is N = 512. It is an actual impulse response of the
echo path in a room, sampled at 8 kHz and truncated to 512
samples. For signal partitioning in all experiments, we use
the cosine-modulated filter banks [25] (analysis and synthe-
sis) with prototype frequency responses shown in Figure 6.
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Figure 5: Impulse response of the echo path measured in a room.
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Figure 6: Frequency responses of the prototype filters.

For efficient subband decomposition of input signals, the
lengths of analysis filters are increased with M so that the
ratio of the transition band to the passband is maintained
nearly the same for all values of M. The prototype filters’
lengths are 32, 64, and 128 for M = 2, 4, and 8, respec-
tively. The input signals are zero-mean wide-sense stationary
AR(P) and a real speech sampled at 8 kHz. AR(4) process is
given by

u(k) =
P∑

l=1
alu(k − l) + f (k), (45)

where AR coefficients are a = [
1 0.999 0.99 0.995 0.9

]T

for AR(4). f (k) is zero-mean and unit-variance white Gaus-
sian random process. The measurement noise is added to
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Figure 7: ERLE curves of the fullband AP with P = 2, M = 4 LC-
GSFAP with P = 2 and D = 2,M = 2 SAP with Ps = 2, andM = 4
SAP with Ps = 2 for AR(4) inputs (N = 512, μ = 1, SNR = 30 dB).

desire signal d(k) such that SNR = 30 dB. The step size is
set to a unit (μ = 1) for fast convergence. In acoustic echo
cancellation systems as shown in Figures 1 and 2, we evalu-
ate the echo return loss enhancement (ERLE) performances
of the proposed SAP, the fullband AP, and the four-subband
LC-GSFAP with 2-oversampling factor (OS = 2) algorithm.

ERLE = 10 log10

(∑N−1
i=0 d2(n− i)

∑N−1
i=0 e2(n− i)

)
. (46)

Generally, the weights of adaptive filter are frozen when the
double talk is detected, then they are readjusted when the
double talk is inactive. For the double-talk condition, we
evaluate the tracking ability of the proposed method. The
path of echo is changed at the detected time and the weights
of adaptive filter are frozen and then, when the double talk is
inactive, the weights of adaptive filter are readjusted to cancel
the changed echo path.

4.1. The proposed SAPwith AR(4) input

Figure 7 shows the ERLE performances of the proposed
method, the fullband AP, and subband LC-GSFAP with the
same projection order (P = Ps = 2) for different num-
bers of subbands (M = 2, 4). We assumed that the double
talk is detected at about 4.5 (seconds). For the same projec-
tion order, the SAP and the subband LC-GSFAP have faster
convergence rates than the fullband. From these results, we
can doubtlessly know that the convergence speed of adaptive
filter is improved by the subband filtering and it speeds up
with the increase ofM. Figure 8 shows the ERLE of each algo-
rithm with the different values of the projection order (P = 4
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Figure 8: ERLE curves of the fullband AP with P = 4, M = 4 LC-
GSFAP with P = 2, OS = 2, and D = 2, M = 2 SAP with Ps = 2,
andM = 4 SAP with Ps = 1 for AR(4) inputs (N = 512, μ = 1, SNR
= 30 dB).
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and Ps = 1, 2) and different numbers of subbands (M = 2, 4).
Comparing the results of Figure 8 with that of Figure 7, the
convergence speeds of the SAP with the reduced projection
order can be deteriorated. However, it is faster than that of
other algorithms. From these results, the increase of M im-
proves the convergence speed and also allows the projection
order P to be reduced. Therefore, it can be said that the pro-
posed SAP improves the performance of the conventional AP
in the efficiency. Consequently, the SAP is superior to other
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Figure 10: Far-end signal and near-end signal of AEC with speech
as excitation.
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Figure 11: Comparison of ERLE for fullband AP, M = 4, OS = 2,
and D = 2 LC-GSFAP, M = 2 SAP, and M = 4 SAP with 8 kHz
sampled speech as excitation (N = 512, P = Ps = 2, μ = 1, SNR
= 30 dB).

algorithms in view of the computational complexity and the
convergence speed.

4.2. The proposed SAPwith real speech input

The speech signal and its power spectrum are shown in
Figure 9. The speech is a woman’s voice sampled at 8 kHz.
Figure 10 shows the far-end signal and the near-end signal of
AEC. The projection orders for each algorithm are equal to 2
(P = Ps = 2). The speaker output signal-to-measurement
noise is set to 30 dB. Figure 11 shows ERLE curves of the



10 EURASIP Journal on Advances in Signal Processing

1
0.5
0

�0.5
�1

N
ea
r-
en
d
si
gn

al

0 0.5 1 1.5 2 2.5

Time (s)

0.2
0.1
0

�0.1
�0.2

Fu
llb

an
d
A
P

0 0.5 1 1.5 2 2.5

Time (s)

0.2
0.1
0

�0.1
�0.2

M
=
4
LC

-G
SF
A
P

0 0.5 1 1.5 2 2.5

Time (s)

0.2
0.1
0

�0.1
�0.2M

=
2
SA

P

0 0.5 1 1.5 2 2.5

Time (s)

0.2
0.1
0

�0.1
�0.2M

=
4
SA

P

0 0.5 1 1.5 2 2.5

Time (s)

Figure 12: Comparison of residual error signals for Fullband AP,
M = 4, OS = 2, and D = 2 LC-GSFAP, M = 2 SAP, and M = 4
SAP with speech as excitation (N = 512, P = Ps = 2, μ = 1, SNR
= 30 dB).

M = 2, 4 SAP, the M = 4, OS = 2 LC-GSFAP, and the full-
band AP with the real speech as excitation. Figure 12 illus-
trates the residual error signal of each algorithm.

4.3. MSE performance of the SAP
and the simplified SAP

We compare the performance of the proposed algorithms
(the SAP and the SSAP) with other algorithms. Figure 13
shows the MSE curves of the SAP and the fullband AP. The
convergence rate of the fullband AP goes up with P and those
of the SAP go up with P or M. Increase of P leads to a large
computational complexity, whereas, increase of M does not.
For the same projection order, the SAP has faster conver-
gence rates than the fullband. To evaluate the performance of
the SSAP, two sets of simulations are considered. In the first
set, the number of subbands in the SSAP and the projection
order for the fullband AP are set to 4 (M = 4 and P = 4),
whereas, those are 8 (M = 8 and P = 8) in the second set.
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Figure 13: Comparison of MSE curves of the simplified SAP
(SSAP) for AR(4) (N = 512, μ = 1, SNR = 30 dB).
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Figure 14: Comparison of MSE curves of each algorithm for AR(4)
(N = 512, μ = 1, SNR = 30 dB).

The projection order of the SSAP is 1 (Ps = 1) at both sets.
Figure 14 shows theMSE curves of the SSAP and the fullband
AP. In the first set, the convergence rate of the SSAP is similar
to that of the fullband AP. In the second set, we can observe
that the fullband AP is superior to the SSAP. However, the
steady-state error of the fullband AP is larger than that of the
SSAP. This large steady-state error is in accord with the result
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of [24]. Moreover, as described earlier, the fullband AP with
higher projection order has extremely large computational
complexity. Whereas, the SSAP is comparable in view of the
computational complexity with the NLMS. Consequently, we
can conclude that the effect of the plenty subband partition-
ing is more effective than that of higher projection order to
improve the convergence rate of the fullband AP.

5. CONCLUSIONS

In this paper, we present a new subband affine projec-
tion algorithm based on the subband structure [13] and
the fullband affine projection algorithm [3] for acoustic
echo cancellation. The proposed algorithm uses the OSF
for prewhitening the highly correlated inputs. This OSF is
a kind of projection operation and it can partly substitute
for the updating-projection scheme of the fullband AP al-
gorithm. Moreover, the OSF with the polyphase decomposi-
tion, the noble identity, and critical decimation can reduce
the computational complexity. By combining the merits of
the OSF and the AP algorithm, the derived method gives the
rapid convergence rate and the reduced computational com-
plexity. In addition, we present that the proposed algorithm
can be reduced to a simplified form such as the NLMS by
partitioning over the number of subbands as the projection
order. The simplified form is a good approach to implement
the proposed method in most practical applications. Several
simulation results support the theoretical predictions and
show the improved performances.

REFERENCES

[1] B. Widrow and S. D. Stearns, Adaptive Signal Processing,
Prentice-Hall, Englewood Cliffs, NJ, USA, 1985.

[2] S. Haykin, Adaptive Filter Theory, Prentice-Hall, Upper Saddle
River, NJ, USA, 4th edition, 2002.

[3] K. Ozeki and T. Umeda, “An adaptive filtering algorithm using
an orthogonal projection to an affine subspace and its prop-
erties,” Electronics & Communications in Japan, vol. 67, no. 5,
pp. 19–27, 1984.

[4] S. G. Sankaran and A. A. Beex, “Convergence behavior of
affine projection algorithms,” IEEE Transactions on Signal Pro-
cessing, vol. 48, no. 4, pp. 1086–1096, 2000.

[5] S. L. Gay and J. Benesty, Acoustic Signal Processing for Telecom-
munication, Kluwer Academic, Boston, Mass, USA, 2000.

[6] M. Rupp, “A family of adaptive filter algorithms with decor-
relating properties,” IEEE Transactions on Signal Processing,
vol. 46, no. 3, pp. 771–775, 1998.

[7] S. Werner and P. S. R. Diniz, “Set-membership affine projec-
tion algorithm,” IEEE Signal Processing Letters, vol. 8, no. 8, pp.
231–235, 2001.

[8] H.-C. Shin and A. H. Sayed, “Mean-square performance of a
family of affine projection algorithms,” IEEE Transactions on
Signal Processing, vol. 52, no. 1, pp. 90–102, 2004.

[9] S. L. Gay and S. Tavathia, “The fast affine projection algo-
rithm,” in Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP ’95), vol. 5,
pp. 3023–3026, Detroit, Mich, USA, May 1995.

[10] M. Tanaka, S. Makino, and J. Kojima, “A block exact fast affine
projection algorithm,” IEEE Transactions on Speech and Audio
Processing, vol. 7, no. 1, pp. 79–86, 1999.

[11] F. Albu andH. K. Kwan, “Fast block exact Gauss-Seidel pseudo
affine projection algorithm,” Electronics Letters, vol. 40, no. 22,
pp. 1451–1453, 2004.

[12] P. P. Vaidyanathan, Multirate Systems and Filter Banks,
Prentice-Hall, Englewood Cliffs, NJ, USA, 1993.

[13] S. S. Pradhan and V. U. Reddy, “A new approach to sub-
band adaptive filtering,” IEEE Transactions on Signal Process-
ing, vol. 47, no. 3, pp. 655–664, 1999.

[14] M. R. Petraglia, R. G. Alves, and P. S. R. Diniz, “New structures
for adaptive filtering in subbands with critical sampling,” IEEE
Transactions on Signal Processing, vol. 48, no. 12, pp. 3316–
3327, 2000.

[15] S. Miyagi and H. Sakai, “Convergence analysis of alias-
free subband adaptive filters based on a frequency domain
technique,” IEEE Transactions on Signal Processing, vol. 52,
no. 1, pp. 79–89, 2004.

[16] S. Makino, K. Strauss, S. Shimauchi, Y. Haneda, and A. Naka-
gawa, “Subband streo echo canceller using the projection algo-
rithm with convergence to the true echo path,” in Proceedings
of the IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP ’97), vol. 1, pp. 299–302, Munich,
Germany, April 1997.

[17] M. Bouchard, “Multichannel affine and fast affine projection
algorithms for active noise control and acoustic equalization
systems,” IEEE Transactions on Speech and Audio Processing,
vol. 11, no. 1, pp. 54–60, 2003.

[18] Q. G. Liu, B. Champagne, and K. C. Ho, “On the use of a mod-
ified fast affine projection algorithm in subbands for acous-
tic echo cancelation,” in Proceedings of the IEEE Digital Signal
Processing Workshop, pp. 354–357, Loen, Norway, September
1996.

[19] E. Chau, H. Sheikhzadeh, and R. L. Brennan, “Complexity re-
duction and regularization of a fast affine projection algorithm
for oversampled subband adaptive filters,” in Proceedings of the
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP ’04), vol. 5, pp. 109–112, Montreal, Que-
bec, Canada, May 2004.

[20] K. Nishikawa and H. Kiya, “New structure of affine projection
algorithm using a novel subband adaptive system,” in Proceed-
ings of the 3rd IEEE Workshop on Signal Processing Advances in
Wireless Communications (SPAWC ’01), pp. 364–367, Taoyuan,
Taiwan, March 2001.

[21] H. R. Abutalebi, H. Sheikhzadeh, R. L. Brennan, and G. H.
Freeman, “Affine projection algorithm for oversampled sub-
band adaptive filters,” in Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP
’03), vol. 6, pp. 209–212, Hong Kong, April 2003.

[22] E. K. P. Chong and S. H. Zak, An Introduction to Optimization,
John Wiley & Sons, New York, NY, USA, 1996.

[23] T. K. Moon and W. C. Stirling,Mathematical Methods and Al-
gorithms, Prentice-Hall, Englewood Cliffs, NJ, USA, 2000.

[24] S. J. M. de Almeida, J. C. M. Bermudez, N. J. Bershad, and
M. H. Costa, “A statistical analysis of the affine projection al-
gorithm for unity step size and autoregressive inputs,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 52,
no. 7, pp. 1394–1405, 2005.



12 EURASIP Journal on Advances in Signal Processing

[25] Y.-P. Lin and P. P. Vaidyanathan, “A kaiser window approach
for the design of prototype filters of cosine modulated filter-
banks,” IEEE Signal Processing Letters, vol. 5, no. 6, pp. 132–
134, 1998.

Hun Choi received the B.S. and the M.S.
degrees in electronics from Chungbuk Na-
tional University, South Korea, in 1996 and
2001, respectively. Since 2001, he is cur-
rently pursuing the Ph.D. degree. From
November 1996 to March 1997, he served
as a Research Engineer in the Department
of Product Development of LG Semicon.
His research interests include adaptive sig-
nal processing, multirate signal processing,
and methods applied to acoustic and communication systems.

Hyeon-Deok Bae received his M.S. and
Ph.D. degrees in electronics from Seoul Na-
tional University (SNU), South Korea, in
1980 and 1992, respectively. From 1983
to 1987, he was an Assistant Professor at
Kwandong University, Kangwon, South Ko-
rea. Since 1987, he has been a Professor at
Chungbuk National University, South Ko-
rea. His research interests include adaptive
signal processing, multirate systems, and
wavelets applications for signal processing. In 1994, he was a vis-
iting Professor at Syracuse University, Syracuse, NY, USA.


	INTRODUCTION
	AFFINE PROJECTION ALGORITHM
	SUBBAND AFFINE PROJECTION ALGORITHM
	Extension to the M-subband case
	The projection order reduced by signal partitioning
	Convergence of the mean weight vector
	Computational complexity

	SIMULATION RESULTS
	The proposed SAP with AR(4) input
	The proposed SAP with real speech input
	MSE performance of the SAP and the simplified SAP

	CONCLUSIONS
	REFERENCES

