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Fluctuations in solar irradiance are a serious obstacle for the future large-scale application of photovoltaics. Occurring regularly
with the passage of clouds, they can cause unexpected power variations and introduce voltage dips to the power distribution
system. This paper proposes the treatment of such fluctuating time series as realizations of a stochastic, locally stationary, wavelet
process. Its local spectral density can be estimated from empirical data by means of wavelet periodograms. The wavelet approach
allows the analysis of the amplitude of fluctuations per characteristic scale, hence, persistence of the fluctuation. Furthermore,
conclusions can be drawn on the frequency of occurrence of fluctuations of different scale. This localized spectral analysis was
applied to empirical data of two successive years. The approach is especially useful for network planning and load management of
power distribution systems containing a high density of photovoltaic generation units.
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1. INTRODUCTION

Most applications of wavelet decomposition in the field of
electrical power engineering concern the analysis of load pro-
files [1, 2], the electrical power supply quality and its mea-
surement [3–6], and also protection issues [7]. The primary
objective inmost of these applications is the isolation of tran-
sient phenomena from steady-state phenomena in the elec-
tricity grid, usually the fundamental 50 or 60Hz component
and its harmonics [7]. A new area of application is presented
with the analysis of time series of solar radiation in order to
quantify the intermittent power supplied by solar energy sys-
tems, mainly photovoltaics (PV). In this case, the power sup-
ply quality can be deteriorated as a consequence of power
variations due to a varying cloud coverage of the sky. This
leads to variable power output of the PV system, which intro-
duces voltage dips to the distribution system. Typically these
fluctuations persist seconds up to a fraction of an hour.

The intermittent nature of solar radiation is one of the
drawbacks of the large-scale application of photovoltaics.
With a high density of PV generation in a power distribution
grid, irradiance fluctuations introduced by moving clouds
can lead to unpredictable variations of node voltages and
power and finally cause a breakdown of distribution grids.

Distribution system operators need tools for a realistic esti-
mation of such disturbances, allowing to take adequate mea-
sures for grid reinforcement in time while avoiding too cau-
tious and, therefore, cost-intensive measures. An analysis of
fluctuations introduced by solar irradiance fluctuations must
focus on their amplitude, persistence, and frequency of oc-
currence rather than their location in time. A tool that would
allow the distribution system operator to stochastically assess
these parameters would be of utmost practical utility.

The Fourier analysis cannot satisfactorily provide the
necessary information since time series of solar irradiance
exhibit no intraday periodicity. Instead, a localized spectral
analysis based onwavelet bases is proposed. This analysis per-
mits the decomposition of the fluctuating irradiance signal
into a set of orthonormal subsignals. Each of them represents
one specific scale of persistence of the fluctuation.

The objective of this study is to illustrate the application
of localized spectral analysis in the field of solar energy me-
teorology, as a new tool for facilitating the integration of PV
generation units in the power distribution systems of the fu-
ture. Exemplary applications of the method to electric power
systems have already been presented in [8, 9] whereas the
meteorological conditions allowing the generalization of this
method were explored in [10]. The present paper introduces
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the analysis of empirical time series derived from solar irradi-
ance as realizations of a stochastic, locally stationary, wavelet
process, following the approach proposed in [11–13]. The
occurring fluctuations can be classified and treated per char-
acteristic scale of persistence. As a result, fluctuation indices
are derived for all characteristic scales, permitting conclu-
sions on the characteristic fluctuation pattern at the specific
site.

2. PRECEDING STUDIES

Two studies assessing cloud-induced power fluctuations in
distribution grids with high PV connection density are pre-
sented in [14, 15]. The examinations are based on the ap-
proximation of clouds by primitive geometries, moving over
the area under examination with predefined wind speed and
direction. Conclusions on the frequency of occurrence and
duration of irradiance fluctuations have not been drawn.

In [16], the contours of clouds in inhomogeneous skies
are modelled as fractals, taking into account the irregular
shape and spatial distribution of clouds. Based on this model,
time series of solar irradiance have been synthesized and ap-
plied to extended power-flow studies. Within this approach,
the fractal dimension is a measure for the cloud-induced
variability of solar radiation. However, further steps regard-
ing the classification of cloudy sky conditions by means of
this approach have not yet been published.

A statistical approach is applied in [17]. There, time se-
ries of solar irradiance are described by their “fluctuation fac-
tor,” being defined as the root mean square (rms) value of
the high-pass filtered time series of solar irradiance, recorded
during two hours around noon. The authors propose the
power spectral density (PSD) of the irradiance time series
as a potential tool for the analysis of cloud fields, without
yet further elaborating the approach. However, a main draw-
back of the PSD approach seems to be the obvious lack of
second-order autocorrelation in time series of the clearness
index.

The proposed analysis of short fluctuations in solar irra-
diance by means of localized spectral analysis can combine
advantages of [16, 17]. On the one hand, similar to fractal
cloud patterns [16], the approach allows the analysis of all
scales of fluctuation from very short variations as they ap-
pear close to the edge of a cloud, up to long fluctuations be-
tween clouds. On the other hand, the wavelet approach al-
lows quantifying the power content of the fluctuating signal,
similar to the fluctuation factor in [17]. Moreover, due to its
good time-frequency localization, the wavelet approach al-
lows a meaningful decomposition of the signal’s power con-
tent, corresponding to the persistence of the occurring fluc-
tuation. Finally, unlike many other approaches described in
the literature, the wavelet approach is mathematically sound.

3. BACKGROUND

3.1. Solar irradiance signals

The solar irradiance G(t) received by an arbitrarily oriented
surface as a function of time can be decomposed into a

deterministic and a stochastic part according to

G(t) = I0E0(t) cos γi(t)k(t) (1)

with

(i) I0 = 1367W/m2 the solar constant, defined as the
long-term average intensity of solar radiation as re-
ceived outside the earth’s atmosphere,

(ii) E0(t) the eccentricity correction factor, compensating
for periodic annual variations of the earth’s orbit,

(iii) γi(t) the angle of incidence of the sun rays on an ar-
bitrarily oriented surface at a given geographical posi-
tion,

(iv) k(t) the instantaneous clearness index [18].

For a receiver with arbitrarily oriented surface, E0 and γi
only depend on astronomical relationships and can be ana-
lytically determined for each instant in time throughout the
year. The clearness index k accounts for all meteorological in-
fluences, mainly being the stochastic parameters atmospheric
turbidity and moving clouds. It is independent of all astro-
nomical relationships. The mean value of the clearness index
over a period of time is denoted as k. The sampling period
ΔT for an analysis of cloud-induced fluctuations should be
no longer than eight seconds in order to account for more
than 98% of the signal’s power content [10].

Figure 1(a) shows the solar irradiance on a slightly over-
cast summer day with k = 0.73 as a function of time, sam-
pled as 5-second average values. The corresponding time se-
ries of the clearness index in Figure 1(b), calculated bymeans
of (1), exhibits no significant trend and its fluctuations ap-
pear to be randomly distributed in time. A closer view on
the short-time behavior of this signal in Figure 1(c) displays
the influence of passing clouds, when the radiation sensor
receives only diffuse irradiance, but no beam irradiance di-
rectly from the sun. This bimodal, almost binary, behavior
of the instantaneous clearness index with distinct “clear” and
“cloudy” states is well known in the field of solar energy me-
teorology [14, 19, 20]. Apparently, time series of the instan-
taneous clearness index can be characterized as a signal of
randomly distributed squares of variable pulse width, super-
posed by higher frequency noise, mainly, but not exclusively,
occurring at the transitions between clear and cloudy states.

The cumulative frequency distribution of the clearness
index, averaged over one hour and more, can be described
by Boltzmann statistics [20–24]. Remarkably, for any speci-
fied mean value k during the period under study, the prob-
ability distribution of k is virtually independent of the sea-
son and the geographical position. With some limitations,
this also holds for the instantaneous clearness index, with its
frequency distribution defined as a superposition of differ-
ent Boltzmann distributions, accounting for the sharp tran-
sition between clear and cloudy states and the comparably
scarce occurrence of intermediate ones [10, 20]. Autocorre-
lation analysis of time series of the instantaneous clearness
index returned first-order autocorrelation coefficients with
sufficiently low variance for clearness index values sampled
as 5-minute averages and longer. For shorter averaging times,
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(a) Global irradiance on the horizontal plane.
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(b) Clearness index during 6 hours around noon.
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(c) Clearness index zoomed in on 1 hour.

Figure 1: Global irradiance and clearness index on a slightly
clouded summer day (June 19, 2001) with daily mean clearness in-
dex k = 0.73.

no significant autocorrelation coefficients could be identified
[19].

While the frequency distribution of the instantaneous
clearness index is well determined, due to the obvious lack
of periodicity, no significant second-order autocorrelation
can be identified in recorded time series of the instanta-
neous clearness index. Autocorrelation analysis of time series
of one-second average values measured in Leuven, Belgium,

returned no characteristic periodicity with regard to cloud
coverage. Hence, stochastic modelling of time series of the
instantaneous clearness index, as required for forecasting, is
almost impossible. Nevertheless, methods for the analysis of
time series of the clearness index, as realizations of the un-
derlying random process, are of even greater importance.

3.2. Localized spectral analysis

The daily time series of the instantaneous clearness index are
interpreted as realizations of a stochastic, locally stationary
wavelet (LSW) process. The power content of such a process,
decomposed per wavelet scale, at each particular time is de-
termined by its local spectral density (LSD) with, as an esti-
mator, the wavelet periodogram of the sequence analyzed. A
number of practical examples of wavelet periodogram anal-
ysis of empirical signals has already been provided in [11],
and the underlying process model was refined in [12, 13].

Wavelet periodogram analysis is based on the so-
called dyadic, undecimated, or stationary wavelet transform
(SWT). Unlike the more common discrete wavelet trans-
form, the SWT contains redundancy, but it features the ad-
vantage of time invariance, which is essential for the anal-
ysis of the stochastic time series under consideration [25–
27]. For a discrete sequence x = {x[n]} of length N , with
n = 0, 1, . . . ,N − 1, the SWT is calculated from

D j(x)[ν] =
N−1∑

n=0
x[n]

1
2 j/2ψ

∗
(
n− ν

2 j

)
,

A j(x)[ν] =
N−1∑

n=0
x[n]

1
2 j/2φ

∗
(
n− ν

2 j

)
,

(ν, j) ∈ N, (2)

where the function ψ is referred to as the mother wavelet
with φ its corresponding scaling function [28]. The asterisk
(∗) indicates complex conjugation. The length-N sequences
D j = {D j(x)[ν]} and A j = {A j(x)[ν]} are referred to as
“detail j” and “approximation j,” respectively.

Since the SWT contains redundancy, its inverse is not
unique, although, for practical application, it can be approx-
imated by the average over all existing inverse transforms.
When ψ is an orthonormal wavelet base, the SWT still en-
sures orthogonality between scales, and, with proper normal-
ization, Parseval identity is maintained:

‖x‖22 =
1
2 j0

∥∥A j0

∥∥2
2 +

j0∑

j=1

1
2 j

∥∥D j

∥∥2
2, j0 ≤ log2N ∈ N,

(3)
hence, the set of sequences W = {A j0 ,D1,D2, . . . ,D j0} is a
complete representation of the original sequence x.

As an estimator of the LSD of the LSW process under
consideration, the wavelet periodogram I can be calculated
from the SWT of the empirical time series. With the normal-
ization as in (3), the values of I = {{I j[ν]}} are calculated
from

I j[ν] = 1
2 j

∣∣D j(x)[ν]
∣∣2. (4)
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Figure 2: Smoothed wavelet periodogram of a time series of the instantaneous clearness index; θ = νΔT with ΔT = 5 seconds, j0 = 12,
N = 4096, shown are only j = 3 up to 9 during 2 hours, ψ: Haar wavelet.

In an additional step, following the analysis from [11],
the sequences {I j[ν]} are smoothed in order to eliminate
higher-frequency components introduced by the square in
(4). This is done by means of a stationary wavelet filter with
the same mother wavelet as above. Each sequence {I j[ν]} is
transformed by means of an SWT and back, after having set
to zero all coefficients at levels of scale smaller than j. The
smoothed wavelet periodogram is denoted as I′ = {{I′j[ν]}}.

4. APPLICATION TO THE INSTANTANEOUS
CLEARNESS INDEX

The smoothed wavelet periodogram is a measure for the lo-
cal power content of the clearness index signal for all dyadic
scales 2 j , and it is variable in time with the time shift θ.
Figure 2 shows a typical two-hour clearness index signal and
its wavelet periodogram for a number of significant scales.

The Haar wavelet has been chosen as the mother wavelet.
Due to its rectangular shape, the Haar wavelet corresponds
very well to the bimodal character of the clearness index.
Fluctuations of the clearness index (upper graph) are asso-
ciated with local maxima on that scale, corresponding to the
length of the particular fluctuation. Although some leakage

between scales cannot be entirely prevented, the decompo-
sition based on the Haar wavelet exhibits a close correspon-
dence between the persistence of a fluctuation and the scale
of the wavelet periodogram on which the associated maxi-
mum occurs.

For example, the “dip” with approximately 200-second
persistence, occurring around θ = 1.9 hours, causes a maxi-
mum on the scale with j = 6, with some leakage to the neigh-
bouring scales. Conversely, the much shorter dip, occurring
shortly after θ = 0.8 hour, mainly affects the scales with j = 3
and 4. Equation (3) is still valid after smoothing and the sum
over all time-integrated scales of the periodogram equals the
energy content of the analyzed clearness index signal.

For the characterization of the signal’s mean power con-
tent and the energy associated with a fluctuation on the dif-
ferent scales, at this place, the “fluctuation power index” and
“fluctuation energy index” are introduced. The fluctuation
power index c fp is defined as the mean spectral density of a
sequence x as a function of the level of scale j:

c fp[ j] = 1
N

N−1∑

ν=0
I j[ν]. (5)
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The fluctuation power index represents the mean square
value, thus, the average power, of all fluctuations in the se-
quence x on the particular scale.

With the characteristic persistence of a fluctuation that is
associated with the level of scale j being defined as

Sj = 2 j−1, (6)

the fluctuation energy index c fe is calculated

c fe[ j] = Sjc fp[ j]. (7)

The fluctuation energy index is a measure for the energy
that is typically bound and freed again during a signal fluc-
tuation of the persistence 2Sj .

Applied to time series of the instantaneous clearness in-
dex, c fp as a function of Sj is a measure of the amplitude and
frequency of power flow fluctuations of a given persistence,
introduced by PV generation.

It is important to note that the terms power and en-
ergy in this context describe mathematical concepts rather
than physical quantities. In electrical engineering, the mean
square value of a signal is usually interpreted as its power
[29]. Mathematicians would rather talk about variance [13].
However, in thermodynamic terms, the instantaneous clear-
ness index already is proportional to solar power. Its fluc-
tuation power index over all scales, therefore, represents the
square of solar power. Accordingly, the fluctuation energy in-
dex over all scales represents the integrated square of solar
power over the time of persistence and not the integrated so-
lar power. Here, c fe has mainly been developed for reasons of
completeness but it will not further be applied in this analy-
sis.

5. RESULTS AND PRACTICAL APPLICATION

5.1. Statistical interpretation

The question arises whether for a given climate the stochas-
tic moments of the LSD of the clearness index can be deter-
mined with a sufficiently low variance. If this is the case, con-
clusions become possible, regarding the estimated frequency
of occurrence of fluctuations along with their amplitude for
each particular scale. Doubtlessly, for substantiated conclu-
sions, a thorough quantitative analysis is required, based on
an extended set of empirical data, measured over several
years on different sites. Nevertheless, first results based on a
limited set of data indicate that regularities in the frequency
distribution of c fp exist.

Smoothed wavelet periodograms and fluctuation indices
have been calculated for time series of the clearness index
from 721 sample days recorded during roughly two years in
Leuven, Belgium (situated 4.7◦E, 50.9◦N, 30m a.s.l., mod-
erate maritime climate). The time series have been chosen
symmetrically around solar noon containing 4096 equidis-
tant samples, each with a sampling period ΔT = 5 seconds.
The time series have been grouped in seven classes according
to their mean clearness index k, and annual mean values of
c fp have been calculated for each class of k.
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(a) Year 1: data from 362 days from May 14, 2001 to May 31,
2002.
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(b) Year 2: data from 359 days from June 1, 2002 to May 31, 2003.

Figure 3: Fluctuation power index c fp of clearness index as a func-
tion of persistence Tj = SjΔT , annual mean values; legend: class of
daily mean clearness index k.

Figure 3 shows the annual mean values of c fp as a func-
tion of persistence of the fluctuation for two successive years.
The parameter k specifies different classes of daily mean
clearness index, and it can be interpreted as a measure for
the average cloudiness during a day of the respective class.

For shorter persistence, the mean value of c fp is gener-
ally lower than for longer persistence. With an exponentially
increasing persistence Sj , it increases slightly faster than lin-
early up to a local maximum.
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Clearly, for very low k (overcast sky) and very high k
(slightly clouded to clear sky), the fluctuation power index is
low. As expected, it takes maximum values for sky conditions
with scattered clouds with 0.3 ≤ k ≤ 0.6. A local maximum is
visible around a persistence between 300 up to 700 seconds,
indicating that this range of fluctuations is especially signifi-
cant for network planning accounting for PV power. The lo-
cal maxima visible at 5000 seconds indicate global changes
of the weather conditions during several hours, for example,
from clear sky in the morning to cloudy in the afternoon.
Moreover, they are influenced by boundary effects. Obvi-
ously, these maxima have no significant meaning with regard
to short fluctuations of the solar irradiance.

The striking similarity of Figures 3(a) and 3(b) indicates
a significance of the mean c fp as an estimator for the char-
acteristic pattern of irradiance fluctuations under the given
climate. The steeper, but narrower local maximum at k = 0.5
in Figure 3(a), originates from a relatively more frequent oc-
currence of days with steep clear-cloudy transitions in Year 1
in comparison to Year 2 [10].

For further statistical analysis a wider data base is re-
quired. The data from Leuven and also from other sites are
analyzed in detail on the background of solar energy mete-
orology in [10]. The high-resolution measurements of solar
radiation data in Leuven are still ongoing.

5.2. Application to distribution systems

Output fluctuations from PV can lead to energetic imbal-
ances in microgrids and to voltage fluctuations at the end-
points of long radial low-voltage cables. In order to buffer
such fluctuations, especially, the application of double-layer
capacitors, also referred to as supercapacitors, has been pro-
posed [30, 31].

Power system parameters such as voltage or power re-
flect fluctuations in the clearness index. The c fp curves can
be calculated for clearness index or for PV output power.
Here, we assume a linear PV systemmodel whichmeans that,
with proper normalization, the c fp curves for clearness index
and PV output power are identical. The capacity of energy
buffers, necessary for smoothing out power fluctuations in-
troduced by a PV system can then be determined by means
of c fp curves as in Figure 3. The curves exhibit local maxima
of c fp for k values between 0.3 and 0.6, which corresponds
to sky conditions with scattered clouds. The average energy
EB(Tj), freed and bound again during one such fluctuation
of persistence Tj , can be derived from the fluctuation power
index at Tj :

EB
(
Tj
) = Tj

√
c fp
(
Tj
)
, (8)

where EB(Tj) can be interpreted as the energy to be buffered
during Tj in order to compensate for fluctuations of this
persistence and shorter, with a severity, characterized by the
associated c fp. The persistence Tj in seconds is derived from
Sj by multiplication with the sampling period ΔT .

An alternative to short-term storage for the mitigation
of power fluctuations is demand-side management. In that
case, the operation of noncritical loads such as, for example,
a fridge, is slightly shifted in time in order to bridge a period
of low power supply from the PV system.

Although both measures differ significantly regarding
practical implementation, buffering and demand-side man-
agement technically have the same effect. In both cases, the
consumption of a specified amount of energy during a cer-
tain time is postponed to a later moment when sufficient ex-
cess energy is available. In both cases, the maximum energy
to be shifted as well as the shifting time are subject to practi-
cal limitations.

Further, and more detailed, examples for the application
of this analysis have been presented in [8, 9].

6. CONCLUSIONS

Short fluctuations in solar irradiance are a serious drawback
for the large-scale application of photovoltaics embedded in
the power distribution grid. For the analysis of such fluctua-
tions, signal processing methods should be applied in order
to provide a solid mathematical basis for all subsequent con-
clusions regarding the impact of photovoltaics on the power
system. This should enable power system operators and en-
ergy supply companies to choose appropriate measures re-
garding demand side management, energy storage, or up-
grading of equipment, based on such analysis methods.

The stochastic fraction of solar irradiance introduced by
atmospheric turbidity and moving clouds is represented by
the clearness index. The probability distribution of the clear-
ness index is generally determined by its mean value, inde-
pendent of the season. Hence, statistical analysis of solar ir-
radiance fluctuations must focus on the instantaneous clear-
ness index.

The parameters of interest are the amplitude of the fluc-
tuations, their persistence in time, and their frequency of oc-
currence rather than their exact time of occurrence. There-
fore, a spectral analysis of the fluctuating time series of
the clearness index is much more appropriate than a time-
domain approach.

Since fluctuations introduced by moving clouds exhibit
no periodicity, the power spectral density based on harmonic
analysis is not suited for the treatment of such time series. A
better parameter for the description of the relevant fluctua-
tions is the local spectral density of the fluctuating time se-
ries, interpreted as realizations of a locally stationary wavelet
process.

Wavelet periodograms as an estimator for the local spec-
tral density allow an assessment of the amplitude of fluctu-
ations classified by their characteristic persistence. For this
analysis, the Haar wavelet should be applied since it approx-
imates well the bimodal character of the clearness index.

The fluctuation power index (c fp) and fluctuation en-
ergy index (c fe) have been introduced as the mean power
of the fluctuating time series, respectively, the energy asso-
ciated with one fluctuation, both for each scale. The annual



AchimWoyte et al. 7

averages of the fluctuation power index for two successive
years exhibit a very close agreement, indicating some signifi-
cance as an estimator for the characteristic pattern of short-
term irradiance fluctuations in the specific climate. The ap-
plication of the fluctuation power index has briefly been
sketched for the sizing of energy buffers in microgrids and
distribution feeders with a high share of photovoltaic gener-
ation.

In the future, further statistical analysis is necessary,
based on a much wider base of empirical data. The pro-
posed method that has proven valuable for the processing of
nonstationary stochastic signals in many other fields, is best
suited also for the systematic analysis of fluctuations in solar
irradiance.
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