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1. INTRODUCTION

Image retrieval has become a very active research area since
the 1990s due to the rapid increase in the use of digital im-
ages [1, 2]. Estimating the user concepts is one of the most
difficult tasks in image retrieval. Feature extraction involves
extracting only low-level features such as color, texture, and
shape from an image. However, people understand an im-
age semantically, rather than via the low-level visual features,
and there is a large gap between the low-level features and the
high-level concepts in image understanding [3].

The relevance feedback approach [4, 5] is widely used for
bridging this semantic gap. In each iteration of a retrieval
task, the user assigns some relevant and irrelevant examples
according to their concepts, from which the system learns to
estimate what the user actually wants. Many types of learn-
ing models have been applied in relevance feedback for image
retrieval, such as Bayesian framework [6-8], SVM [9], and
active learning [10]. Goh et al. also proposed several quanti-
tative measures to model concept complexity in the learning
of relevance feedback [10].

Image representation is another important issue that
needs to be addressed when solving the above problem. It

is necessary to design good units for image representation
even if a perfect learning approach is applied to image re-
trieval. Many recent studies have adopted the region-based
approach [9, 11, 12] for image representation, because re-
gion features can be more representative for user requests
than global image features. Constructing a set of visual words
[13, 14] that collects similar region features to be a represen-
tative unit is appropriate for region-based image representa-
tion. Image annotation [15, 16] is another method that labels
an image with high-level information. Some researchers have
attempted to build a semantic space for describing the high-
level concepts in images [17, 18].

In this paper, we present a new scheme for image repre-
sentation and propose a learning model for image retrieval.
Instead of constructing a fixed semantic space for represent-
ing the user concepts, we have designed a flexible scheme
based on concept units for region-based image representation
that combines different types of feature spaces and different
scales of image segmentation. We also propose an interac-
tive approach for estimating the user concepts implicit in the
user feedbacks in a query session, which is the period be-
tween when the first query is made to when the correspond-
ing relevance feedbacks are produced. Our basic idea is to
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track the behaviors of the user concepts of relevance feed-
backs in image retrieval using a state-space model [19-21].
The state-space model has been well defined and widely ap-
plied to dynamic systems. However, we did not find studies
in the literature that have applied the state-space model to
the learning problem in relevance feedback. Our work aims
at demonstrating the feasibility of solving the retrieval prob-
lem using a state-space model.

This paper is organized as follows. Section 2 intro-
duces the motivation and the idea behind our proposed
approach. Section 3 describes the proposed concept units
used in region-based image representation, and the proposed
learning model based on a state-space model is shown in
Section 4. Section 5 presents the image ranking method used
to determine the similarity of two images. Section 6 describes
a strategy for handling negative examples. Section 7 details
some experiments that applied our approach, and Section 8
draws conclusions and discusses future work.

2. MOTIVATION

We consider the problem of category search in image re-
trieval. This involves grouping images into the same category
that the user perceives to be semantically relevant. For ex-
ample, the image set from Corel Photo, a set of image data
widely used in many researches, contains many types of se-
mantic categories. Hence we consider a user called “Corel
Photo” who chooses relevant images to form these categories.
Note that different users may assign different semantic cate-
gories in the same image set. The main challenge for category
search is to estimate the user concepts, for example, Corel
Photo, from the interaction of the retrieval.

Let a query session comprise the first query and corre-
sponding relevance feedbacks. We assume that the user does
not change the requesting concepts, that is, the semantic con-
cepts in a query session are constant. Ideally, we can view the
process of obtaining relevance feedbacks as tracing the path
from the first query to the retrieval goals, from which we can
estimate the user concepts in a retrieval task.

During a retrieval task, the user could have a semantic
goal but could be unable to describe it explicitly—the re-
trieval target exists but is not explicit in the beginning of the
retrieval. For example, the user may want to retrieve images
of flowers but will be unable to describe their types wanted
until she/he looks at relevant images. For this scenario, we
can model the tracing path of the user concepts as

X1 =IM-X; 1 +1-1, (1)

where X; means the user state at the tth iteration, IM is the
identical matrix, and #,—; is the noise term (i.e., variations
of user concepts in relevance feedbacks). We estimate each
stage of the tracing path using the state X;, which is deter-
mined from the previous estimated states and various types
of feedbacks specified by the user.

Figure 1 illustrates our idea that tracks the relevant re-
gion features in the feature space to estimate the user con-
cepts in image retrieval. Figures 1(a) and 1(b) show the two
sets of relevant images that are specified by the user at tth

(a) Relevant examples at the
tth iteration

(b) Relevant examples at the
(t + 1)th iteration

pl L

(c) Region features at the fth iteration

d) Tracking the movement of region features from tth
1terat10n to (t + 1)th iteration

FiGure 1: An illustration of tracking the movement of region fea-
tures in relevance feedbacks.

and (t + 1)th iterations, respectively. Figures 1(c) and 1(d)
describe the process of tracking the movement of relevant
regions in a visual feature space. At tth iteration, it is as-
sumed that the relevant region features involve three com-
ponents shown in Figure 1(c). Hence we can depict these re-
gion features using the centroids (i.e., means) of the three
components. At the next iteration, the estimation of the state
starts with the previous centroids, drawn as blue dots in
Figure 1(d), and moves to the current relevant regions.

In this work, we aim at solving (1) to estimate the user
concepts relevant to image retrieval. We assume that state X,
can be modeled using a Gaussian mixture [22] with means
u, and variances o, where g, represent the user concepts in
state X;_1, and o, are the variances of the user feedbacks in
noise term #;_;. In the example of Figure 1, a pair of g, and
o, forms a blue dotted circle to represent the user concept at
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an iteration. Solving means g, and variances g, requires two
major tasks: representation and estimation for the state.

We first have to design a scheme for representing the
state, which intuitively handles the semantic gap between vi-
sual features and user concepts. We do not try to directly
construct a semantic space for image retrieval because it is
impossible to explicitly describe what the user wants before
requests are made. In this work, we design a flexible scheme
using concept units that are based on combinations of dif-
ferent types of region features and different scales of image
segmentation. Any two images that are designated as relevant
by the user should be similar from a certain perspective. The
concept units are designated to represent unknown perspec-
tives of relevant images based on the user perceptions.

We next design an iterative approach for learning and es-
timating the user state. The idea of estimating the tracing
path of relevance feedbacks motivated us to design a state-
space model of the user state described in (1). The state-
space model has been widely applied to analyze and infer dy-
namic systems according to information on time sequences.
In our proposed model, the time sequence for the state-space
model is associated with the iteration process of relevance
feedbacks, and the training data for learning or inferring the
system is extracted from positive examples in the relevance
feedbacks. Moreover, we design a simple strategy for han-
dling negative examples in order to eliminate false alarms in
retrieval results.

3. CONCEPT UNITS FOR REGION AND
IMAGE REPRESENTATION

3.1. Image segmentation and feature extraction

Region-based approach is widely used to the analysis of im-
age contents. To extract regions, the first task is to partition
an image into multiple regions using image segmentation.
The most intuitive method for image segmentation is to seg-
ment objects (or foreground subjects) for region-based im-
age matching [9, 11-13]. However, this is very difficult, and
the segmentation results greatly affect the performance of
region-based tasks. Hence, some researchers have divided an
image into rectangular girds [15] or a large number of over-
lapping circular regions [23].

Generally speaking, image segmentation may not be con-
sistent with human perception. Our proposal is not to gener-
ate the perfect regions with segmentation, but rather to de-
termine useful ones. We use the well-known watershed seg-
mentation [24], which is an efficient, automatic, and unsu-
pervised segmentation method for gray-level images, to par-
tition an image into nonoverlapping regions. A color image
is first converted to a gray image and then partitioned by the
watershed segmentation. A watershed region is often homo-
geneous in the intensity space, and that means that pixels in
a watershed region are not very diverse. Hence, the water-
shed regions are appropriate for representing the region units
of an image. Wang proposed a multiscale approach for wa-
tershed segmentation in order to overcome the problem of
oversegmentation [24], which is the major drawback of the

original method of watershed segmentation, by controlling
the scaling parameters. Different scaling parameters result in
different numbers of regions being segmented in the same
image.

Assume that the database contains N images, denoted as
{I,...,In}, and that v scales, denoted as S = {s;,...,s,}, are
used for watershed segmentation. Given a scale 54, We assume
there are n, regions to be partitioned for all images in the
database. Thus, we can annotate the set of regions as

{riq,...,rffq}. (2)

Let the set of features F = { fi,..., f,} contain u different
types of visual features. Given a feature type fp, the feature
. Sq . . Sq
vector extracted from region r;* is written as f,(;"). Thus,
given a feature type f, and a scale s;, we have a set of feature
vectors, denote that as R}, with respect to the set of watershed
regions in (2):

l<p=<u l<g=<w (3)

Note that the region representation described above is
independent of selecting visual features and segmentation
methods. We collect different scales and different features of
regions for an image in order to represent unknown perspec-
tives of relevant images. Using more types of visual features
and more scales of regions covers a wider range of the image
contents, but makes the computational complexity excessive.
In this work, four types of visual features (i.e., u = 4) are
used: (i) color histogram, (ii) color moments (both color fea-
tures are in HSV space), (iii) cooccurrence texture, and (iv)
Gabor texture. Moreover, we set v = 2, that is, two types of
region scales, in the watershed segmentation.

3.2. Concept units

Since it is impossible to predict the best way to represent an
image, for example, which type of features or which scale for
image segmentation is better for image representation, be-
fore the user makes the query, we first collect different types
of region representation, and then estimate which is best for
characterizing the user’s perceptions in relevance feedbacks.
R?,, in (3), represents the collection of visual features of wa-
tershed regions that are observed using different scales and
different features, hence giving a total of u X v types of re-
gion features withv scaling parameters and u types of visual
features.

Given the feature type f, and the scaling parameter s,
we apply the K-means algorithm [22] to cluster the feature
vectors Rg. That is, we partition the feature space into K ar-
eas. Suppose CZ(I), RN Cg(K ) are the clusters for all regions
with respect to s; and f;. Collecting all of the region features
yields the clusters:

k
U chk). (4)

P9 k=1
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FIGURE 2: The probabilistic structure of the state-space model.

These u X v X K clusters are the concept units for all
< p < u, 1< q < v,and 1< k < K representing images
in the entire image database with different scalings and dif-
ferent features. The definition of concept units is a variant of
the so-called visual word [13, 14], which draws the process-
ing units in the space of the visual features. The generation
of the concept units with different types of feature spaces and
with different region scales provides more possibilities to fit
the different characteristics of the image contents for seman-
tically relevant images. In our experiments, we set K at 400,
hence giving u X v X K = 4 X 2 X 400 = 3200 concept units.

3.3. Region-based image representation

We can build the concept units in (4) for all images in the
database in order to represent the types of contents that
the user retrieves. Therefore, we design a region-based im-
age representation based on the concept units. Let I be an
image in the database. For each concept unit Cf(k), where
I<p=<ul=<q=<vandl=<k <K, let the weight wg(k) be
the ratio of the number of regions belonging to Cj(k) to the
number of regions in image I. Thus, we collect all weights,
wg(k), to from a (u X v X K)-dimensional vector for repre-
senting image

whik)|1<p<u l<q=<v,1<k<K} (5)

4. LEARNING MODEL BASED ON
A STATE-SPACE MODEL

4.1. State-space model

The state-space approach has been widely applied to the
analysis of dynamic systems, which involve estimating the
state of a system which changes over time from a sequence of
noisy measurements [19]. Many papers have detailed state-
space models [19-21], and hence here we only provide a brief
summary of how the posterior probability of a state-space
model is inferred.

Figure 2 depicts the probabilistic structure of the
Bayesian network of a state-space model, which contains two
types of nodes at time #: (i) x; for the system state and (ii) z;
for the observation measurement. At time ¢, the dynamic sys-
tem receives inputs z;, for which we want to estimate the pos-
terior probability of the system state x; given the past obser-
vations; this is denoted as p(x; | zi,_), where z,_; represents
the collection of observations z; to z;. Two assumptions are

generally applied to a state-space model for simplicity. The
first is the first-order Markov property, given by

p(xe I xi 1) = p(xe | %215 (6)

where x;,_ ;1 represents the collection of states x; to x;_i.
The second is that the observations are mutually indepen-
dent:

P(Zr | xt,Zl...,tfl) = P(Zt | xt), (7)

where z;, ;1 means the collection of the observations z; to
z; — 1. By using the above two assumptions and Bayes’ rule,
the posterior probability of state x; given the past observa-
tions can be inferred as

Pz | x)p(xe | 21, 6-1)
P(Zt | z1,0-1)

p(xelzi) = > (8)

where

plxe I z1, 1) = Zp(xt | %) p(xe-1 L 21, 0-1). (9)

Xt-1

Thus, we can infer the posterior probability as

p (xt | Zl,.“,t)

= M Z P(Xt | xt—l)P(xt—l | Zl,...,t—l)

p(Zt | z1,.t-1) x—1

o< p(zt | x) Z el x1)p(xia | z1,61)-

Xt-1

(10)

In (10), the posterior probability p(x; | zi,. ) in a state-
space model is recursively based on two factors: (i) a system
model p(x; | x¢—1) which describes the evolution of the state
over time (called the transition function), and (ii) a measure-
ment model p(z; | x;) which relates the observation and
noise to the state (called the observation function). It is also
necessary to define the prior probability of state p(x;) at the
beginning of the recursion.

4.2. The proposed learning model

The user intuition is usually implicit in the specification of
positive and negative examples in the query session. Positive
examples are generally used to estimate the user intuition,
and negative examples are used as exceptions in the estima-
tion. Hence, we apply the positive examples of the tth itera-
tion of relevance feedbacks to observations z; of the tth stage
of the state-space model, and the negative examples are used
to eliminate the false alarms in retrieval results. The strategy
for handling the negative examples is described in Section 6.

The user concepts Xy, stated in (1), can be approximated
by a Gaussian mixture model with means g, and variances o,
where the means g, indicate the concept units for represent-
ing the user concepts, and the variances ¢, cover the varying
scopes of the user concepts in the concept units. Intuitively,
the state vector for the state-space model could be defined
as a set of the pairs of means and variances for the Gaussian
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mixture model. However, this makes the model very com-
plex, and also we do not have a huge training data set for
learning and inferring the model because the number of pos-
itive examples is not large in a query session. Hence, it is nec-
essary to simplify the design of the state-space model for im-
age retrieval.

In this work, we simplify the definition of the state vector
in two ways. The first is to ignore the variances a;. The def-
inition of concept units covers some variances because they
are defined as clusters in the feature space. Ignoring the vari-
ances o; in defining the state vector means that we assume
that the variance of concepts is limited to the radius of the
concept units. The second is to define a single concept unit
which is viewed as a greedy method instead of multiple con-
cept units in the state vector. Considering the tth iteration in
a query session, let x; be the most representative concept unit
for the user concepts that we want to estimate, and let z;,_;
be the collection of positive examples of relevance feedbacks.
Thus, we want to find the maximal posterior estimation of
state x; given the past positive examples (observations z;, ;)
in relevance feedbacks:

xf = argmax p(x; | z1,.1). (11)

The user concepts in the query session generally comprise
multiple rather than single factors, and hence we take the first
H highest probabilities of x;* to represent the user concepts.

Below we define the state vector, observation function,
and transition function that are used to construct the state-
space model.

State vector

We define the state as the most representative concept unit
for the query session. The definition of concept unit Cp(k)
is associated with feature type p, region scale g, and cluster
k, and thus we define the state vector as a three-dimensional
vector denoted as (p,q, k), where 1< p < u,1 < p <v,and
l<k=<K.

Observation function

Let the positive images of relevance feedbacks be the obser-
vations of the state-space model. We define the observation
function p(z; | x¢) as the likelihood of the observation given
each state,

plze | xt)
no. of computed concept units in positive images
no. of all concept units in positive images

(12)

Let us consider an example in which there are 100 regions
in relevant images at an iteration of a query session. There-
fore, these observations contain 100 concept units because
each region feature belongs to a concept unit. If 35 regions
fall in the same concept unit, its observation measurement is
35/100 = 0.35.

Transition function

The transition model p(x; | x;—1) is designed to model the
variations of concept units representing the user concepts
in iterations of relevance feedbacks. The transition func-
tion must record the changing cost between any two con-
cept units. Given two state vectors vi = (pi1,q1,ki) and
vy = (P2, q2, ka) with p; # p,, this means that the two units
are from different feature spaces. Because different types of
features capture different characteristics in images, it is inap-
propriate to estimate the state cross-different features. Hence
we set the transition function Trans(vy,v,) to 0 if p; # pa.
We next consider the case in which concept units are in the
same feature space, that is, py = p,. Thus, we can com-
pute the meaningful distance between these two concept
units either with or without the same region scale. How-
ever, the transition measurement of concept units crossing
different scales should be less than that in the same scale. Let
M(p1,q1> p2,q2) be a K X K matrix in which each element
M;; is the Euclidean distance between concept units (p1, g1, i)
and (p, qs, j). Note that M;; corresponds to the Euclidean
distance between the means of clusters Cj, (i) and Cf. (j). We
then define the transition function as

Trans (vi (p1, 91, k1), v2(p2, g2, k2))

2 - exp (— Mgk,) .
£8P T Pk ) if py = Dy g1 = @9,
>, exp ( *(Mkly) \ pr=po = (13)
= 2 exp (= Mk .
P i S L VAR T S S A A
zy exp( — Mkly) Pr=p2 1 ¥ Q2
0 if p1 # p2,

where « is a scaling factor with 0 < « <1. Note that &« = 0.5
in our implementation.

Prior distribution

All of the prior probabilities of the states are set equal. This
means that the tracking of the model starts at all concept
units.

At the beginning of the iterations, all concept units have
equal probabilities for representing the query concepts. Dur-
ing the process of relevance feedbacks in the query session,
representative concept units from observations will have
higher probabilities based on the inference of the state-space
model using (10). We take first H concept units with maxi-
mal posterior probabilities to represent the user concepts at
each iteration.

Two factors are involved in image retrieval based on the
proposed state-space model: (i) the likelihoods of positive
examples and (ii) the transitive conditions between any two
concept units. The former is commonly applied in a Bayesian
framework, and the latter is not common in image retrieval.
An interesting approach to the transition is to use the onto-
logical structure which represents a domain of knowledge in
image retrieval [25, 26]. Note that embedding these two fac-
tors in relevance feedbacks is one of the main contributions
of our proposed model.
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. Regions of negative images
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FIGURE 3: An illustration of the negative holes, d: distance to the
nearest positive region, r: the radius of the negative hole, d/2.

5. IMAGE RANKING

The proposed learning model uses H concept units to largely
represent the concepts the user retrieves in a query session.
A similarity measure between the retrieval concepts and an
image in the database is used for image matching and rank-
ing. Without loss of generality, let the first H concept units
with maximal posterior probabilities at the tth iteration be
denoted by v(;), where 1 < i < H. The posterior probabili-
ties of these H concepts are described by

pt(i)_ (xt(vrz) |Zt) 1<i<H, (14)
where 7(i) is the index of concept units, and x;(v;(;)) is the
state with concept unit v,(; at the tth iteration.

The idea of designing the similarity measure is to find im-
ages containing most of the H concept units in (14). Since an
image I in the database can be represented as (5), we design
a dissimilarity measure between the retrieval concepts of the
query session and the image I at the tth iteration as follows:

1/2
DisSim(I, t) = (Z wr(i) — pi(i)) ) (15)

6. STRATEGY FOR HANDLING NEGATIVE EXAMPLES

The previous sections only use positive examples of feed-
backs for learning the concepts that the user wants to re-
trieve. While negative examples could be applied in the learn-
ing model to decrease the rate of false retrieval results, han-
dling them is difficult because they are diverse either in fea-
ture spaces or in semantic concepts. In our opinion, a nega-
tive example only removes some of the false retrieval results
in a localized area. In this work, we adopt the strategy follow-
ing from [27] for handling negative examples. The basic idea
is to excavate a “negative hole” in the feature space around
the regions of each negative example. Figure 3 illustrates an

example of negative holes. The center of a negative hole is a
region feature of a negative image, and its radius is half the
distance from the negative region to the nearest positive one.
Each iteration of relevance feedbacks involves the generation
of many negative holes associated with regions of negative
examples. A region of a test image in the database is neglected
in computing weights wj (k) in (5) if it falls in a negative hole.

7. EXPERIMENTAL RESULTS AND DISCUSSION
7.1. Dataset

In our experiments, we used three datasets (denoted as DI,
DII, and DIII) where DI and DII contain photo images col-
lected from Corel Photo and DIII is Caltech-101 Object Cat-
egories [28].

Dataset DI

DI contains 20 categories and each category consists of 100
photo images. All images can be partitioned into over 70 000
regions with two scales of image segmentation. These images
contain a wide range of contents, such as landscapes, ani-
mals, plants, and buildings. These data categories are classi-
fied according to human concepts such as “beautiful rose,”
“autumn,” and “doors in Paris,” and hence even images in
the same category may have had diverse contents. However,
all images in the same category are viewed as relevant to each
other.

Dataset DI

We extended DI to the larger dataset DII which contains 50
categories, each consisting of 100 photo images, giving a to-
tal of 5000 images. All images can be partitioned into over
200 000 regions with two scales of image segmentation. For
each category in DI and DII, we randomly choose 10 images
as the query, so the size of the query set is 200 and 500 im-
ages, respectively. Moreover, 10 iterations are performed for
each query.

Dataset DIl

We took the Caltech-101 Object Categories [28] as the third
dataset that is publicly available and involves 101 categories
of objects with over 8000 images. The number of images
in each category is different. Over 300 000 regions are seg-
mented with two scales of image segmentation. We randomly
chose 10 images as the query for the larger categories which
contain more than 80 images, giving a total of 240 query im-
ages.

7.2. Evaluation and discussion

The precision and the recall are commonly used to evalu-
ate the performance of a retrieval system. Note that precision
= A/B and recall = A/C, where A is the number of relevant
images that we retrieve, B is the number of returned images
in the retrieval, and C is the number of all relevant images
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TasLE 1: The detailed precisions using DI without handling negative examples.
Cat ID t= t=2 t=3 t=4 t=5 t=6 t=7 t=38 t= t=10
0 0.354 0.497 0.549 0.556 0.557 0.558 0.559 0.559 0.559 0.559
1 0.134 0.251 0.305 0.332 0.349 0.352 0.355 0.355 0.355 0.355
2 0.154 0.302 0.398 0.432 0.443 0.447 0.453 0.457 0.457 0.457
3 0.156 0.273 0.381 0.446 0.479 0.491 0.493 0.495 0.496 0.496
4 0.177 0.268 0.378 0.485 0.531 0.548 0.553 0.554 0.554 0.554
5 0.241 0.475 0.633 0.713 0.752 0.754 0.758 0.758 0.758 0.758
6 0.247 0.404 0.548 0.651 0.705 0.722 0.724 0.725 0.726 0.726
7 0.156 0.266 0.386 0.484 0.538 0.555 0.555 0.555 0.556 0.565
8 0.245 0.428 0.547 0.583 0.606 0.607 0.608 0.609 0.613 0.634
9 0.415 0.644 0.782 0.849 0.883 0.884 0.884 0.884 0.884 0.884
10 0.221 0.395 0.497 0.533 0.543 0.545 0.546 0.562 0.641 0.709
11 0.285 0.548 0.657 0.672 0.673 0.673 0.673 0.693 0.810 0.859
12 0.205 0.352 0.455 0.504 0.521 0.524 0.539 0.556 0.730 0.788
13 0.223 0.375 0.464 0.513 0.523 0.531 0.563 0.701 0.760 0.798
14 0.238 0.358 0.496 0.593 0.643 0.667 0.724 0.823 0.895 0.919
15 0.297 0.484 0.576 0.592 0.633 0.743 0.876 0.893 0.893 0.893
16 0.450 0.611 0.752 0.847 0.888 0.912 0.959 0.967 0.968 0.968
17 0.216 0.386 0.537 0.612 0.712 0.833 0.888 0.888 0.888 0.888
18 0.283 0.461 0.602 0.668 0.736 0.851 0.883 0.887 0.890 0.890
19 0.197 0.312 0.444 0.568 0.695 0.838 0.874 0.888 0.888 0.889
AVG 0.245 0.404 0.519 0.582 0.620 0.652 0.673 0.690 0.716 0.730
(C = 100 in DI and DII). We set B = 100 in our system, 1
hence precision = recall in datasets DI and DII. Moreover, 0.9
some of the categories contain more than 100 images in 0.8
dataset DIII. Thus, we employ the recall instead of the pre- 0.7 _e—¢
Fision to eva.luate the performance of the proposed method 06 / //0/://;/’:'/"/‘
in our experiments. =
Figure 4 shows the average recalls at each iteration of rele- 2 %

vance feedbacks in five cases: only using DI without handling
negative examples, and using DII and DIII with/without
handling negative examples. DI-pos exhibits the highest re-
calls because the size of DI is smaller than that of DII and
DIII. However, the performances of DII-pos+neg and DIII-
pos+neg indicate that handling negative example can signif-
icantly improve the retrieval.

Table 1 lists the detailed recalls of all categories of DI of
relevance feedbacks using our proposed model without neg-
ative examples. The first row in Table 1 denotes the iteration
of relevance, and the last row indicates the average precisions
of all image categories. Note that precisions larger than 0.8
are shown in boldface.

Both Figure 4 and Table 1 indicate that the retrieval per-
formances are bad at the beginning of the retrieval. The rea-
son is that only few positive feedbacks at the beginning are
available, and hence the training data are insufficient for ac-
curately estimating the states. After several iterations, the ef-
ficacy of the proposed model is more manifest.

We now discuss the experiments in detail. Figures 5
and 6(b) illustrate two cases that correspond to better and
worse retrieval results, respectively, using DII without han-

il

0.3 /
0.2
0.1
0 I I I I I I I I I
1 2 3 4 5 6 7 8 9 10
Iteration
—— DI-pos —o— DIII-pos
—&— DII-pos —- DIII-pos+neg

—#A— DII-pos+neg

FIGURE 4: Average recalls for the three datasets DI-pos, DII-pos, and
DIII-pos: using these datasets without handling negative examples;
DII-pos+neg, and DIII-pos+neg: using the two datasets with han-
dling negative examples.

dling negative examples. Figure 5(a) shows some images of
the categories “bus” and “butterfly” for which our proposed
model produces better results, and Figure 5(b) lists the aver-
age precisions of the two categories at each iteration. Sim-
ilarly, Figure 6(a) shows example images of the categories
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(a) The first and second rows are examples of categories “bus” and

“butterfly,” respectively

Cat. 1 2 3 4

5 6 7 8 9 10

Bus 0.179 0.316 0.437 0.543 0.658 0.758 0.824 0.863 0.878
0.39 0.704 0.782 0.81

Butt. 0.067 0.122 0.175 0.222

0.896

0.938 0.969

(b) The detailed precisions of the categories “bus” and “butterfly,” respectively

FiGure 5: Illustrations of better results using DII without handling negative examples.

(a) The first and second rows are examples of categories “in desert”
and “snow mountain,” respectively

Cat. 1 2 3 4 5 6 7 8 9 10
Des. 0.057 0.09 0.118 0.151 0.178 0.19 0.193 0.194 0.194 0.194
Snow 0.048 0.09 0.116 0.146 0.151 0.17 0.18 0.186 0.188 0.188

(b) The detailed precisions of the categories “in desert” and “snow mountain,” respectively

FiGure 6: Illustrations for worse results using DII without handling negative examples.

“in desert” and “snow mountain” that have worse results, and
Figure 6(b) shows their average precisions. In the better cases
of Figure 5, images in the same category have the same se-
mantic concepts but still look quite different. This shows the
feasibility of using the proposed approach to model images
with similar semantic concepts but diverse visual features.
However, huge variations either in visual features or seman-
tic concepts are still very difficult to model. For example, the
“snow mountain” images in Figure 6 are easily confused with
those in other landscape categories.

Basically, our approach is appropriate for image retrieval
with relevance feedbacks. The time sequences in the state-
space model can be easily associated with the iterations of
relevance feedbacks. The proposed model does not only in-
volve the likelihoods of positive images, but also considers

the transition possibilities among concept units. However,
two problems are worth solving in our approach. The first is
the smaller number of positive examples at the beginning of
the feedbacks. This is a common problem in image retrieval
because no users enjoy manually assigning a huge number
of positive examples in the feedback process. One method
for solving this problem is to design a long-term strategy to
include all positive examples of previous query sessions as
training data. The second problem is the huge variations be-
tween images in the same category. A possible method for
solving this problem is to make our model more complex
by embedding more information. However, this could result
in overfitting, especially since we do not have many train-
ing data in relevance feedbacks. Constructing a knowledge
structure such as the ontology-based approach [25, 26] is



Cheng-Chieh Chiang et al.

potential in image retrieval if the retrieval task focuses on an
application domain. After defining the transition model of
the structure for the knowledge domain, our proposed model
can consider both the low-level features (likelihood model)
and high-level concepts (transition model) for bridging the
semantic gap problem in image retrieval.

8. CONCLUSIONS AND FUTURE WORK

This work demonstrates the feasibility of solving the problem
of the semantic gap for image retrieval using a state-space
model. We design concept units, which integrate with differ-
ent types of visual features and with different scales of image
segmentation, for image representation. We also propose a
state-space model for estimating the user concepts in a query
session. Our approach involves both the likelihood model of
positive examples and the transition model among concept
units in image retrieval. Moreover, we have presented a strat-
egy for handling negative feedbacks for refining the retrieval
results in this paper.

Some future tasks are required to extend this work. The
first is to define a long-term learning strategy for solving the
problem of a small training set at the beginning iterations of
relevance feedbacks. The second is to integrate the knowledge
structure for a domain application with the transition model
in our proposed approach. Moreover, the design of con-
cept units could be revised to contain higher-level informa-
tion rather than visual features. Other methods of machine
learning, such as active leaning or boosting, could be inte-
grated with the state-space model for image retrieval.
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