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1. INTRODUCTION

In recent years, extensive research efforts have been devoted
to develop different strategies for multiuser detection in DS-
CDMA systems [1]. One of the most challenging problems
in multiuser detection is that of the effect of unknownmulti-
path channel which may result in a significant mismatch be-
tween the actual user signature and its presumed value used
in the multiuser detection algorithms. Since signature mis-
matches may cause substantial degradation in the symbol de-
tection performance [2–5], considerable attention has been
paid to designing accurate signature estimation techniques
at the receiver. These techniques may be classified into the
training-based [6, 7] and blind [3, 4, 8–13] methods. In the
training-based approaches, each user transmits a sequence
of pilot symbols which is known at the receiver where the
user signature is estimated by computing the correlation be-
tween the received data and this sequence. In nonstationary
environments, a reliable signature estimate requires periodic
transmission of the pilot sequence. This may cause a consid-
erable reduction of the bandwidth efficiency [2, 3] and has
been a strong motivation to develop alternative blind estima-
tion approaches which do not require transmission of the pi-
lot sequence. A promising trend among this type of methods

is the subspace-based techniques [3, 8–11]. The latter tech-
niques exploit the facts that the user signals occupy a low-
dimensional subspace in the observation space, and that the
signature of each particular user belongs to a subspace de-
fined by its associated spreading code. A typical assumption
used in these techniques is that the additive ambient noise
is temporally white, and, hence, the signal subspace can be
extracted using eigendecomposition of the received data co-
variance matrix. However, in practice this assumption may
be violated [14, 15]. It is well known that in the presence
of correlated noise, the signal subspace cannot be identi-
fied from the subspace spanned by the eigenvectors associ-
ated with the largest eigenvalues of the data covariance ma-
trix. Therefore, some alternative approaches should be em-
ployed to identify the signal subspace in the correlated noise
case.

One of such approaches has been proposed by Wang
and Poor [15]. Their technique is based on the assump-
tion that the receiver contains two well-separated anten-
nas so that the receiver noise is spatially white. Using this
fact, the signal subspace can be obtained from the cross-
correlation between the received antenna data. Hereafter, we
refer to this technique by Wang and Poor as the WP algo-
rithm.
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Using a single antenna at the receiver, another tech-
nique that addresses the problem of correlated noise has been
proposed by Buzzi and Poor [16]. It is based on the assump-
tion that the noise is a circular Gaussian process while the
transmitted symbols are noncircular BPSK signals. In such
a case, it has been shown in [16] that the signal subspace
can be directly identified using the singular value decom-
position of the data pseudocovariance matrix. Hereafter, we
refer to the technique by Buzzi and Poor as the BP algo-
rithm.

Although the performance of the conventional (white
noise assumption-based) signature waveform estimation
techniques has been well studied in the literature [9, 10, 17–
19], only a little effort has been made to analyze the per-
formance of the estimation algorithms proposed for the un-
known correlated noise case. In this paper (see also [20]),
we use the first-order perturbation theory to derive approx-
imate expressions for the MSE of the channel vector esti-
mates obtained by the WP and BP algorithms. Under sev-
eral mild assumptions, simple high SNR approximations of
these MSE expressions are also obtained. The derived MSE
expressions clarify how the performance of the algorithms
depends on the parameters such as the number of data sam-
ples, the received power of the user of interest, and the noise
covariance matrix. The effect of the spreading factor and the
channel length on the performance of the algorithms is also
studied. It is shown that the performance of the algorithms
depends not only on SNR but also on the direction of the
eigenvectors of the noise covariance matrix. To clarify this
fact, we fix the eigenvalues of the noise covariance matrix
and find the sets of eigenvectors which maximize (minimize)
the MSEs of the channel vector estimates. Moreover, over all
noise covariance matrices with fixed trace, we obtain those
which correspond to the extremal values of the MSEs. It is
shown that both the maximum and the minimum values of
the MSEs are obtained when the noise covariance matrix is
rank deficient. As the trace of the noise covariance matrix is
equal to the average noise power, the latter observation shows
that the performance of the algorithms may be more sensi-
tive to a low-rank interference than to a full-rank noise with
the same average power. We also show that in the presence
of white noise, the performances of the WP and BP algo-
rithms are identical to that of the conventional Liu and Xu
(LX) algorithm [9] that was developed for the white noise
case.

Assuming that the SNR is high and the WP algorithm
is used to estimate the channel vector between the user of
interest and the first antenna, it is proved that the estima-
tion performance is independent from the noise covariance
matrix and the user received power at the second antenna.
We use the latter property to show that when the receiver is
equipped with multiple antennas, the second antenna can be
arbitrarily chosen at high SNRs.

The rest of this paper is organized as follows. In Section 2,
we introduce the signal model. A brief overview of the LX,
WP, and BP algorithms is provided in Section 3. Section 4
presents our main theoretical results on the performance of
the WP and BP algorithms. Simulation results validating our

analysis are presented in Section 5. Conclusions are drawn in
Section 6.

2. SIGNALMODEL

Consider a K-user synchronous DS-CDMA system.1 The re-
ceived continuous-time baseband signal can be modelled as
[3]

x(t) =
∞∑

m=−∞

K∑

k=1
Akbk(m)wk

(
t −mTs

)
+ v(t), (1)

where Ts is the symbol period, v(t) is the zero-mean ad-
ditive random noise process, and Ak, bk(m), and wk(t) de-
note the received signal amplitude, themth data symbol, and
the signature waveform of the kth user, respectively. Note
that bk(m) can be drawn from a complex constellation, and,
hence, in the general case x(t) is complex valued.

Throughout the paper, we use the following common as-
sumptions.

(A1) The chip sequence period is equal to the symbol pe-
riod, that is, the short spreading code is considered
[22].

(A2) The user channels are quasistatic, that is, the corre-
sponding impulse channel responses do not change
during the whole observation period [9].

(A3) The duration of the channel impulse response of each
user is much shorter than the symbol period Ts, so that
the effect of intersymbol-interference (ISI) can be ne-
glected [9, 22].

(A4) The transmitted symbols and noise are zero-mean
random variables. Moreover, transmitted symbols of
each user are unit-variance i.i.d. variables, indepen-
dent from those of the other users, and also indepen-
dent from the noise [9].

Note that (A1) is common for many multiuser tech-
niques proposed for DS-CDMA systems as most of these
algorithms require the received signal x(t) to be cyclosta-
tionary. This, in turn, necessitates the use of short spreading
codes [23].

Let Lc be the spreading factor and let ck = [ck[1], ck[2],
. . . , ck[Lc]]T denote the discrete spreading sequence associ-
ated with the kth user where (·)T stands for the transpose
and ck[i] can be either real or complex valued. According to
assumptions (A1) and (A2), the signature waveform of this
user can be expressed as [9]

wk(t) =
Lc∑

l=1
ck[l]hk

(
t − lTc

)
, (2)

where hk(t) is the channel impulse response of the kth user
and Tc = Ts/Lc is the chip period.

1 The synchronous case is mainly considered for the sake of notational
brevity. It is straightforward to extend our analysis to the asynchronous
[15] as well as the multiple-antenna [21] DS-CDMA systems.
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Let us assume that hk(t) is zero outside the interval
[0,αTc], where L − 1 ≤ α < L and L is a positive integer.
From assumption (A3), it follows that L� Lc. Sampling (1)
in the interval corresponding to the nth transmitted symbol
of each user and ignoring the first L−1 samples that are con-
taminated by ISI, the ISI-free received sampled data vector
can be written as [9]

x(n) =
K∑

k=1
Akbk(n)wk + v(n), (3)

where x(n) = [x(nTs + LTc), x(nTs + (L + 1)Tc), . . . , x(nTs +
LcTc)]T , wk = [wk(LTc),wk((L + 1)Tc), . . . ,wk(LcTc)]T , and
v(n) = [v(nTs+LTc), v(nTs+(L+1)Tc), . . . , v(nTs+LcTc)]T .
Note that the similar data model also holds when the effects
of chip waveform at the transmitter and chip matched filter-
ing at the receiver are taken into account [21]. Using (2), we
have that the signature vector wk can be written as

wk =

⎡
⎢⎢⎢⎢⎣

ck[L] · · · ck[1]
ck[L + 1] · · · ck[2]

...
. . .

...
ck
[
Lc
] · · · ck

[
Lc − L + 1

]

⎤
⎥⎥⎥⎥⎦
hk � Ckhk, (4)

where hk = [hk(0),hk(Tc), . . . ,hk((L− 1)Tc)]. As the spread-
ing code of the user of interest is known at the receiver, if the
channel vector hk is estimated, thenwk can be obtained from
(4). Hence, throughout this paper we consider the problem
of channel vector estimation rather than that of the signa-
ture vector estimation. For the sake of consistency, we also
assume without any loss of generality that hk is a unit Eu-
clidean norm vector (‖hk‖ = 1) [9], that is, the normaliza-
tion factor is absorbed in Ak. One can present (3) in a more
compact form as [9]

x(n) =Wb(n) + v(n), (5)

where W = [A1w1,A2w2, . . . ,AKwK ], b(n) = [b1(n), b2(n),
. . . , bK (n)]T .

3. BLIND CHANNEL ESTIMATION

3.1. The LX algorithm

The LX algorithm assumes that the noise is white. In such a
case, from assumption (A4) and (5) we have [9]

R � E
{
x(n)x(n)H

} =WWH + σ2v I, (6)

where σ2v I is the noise covariance matrix, I is the identity ma-
trix, and σ2v = E{|v(t)|2} is the noise variance. The matrix
(6) can be eigendecomposed as

R =
[
Us Un

][Ωs + σ2v I 0
0 σ2v I

][
UH

s

UH
n

]
, (7)

where Us consists of the eigenvectors associated with the K
largest eigenvalues which are the diagonal elements of Ωs +
σ2v I, andΩs is a diagonal matrix whose diagonal elements are

the signal subspace eigenvalues. Due to the fact that the noise
is white, range(W) = range(Us), or, equivalently, Us and Un

span the signal and noise subspaces, respectively.
Without any loss of generality, we assume that h1 is the

channel vector of interest. As any column ofUn is orthogonal
to all vectors in range(Us), we have [9]

UH
n w1 = T1h1 = 0, (8)

where T1 � UH
n C1 is an Lc−L+1−K×Lmatrix. From (8), it

follows thatT1 is not full rank. Assuming that rank(T1) = L−
1, the null space of T1 is spanned by h1, and, therefore, up to
an arbitrary phase rotation, h1 can be uniquely determined
as a nontrivial solution to (8) subject to ‖h1‖ = 1. Note also
that if C1 is a full-rank matrix, then rank(T1) = L − 1 is
equivalent to [9]

dim
{
range

(
C1
)∩ range(W)

} = 1, (9)

where dim{·} stands for the dimension of a subspace. Equa-
tion (9) is the necessary and sufficient condition of signature
identifiability using the LX algorithm [9].

In practical scenarios, the data covariance matrix R is not
known exactly and can be estimated as

R̂ = 1
N

N∑

n=1
x(n)x(n)H. (10)

As a result, Un is estimated as Ûn that consists of the eigen-
vectors associated with the smallest Lc−L+1−K eigenvalues
of R̂. Substituting Ûn in lieu of Un in (8) and solving the ob-
tained equation in the least square (LS) sense, we have that
the estimated channel vector ĥ1 is given by [9]

ĥ1 =M
{
CH
1 ÛnÛH

n C1
}
, (11)

where M{·} stands for the normalized eigenvector associ-
ated with the smallest (minor) eigenvalue. Using the first-
order perturbation theory, the mean-square of the encoun-

tered estimation error δh1 = ĥ1 − h1 can be approximately
written as [18]

E
{∥∥δh1

∥∥2
}
≈ σ2v

N

∥∥T†1
∥∥2
Fw

H
1

(
UsΩ

−1
s UH

s + σ2vUsΩ
−2
s UH

s

)
w1,

(12)

where T†1 is the pseudoinverse of T1 and ‖ · ‖F stands for the
Frobenius norm of a matrix. Assuming that the signatures of
different users are orthogonal to each other, that is,

wH
i w j =

∥∥wi

∥∥2δi j , (13)

where δi j stands for the Kronecker delta, the MSE expression
(12) can be significantly simplified. Note that due to multi-
path effects, the orthogonality assumption of the signature
vectors does not perfectly hold in practice. However, CDMA
codes are deliberately designed so that even after passing
through a frequency selective channel, the cross correlations
between different user signatures are as small as possible.
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Hence, in most practical scenarios, (13) is an acceptable as-
sumption [1]. It directly follows from (13) that

Us =
[

w1∥∥w1
∥∥ ,

w2∥∥w2
∥∥ , . . . ,

wK∥∥wK

∥∥

]
,

Ωs = diag
{
A2
1

∥∥w1
∥∥2,A2

2

∥∥w2
∥∥2, . . . ,A2

K

∥∥wK

∥∥2
}
.

(14)

Substituting (14) into (12) and using (13) yields

E
{∥∥δh1

∥∥2
}
≈ σ2v

∥∥T†1
∥∥2
F

NA2
1

(
1 +

σ2v
A2
1

∥∥w1
∥∥2

)
. (15)

If SNR is high enough, that is, σ2v � A2
1‖w1‖2, the MSE of

the channel estimate is further simplified to

E
{∥∥δh1

∥∥2
}
≈ σ2v

∥∥T†1
∥∥2
F

NA2
1

. (16)

Equation (16) can be considered as a reasonable approxima-
tion of (12) in the high SNR regime. Note that an expression
equivalent to (16) has been derived for the MSE of the esti-
mated signature, C1ĥ1, in [9].

3.2. WP algorithm

It is well known that if the white noise assumption does not
hold, then the signal subspace is not identical to the subspace
spanned by the eigenvectors associated with the K largest
eigenvalues of R and, consequently, the LX algorithm can-
not be directly applied to obtain a reliable estimate of h1. To
deal with this problem, the WP algorithm assumes that the
receiver is equipped with two well-separated antennas such
that the noise is spatially uncorrelated between them. Similar
to (5), the sampled received data vectors are given by

x(i)(n) =W(i)b(n) + v(i)(n), i = 1, 2, (17)

where i is the antenna index, W(i) = [A(i)
1 w(i)

1 ,A(i)
2 w(i)

2 , . . . ,
A(i)
K w(i)

K ], v(i)(n) is noise at the ith antenna, and A(i)
k and

w(i)
k = Ckh

(i)
k are the received amplitude and the signature

vector of the kth user at the ith antenna, respectively. The co-
variance matrix corresponding to the sampled received data
vector at each antenna is given by [15]

R(i) � E
{
x(i)(n)x(i)

H
(n)
}
=W(i)W(i)H + Σ(i)

v , i = 1, 2,

(18)

where Σ(i)
v = E{v(i)(n)v(i)H(n)}. As the noise is uncorrelated

between the antennas, we have [15]

R(12) � E
{
x(1)(n)x(2)

H
(n)
}
=W(1)W(2)H

=
[
U(1)

s U(1)
n

][Ω(12)
s 0
0 0

]⎡
⎢⎣
U(2)

s
H

U(2)
n

H

⎤
⎥⎦ ,

(19)

where the right-hand side of (19) is the singular value de-

composition (SVD) of R(12). It is clear that range(U(1)
s ) =

range(W(1)) and range(U(2)
s ) = range(W(2)). For the sake of

simplicity but without any loss of generality, let us consider
only the channel vector between the first user and the first
antenna. Then, we have [15]

U(1)
n

H
w(1)
1 = T(1)

1 h(1)1 = 0, (20)

where T(1)
1 � U(1)

n
H
C1 is an Lc − L + 1 − K × L matrix.

If rank(T(1)
1 ) = L − 1, then up to an arbitrary phase rota-

tion, h(1)1 is the unique nontrivial solution to (20) subject to

‖h(1)1 ‖ = 1 [15]. In practice, R(12) can be estimated as

R̂(12) = 1
N

N∑

n=1
x(1)(n)x(2)

H
(n) (21)

which results in the following estimate of h(1)1 [15]

ĥ(1)1 =M
{
CH
1 Û

(1)
n Û(1)H

n C1
}
, (22)

where Û(1)
n consists of the left singular vectors associated with

the Lc − L + 1− K smallest singular values of R̂(12).

3.3. BP algorithm

Another approach to solve the problem of channel estima-
tion in presence of unknown correlated noise has been pro-
posed in [16]. Without requiring the second antenna, this
algorithm is based on the assumption that the transmitted
symbols are drawn from the BPSK constellation (bk(n) =
±1) and the noise is a circular Gaussian process. It directly
follows from the latter assumption that

E
{
v(n)v(n)T

} = 0. (23)

Let R̃ � E{x(n)xT(n)} be the pseudocovariance matrix of
the sampled received data. Using (5) along with (23), we have
[16]

R̃ =WWT =
[
Ũs Ũn

][Ω̃s 0

0 0

][
ṼH
s

ṼH
n

]
, (24)

where Ω̃s is a diagonal matrix whose diagonal elements are
the nonzero singular values of R̃ and the columns of Ũs are
the corresponding left singular vectors. It is easy to show that
range(Ũs) = range(W) [16], and, hence,

ŨH
n w1 = T̃1h1 = 0, (25)

where T̃1 � ŨH
n C1. It can be observed that T̃1 is an Lc − L +

1 − K × L matrix and the unique identification of h1 from
(25) requires that rank(T̃1) = L− 1 [16]. In practice, similar
to the LX and WP algorithms, h1 can be estimated by

ĥ1 =M
{
CH
1
̂̃Un
̂̃U
H

n C1

}
, (26)
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where ̂̃Un is the matrix containing the left singular vectors

associated with the Lc − L + 1− K least singular values of ̂̃R,
and

̂̃R = 1
N

N∑

n=1
x(n)x(n)T (27)

is the sample estimate of R̃.

4. PERFORMANCE ANALYSIS

4.1. WP algorithm

In order to evaluate the performance of the WP algorithm,
we use the first-order perturbation theory to prove the fol-
lowing theorem.

Theorem 1. Assume that h(1)1 is estimated using (22). Then,
the first-order perturbation theory-based approximation of the

MSE of the estimation error δh(1)1 = ĥ(1)1 − h(1)1 is given by

E
{∥∥δh(1)1

∥∥2
}
≈ 1

N
tr
(
Σ(1)
v Ψ
)
w(1)
1

H
R(12)†HR(2)R(12)†w(1)

1 ,

(28)

where tr(·) stands for the trace of a matrix and

Ψ � U(1)
n T(1)

1

†H
T(1)
1

†
U(1)

n
H
. (29)

Moreover, if the following conditions hold:

w(i)
k

H
w(i)
l = ∥∥w(i)

k

∥∥2δkl, i = 1, 2, (30)

λmax
(
Σ(2)
v

)� (
A(2)
1

∥∥w(2)
1

∥∥)2, (31)

then (28) reduces to

E
{∥∥δh(1)1

∥∥2
}
≈ tr

(
Σ(1)
v Ψ
)

NA(1)
1

2 , (32)

where λmax(·) stands for the maximum eigenvalue.

Proof. See Appendix A.

Note that the average received power of the first user at
the second antenna is equal to the right-hand side of (31),
while the average noise power at the same antenna is lower
bounded by the left-hand side because

E
{∥∥v(2)(n)

∥∥2
}
= tr

(
Σ(2)
v

) ≥ λmax
(
Σ(2)
v

)
. (33)

Hence, if SNR at the second antenna is reasonably high, it
is guaranteed that (31) holds. Using this observation along
with the fact that (30) approximately holds in most practi-
cal scenarios, we can view (32) as a simple approximation of
(28) in the high SNR regime. It explicitly clarifies the MSE of
the estimated channel vector in terms of the environmental
parameters such as the received power of the user of interest
at the first antenna, the number of data samples as well as the
noise covariance matrix Σ(1)

v .

Note that both the MSE expressions (28) and (32) de-
pend on Σ(1)

v only through tr
(
Σ(1)
v Ψ
)
. To study the param-

eters which have impact on the value of tr
(
Σ(1)
v Ψ
)
, we first

should note that if the channel vector is uniquely identifiable,

then rank(T(1)
1 ) = rank(Ψ) = L− 1. Moreover, we have

τ � dim
{
null(Ψ)

} = Lc − L + 1− rank(Ψ) = Lc − 2(L− 1),
(34)

where null(·) stands for the null-space of a matrix.2 The ef-
fects of different parameters on the value of tr

(
Σ(1)
v Ψ
)
are

separately clarified in the following discussion.

Effects of Lc and L

As Σ(1)
v andΨ are positive (semi-) definite matrices, it follows

that tr(Σ(1)
v Ψ) is real and nonnegative. Note that the projec-

tion ofΣ(1)
v onto null(Ψ) does not have any effect on the value

of tr(Σ(1)
v Ψ) which depends only on the projection of Σ(1)

v

onto range(Ψ). Therefore, the larger the projection of Σ(1)
v

onto null(Ψ), the smaller the value of tr(Σ(1)
v Ψ). Using the

latter fact, the effect of the spreading factor and the channel
length on tr(Σ(1)

v Ψ), and, consequently, on the performance
of the WP algorithm can be explained as follows. From (34)
it can be observed that if either the spreading factor Lc in-
creases or the channel length L decreases, then dim{null(Ψ)}
increases. In the latter case, the projection of the columns of
Σ(1)
v onto null(Ψ) becomes larger, and, therefore, their con-

tribution to the value of tr(Σ(1)
v Ψ) becomes smaller.

Effect of the eigenvectors ofΣ(1)
v

The directions of the eigenvectors of Σ(1)
v with respect to the

eigenvectors ofΨ have a considerable impact on the value of
tr(Σ(1)

v Ψ). To show this, let us eigendecomposeΨ as

Ψ = ΠΘΠH , (35)

whereΠ = [π1 π2 · · · πL−1] is an Lc−L+1×L−1 matrix
whose columns are the orthonormal eigenvectors associated
with the decreasingly-ordered positive eigenvalues of Ψ that
are the diagonal elements of Θ = diag{θ1, θ2, . . . , θL−1}. In
contrary to rank(Ψ), m � rank(Σ(1)

v ) may not be known. In
fact, rank(Σ(1)

v ) may vary fromm = 1 for the case of coherent
interference tom = Lc − L + 1 for the case of full-rank noise.
Let us consider an arbitrary value of m and eigendecompose
Σ(1)
v as

Σ(1)
v = UvΓvUH

v , (36)

where Uv is an Lc − L + 1 × m matrix whose orthonor-
mal columns are the eigenvectors associated with the
decreasingly-ordered positive eigenvalues of Σ(1)

v which are
the diagonal elements of Γv = diag{γ1, γ2, . . . , γm}.

2 It should be noticed from (29) that range(W(1)) is a K-dimensional sub-
space in null(Ψ).
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The value of tr(Σ(1)
v Ψ), and, hence, the MSE expres-

sions (28) and (32) critically depend on the direction of the
columns of Uv relative to the columns of Π. To explain this
fact, let us fix the matrix Γv and find the matrices Uvmax and
Uvmin which maximize and minimize tr

(
Σ(1)
v Ψ
)
, respectively.

It can be shown [24, 25] that

max
Uv

{
tr
(
Σ(1)
v Ψ
)} =

τ1∑

i=1
γiθi, τ1 = min{L− 1,m}, (37)

and Uvmax is given by

Uvmax =
⎧
⎪⎨
⎪⎩

[
π1 π2 · · · πm

]
, ifm ≤ L− 1,

[
Π Π⊥

m−L+1
]
, ifm > L− 1,

(38)

where Π⊥
l is an Lc − L + 1 × l matrix whose l ≤ τ columns

are arbitrarily chosen from a set of τ orthonormal vectors in
null(Ψ). According to (38), for a fixed Γv, the MSE expres-
sions (28) and (32) are maximal if the first τ1 columns of Uv

and Π coincide. In turn, we have [24, 25]

min
Uv

{
tr
(
Σ(1)
v Ψ
)} =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0, ifm ≤ τ,

m−τ∑

i=1
γτ+iθL−i, ifm > τ,

(39)

and Uvmin is given by

Uvmin =
⎧
⎪⎨
⎪⎩

Π⊥
m, ifm ≤ τ,
[
Π⊥

τ πL−1 · · · πL−(m−τ)
]
, ifm > τ.

(40)

According to (40), the necessary condition to minimize
the MSE expressions (28) and (32) is that the first τ2 �
min{m, τ} columns of Uv are in null(Ψ). Note that the ma-
trix Σvmin = UvminΓvU

H
vmin has the maximum projection

onto null(Ψ), that is, the space spanned by the eigenvec-
tors associated with the τ2 largest eigenvalues of Σvmin is in
null(Ψ).

Assuming that the average noise power at the first an-
tenna is given by eo, that is,

E
{∥∥v(1)(n)

∥∥2
}
= tr

(
Σ(1)
v

) =
m∑

i=1
γi = eo, (41)

we can also obtain the extremal values of the MSE expres-
sions (28) and (32) as follows. Since for any pair of positive
(semi-) definite matrices Σ(1)

v andΨ we have [25]

tr
(
Σ(1)
v Ψ
) ≤ λmax(Ψ)tr

(
Σ(1)
v

)
, (42)

it directly follows that

tr
(
Σ(1)
v Ψ
) ≤ θ1eo, (43)

where, assuming that the largest eigenvalue of Ψ is unique,
(43) holds with equality if and only if

Σ(1)
v = eoπ1π

H
1 . (44)

Moreover, it is obvious that among all noise covariance ma-
trices with

∑m
i=1 γi = eo, those in the form of

Σ(1)
v = Π⊥

mΓvΠ
⊥
m
H (45)

result in the MSE expressions (28) and (32) equal to zero. It
is interesting to observe from (44) and (45) that, given the
average noise power at the first antenna, both the maximal
and the minimal values of the MSE of the channel vector
estimate are obtained when the noise covariance matrix is
rank deficient. As a rank deficient covariance matrix can be
attributed to a narrow-band interference, it follows that the
performance of the WP algorithm can be more sensitive to a
narrow-band interference than a full-rank colored noise.

Now, let us consider two important particular scenarios
in which the WP algorithm may be used and discuss the per-
taining results.

White noise scenario: if the noise at the first antenna is
white, that is, Σ(1)

v = σ (1)v
2
I, then (32) reduces to

E
{∥∥δh(1)1

∥∥2
}
≈ σ (1)v

2∥∥T(1)†
∥∥2
F

NA(1)
1

2 (46)

which is equal to the derived MSE of the LX algorithm in
(16). Hence, even though the WP algorithm is proposed to
estimate the channel vector in the presence of unknown cor-
related noise, it is also applicable to the white noise scenario.
In the latter case, the performance of the WP algorithm is
identical to that of the LX algorithm.

Multiple antenna systems: it follows from (32) that if the
SNR at the second antenna is high enough so that (31) holds,
then theMSE of the channel vector estimate between the user
of interest and the first antenna is independent of Σ(2)

v and
the received power of this user at the second antenna. Let us
consider a receiver with M > 2 antennas which are spatially
separated so that the noises between the first antenna and all
the other antennas are uncorrelated. Moreover, assume that
the SNR is high enough:

λmax
(
Σ(i)
v

)� (
A(i)
1

∥∥w(i)
1

∥∥)2, i = 2, . . . ,M, (47)

and that we aim to estimate the channel vector between
the first user and the first antenna using the WP algorithm.
Since this algorithm is based on processing of the data cross-
correlation matrix between the first antenna and another
well-separated auxiliary antenna, we have to choose the aux-
iliary antenna among theM−1 available antennas. However,
it directly follows from (32) that if the aforementioned as-
sumptions hold, the performance of the channel vector esti-
mate is insensitive to the choice of such an antenna, that is,
the auxiliary antenna can be chosen arbitrarily.

4.2. BP algorithm

The following theorem quantizes the performance of the BP
algorithm.

Theorem 2. Assume that the channel vector is estimated using
the BP algorithm. Then, the first-order perturbation theory-
based approximation of the MSE of the estimation error
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δh1 = ĥ1 − h1 is given by

E
{∥∥δh1

∥∥2
}
≈ 1

N
wH
1 R̃

†H
{
tr
(
ΣvΨ̃

)
RT +

(
ΣvΨ̃Σv

)T}
R̃†w1,

(48)

where

Σv = E
{
v(n)v(n)H

}
, (49)

R =WWH + Σv, (50)

Ψ̃ � ŨnT̃
†H
1 T̃†1 Ũ

H
n . (51)

Moreover, if (13) holds and

λmax
(
Σv
)� A2

1

∥∥w1
∥∥2, (52)

then (48) reduces to

E
{∥∥δh1

∥∥2
}
≈ tr

(
ΣvΨ̃

)

NA2
1

. (53)

Proof. See Appendix B.

As can be observed from (53), in the high SNR regime the
MSE of the channel vector estimate of the BP algorithm can
be expressed in terms of the noise covariance matrix, power
of the received signal, and the number of data samples.

Note that if the channel vector is uniquely identifiable
from the BP algorithm, we have rank(Ψ̃) = L−1. Comparing
(53) with (32), it can be readily shown that the effect of the
spreading factor and the channel length on both the WP and
BP algorithms are similar. Moreover, following a discussion
similar to that of Section 4.1, we can obtain the extremal val-
ues of tr(ΣvΨ̃), and, consequently, those of the MSE expres-
sion (53). Let us first eigendecompose Ψ̃ as

Ψ̃ = Π̃Θ̃Π̃
H
, (54)

where Π̃ = [π̃1 π̃2 · · · π̃L−1] contains the orthonormal

eigenvectors associated with the positive eigenvalues of Ψ̃

and Θ̃ = diag{θ̃1, θ̃2, . . . , θ̃L−1} is the diagonal matrix that
contains the decreasingly-ordered positive eigenvalues. Let us
denote q � rank(Σv) and eigendecompose Σv as

Σv = ŨvΓ̃vŨH
v , (55)

where Ũv contains the orthonormal eigenvectors associ-
ated with the positive eigenvalues of Σv which are or-
dered decreasingly as the diagonal elements of Γ̃v =
diag{γ̃1, γ̃2, . . . , γ̃q}. Denoting Π̃

⊥
l as an Lc − L + 1 × l ma-

trix whose columns are orthonormal vectors in null(Ψ̃), we
have

(i) for any given Γ̃v,

max
Ũv

{
tr
(
ΣvΨ̃

)} =
τ̃1∑

i=1
γ̃iθ̃i, τ̃1 = min{L− 1, q}, (56)

where the matrix Ũv which maximizes tr(ΣvΨ̃) is

Ũvmax =
⎧
⎪⎨
⎪⎩

[
π̃1 π̃2 · · · π̃q

]
, if q ≤ L− 1,

[
Π̃ Π̃

⊥
q−L+1

]
, if q > L− 1;

(57)

(ii) for any given Γ̃v,

min
Ũv

{
tr
(
ΣvΨ̃

)} =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0, if q ≤ τ,

q−τ∑

i=1
γ̃τ+iθ̃L−i, if q > τ,

(58)

where the matrix Ũv which minimizes tr(ΣvΨ̃) is

Ũvmin =
⎧
⎪⎨
⎪⎩

Π̃
⊥
q , if q ≤ τ,
[
Π̃
⊥
τ π̃L−1 · · · π̃L−(q−τ)

]
, if q > τ.

(59)

Comparing (56)–(59) with (37)–(40), it can be observed that
the conclusions which follow (37)–(40) can be easily ex-
tended to the BP algorithm, and, hence, we do not repeat
them for the sake of brevity.

Let us also consider the case that the average noise power
is given by eo, that is, tr(Σv) =

∑q
i=1 γ̃i = eo. In such a case,

assuming that the largest eigenvalue of Ψ̃ is unique, the noise
covariance matrix which maximizes tr

(
ΣvΨ̃

)
is given by

Σv = eoπ̃1π̃
H
1 . (60)

Moreover, over all noise covariance matrices Σv with∑q
i=1 γ̃i = eo, the value of tr(ΣvΨ̃) and, consequently, that

of the MSE expression (53) is zero if and only if

Σv = Π̃
⊥
q Γ̃vΠ̃

⊥H

q . (61)

Similar to the WP algorithm, it follows from (60) and (61)
that the performance of the BP algorithm can be more sen-
sitive to the narrow-band interference than to the full-rank
noise.

If noise is white, that is, Σv = σ2v I, the MSE expression
(53) reduces to

E
{∥∥δh1

∥∥2
}
≈ σ2v

∥∥T̃†1
∥∥2
F

NA2
1

. (62)

Hence, the performances of the BP and the LX algorithms
are identical in the white noise scenario. Therefore, the BP
algorithm can also be applied to estimate the channel vector
in the white noise case without any estimation performance
loss as compared to the conventional LX algorithm.

Another interesting relationship between the WP and
BP algorithms follows from comparing (32) and (53). Let
the users transmit BPSK modulated symbols and let the re-
ceiver be equipped with two well-separated antennas such
that noise is spatially uncorrelated between them. Also, let
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Figure 1: The MSE of the estimated channel versus SNR. The WP
algorithm.
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Figure 2: The MSE of the estimated channel versus number of data
samples. The WP algorithm.

(30) and (31) hold and

λmax
(
Σ(1)
v

)� (
A(1)
1

∥∥w(1)
1

∥∥)2. (63)

Then, the MSE expressions (32) and (53) can be readily veri-

fied to coincide in the following two cases: when h(1)1 is es-
timated using the WP algorithm with both antennas, and

when h(1)1 is estimated using the BP algorithm with only the
first antenna.
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Figure 3: The MSE of the estimated channel versus SNR at the first
antenna for different values of SNR at the second antenna. The WP
algorithm.
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Figure 4: The MSE of the estimated channel versus SNR. The BP
algorithm.

5. SIMULATIONS

In this section, we validate our analytical results via computer
simulations. In all the examples, we consider K = 7 syn-
chronous CDMA users that transmit BPSK-modulated sym-
bols. Each point of the simulation curves is the result of av-
eraging over 200 Monte-Carlo realizations of the noise and
transmission data sequences. In Figures 1–8, Gold codes of
length Lc = 31 are employed as the user spreading sequences
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Figure 5: The MSE of the estimated channel versus number of data
samples. The BP algorithm.
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Figure 6: The MSE of the estimated channel versus SNR for Γ̃v =
diag{20, 5, 3} and different matrices Ũv . The BP algorithm.

and channel vectors of length L = 4 are independently drawn
from a zero-mean white complex Gaussian process and then
are scaled to become unit-norm vectors. The ambiguity in
the phase of the channel vector estimate is resolved by as-
suming that the phase of the first tap of the channel vector
is known at the receiver. In Figures 1–5 and 9, the received
noise at each antenna is considered to be a circular Gaussian
process such that [Σv]i j , the (i, j)th entry of its covariance
matrix, is equal to 0.7|i− j|. In the figures where the MSE of
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Σv drawn randomly, q = 1
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Σv drawn randomly, q = 15
Σv drawn according to (60)
Σv drawn according to (61), q = 1
Σv drawn according to (61), q = 5
Σv drawn according to (61), q = 15

Figure 7: MSEs of the estimated channel versus SNR for eo = 28
and different matrices Σv . The BP algorithm.
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Figure 8: MSEs of the estimated channel versus SNR in the white
noise environment. The LX, WP, and BP algorithms.

the channel estimate is drawn versus SNR, it is assumed that
N = 80 data samples are used to estimate the channel.

Figures 1–3 illustrate the accuracy of our analytical re-
sults derived for the WP algorithm. In Figure 1, it is assumed

that SNRs of all users at both antennas are identical and h(1)1

is estimated according to (22). The solid curve represents the
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Figure 9: MSEs of the estimated channel versus L for Lc = 40 and
Lc = 80. The BP algorithm.

MSE resulting from this estimate. This curve is compared
with our analytical results given by (28) and (32). It can be
observed that both theoretical curves follow the experimen-
talMSE curve with a good precision. Note that when the SNR
is very low, the channel vector estimation error is quite large
and, hence, it could not be reliably predicted using the first-
order perturbation theory. In such a condition, the analytical
MSE curves obtained from (28) and (32) show a considerable
discrepancy with the experimental MSE curve.

Figure 2 depicts the experimental and the analytical MSE
curves versus the number of data samples N . In this figure,
it is assumed that the received signal power from each user
at each of the two antennas is equal to 10 dB. Due to the fact
that SNR is reasonably high, the theoretical curve (28) and
its high SNR approximation (32) are almost indistinguish-
able from each other and they follow the experimental MSE
curve with a good accuracy. It can be observed from Figure 2
that, when the number of data samples N is small, the small
perturbation assumption is violated, and, hence, the accu-
racy of the analytical MSE curves decreases.

Figure 3 shows theMSE of the estimated channel ĥ(1)1 ver-
sus SNR at the first antenna (SNR(1)) for 6 different values
of SNR at the second antenna (SNR(2)). As expected from
Section 4.1, the performance of the channel estimation is
almost independent from the exact value of SNR(2), unless
SNR(2) is very low.

Figures 4–7 and 9 show the performance of the BP algo-
rithm and compare it to our analytical results. In Figure 4,
the experimental MSE curve is plotted versus SNR and is
compared with the theoretical curves obtained from (48) and
(53). As can be observed from the figure, the two theoreti-
cal MSE curves are very close to each other and also closely

follow the experimental MSE curve for the SNRs higher than
0 dB.

Figure 5 shows the experimental and the theoretical
curves drawn versus the number of data samples N for SNR
equal to 10 dB. As the figure shows, the theoretical curve (48)
is precisely followed by its high SNR approximation (53) and
both of them are very close to the experimental MSE curve.

Figure 6 shows the experimental MSE curves versus
SNR for noise covariance matrices with identical Γ̃v =
diag{20, 5, 3} and different matrices of eigenvectors Ũv.
Three random realizations of Ũv as well as Ũvmax and Ũvmin

are drawn and then using (55) the corresponding noise co-
variance matrices are obtained. The BP algorithm is used
to estimate the channel vector in the presence of a corre-
lated noise with the so-obtained noise covariance matrices.
Figure 6 confirms our theoretical results in Section 4.2 which
state that the worst and the best MSE performances are ob-
tained when Ũv = Ũvmax and Ũv = Ũvmin , respectively. Note
that if Ũv = Ũvmin , then, unlike the MSE expression (53), the
experimental MSE performance is not equal to zero. It is due
to the fact that the MSE expression (53) is obtained using
the first-order perturbation theory and even in the high SNR
regime this expression has a slight difference with the exper-
imental MSE.

Figure 7 plots the experimental MSE curves versus SNR
for noises with identical average energy of eo = Lc−L+1 = 28
and different covariance matrices. For each value of q = 1, 5,
and 15, one noise covariance matrix is drawn randomly and
another one is obtained according to (61). A rank-one noise
covariance matrix is also derived according to (60). Then,
the BP algorithm is used to estimate the channel vector in
the presence of correlated noise with the so-obtained noise
covariance matrices. Our analytical results in Section 4.2 are
validated by observing that the worst and the best MSE per-
formances are obtained when the noise covariance matrix
follows (60) and (61), respectively.

In Figure 8, the performances of the LX, WP, and BP al-
gorithms are tested in the white noise environment. As pre-
dicted by our analysis in Section 4, all three methods have a
nearly identical performance.

Figure 9 shows the experimental and the theoretical MSE
curves of the BP algorithm versus the channel length L for
two different values of the spreading factors Lc = 40 and Lc =
80. In this example, we use random spreading codes rather
than the optimized Gold codes. The entries of these codes are
randomly drawn from the set {−1, +1}. From Figure 9 we see
that, as predicted in Section 4, the estimation performance
decreases with increasing L. When Lc = 80, the MSE of the
channel vector estimate is significantly lower than that for
Lc = 40. It can be observed that the curves corresponding to
(48) and (53) are quite close to each other and, therefore, the
use of the random spreading codes instead of the Gold codes
retains the accuracy of (53).

6. CONCLUSIONS

In this paper, analytical expressions for the MSE of the signa-
ture waveform estimation techniques of [15, 16] have been
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derived. Assuming that different user signature vectors are
orthogonal, the simplified versions of these expressions have
been also obtained for the high SNR regime. The effect of
the correlated noise on the performance of both algorithms
has been studied. It has been shown that the direction of the
eigenvectors of the noise covariance matrix has a significant
effect on the performance of both algorithms. In particular,
assuming that the eigenvalues of the noise covariance ma-
trix are fixed, the noise covariance matrix eigenvectors cor-
responding to the extremal values of the MSEs have been
obtained. Over all noise covariance matrices with identical
average noise power, the extremal values of the MSEs have
been derived and it has been shown that both the maximal
and the minimal values of the MSEs are achieved when the
noise covariance matrix is rank deficient. Moreover, it has
been shown that at high SNRs and in the presence of white
noise, the performance of these two techniques is identical to
that of the conventional white noise-based technique of [9].

In the high SNR regime, it has been proved that the per-
formance of the technique proposed in [15] is independent
from the noise covariancematrix and the user received power
at the second auxiliary antenna. This property has been gen-
eralized to the multiple antenna systems and it has been
shown that for such systems the choice of the auxiliary an-
tenna is arbitrary at high SNRs.

APPENDICES

A. PROOF OF THEOREM 1

Since U(1)
n spans the null-space of R(12), we have

U(1)
n

H
W(1) = 0. (A.1)

Equations (A.1) and (29) yield

ΨW(1) =W(1)HΨ = 0. (A.2)

To prove (28), we introduce

δR(12) � R̂(12) − R(12), (A.3)

δU(1)
n � Û(1)

n −U(1)
n . (A.4)

Using the perturbation theory, the first-order approximation

of δU(1)
n can be written as [9, 26, 27]

δU(1)
n ≈ −R(12)†HδR(12)HU(1)

n , (A.5)

where

R(12)† = U(2)
s Ω(12)

s
−1
U(1)

s
H
. (A.6)

Since

Û(1)H
n C1ĥ

(1)
1 ≈ 0, (A.7)

it follows that the first-order estimate of δh(1)1 is given by

δh(1)1 ≈ −T(1)
1

†
δU(1)

n
H
w(1)
1 . (A.8)

Inserting (A.5) into (A.8) and applying the expectation op-
eration to the squared norm of the resulting expression, we
have

E
{∥∥δh(1)1

∥∥2}

≈ w(1)
1

H
R(12)†H E

{
δR(12)HΨδR(12)}R(12)†w(1)

1 .
(A.9)

Let us introduce

Ξ � E
{
δR(12)HΨδR(12)}. (A.10)

From (A.2) and (A.3) it follows that

Ξ = E
{
R̂(12)HΨR̂(12)}. (A.11)

Using (17) and (21) in (A.11) yields

Ξ = 1
N2

N∑

j=1

N∑

k=1
E
{(
W(2)b( j) + v(2)( j)

)

×
(
b( j)HW(1)H + v(1)

H
( j)
)
Ψ

×
(
W(1)b(k) + v(1)(k)

)

×
(
b(k)HW(2)H + v(2)

H
(k)
)}

.

(A.12)

Using (A.2) to simplify the resulting expression, we obtain

Ξ = 1
N

(
Φ1 +Φ2

)
, (A.13)

where

Φ1 � E
{
W(2)b( j)v(1)

H
( j)Ψv(1)( j)bH( j)W(2)H},

Φ2 � E
{
v(2)( j)v(1)

H
( j)Ψv(1)( j)v(2)

H
( j)
}
.

(A.14)

We also have

Φ1 = E
{
v(1)

H
( j)Ψv(1)( j)

}
W(2)W(2)H

= E
{
tr
(
v(1)

H
( j)Ψv(1)( j)

)}
W(2)W(2)H

= tr
(
E
{
v(1)( j)v(1)

H
( j)Ψ

})
W(2)W(2)H

= tr
(
Σ(1)
v Ψ
)
W(2)W(2)H ,

Φ2 = E
{
v(1)

H
( j)Ψv(1)( j)

}
E
{
v(2)( j)v(2)

H
( j)
}

= tr
(
Σ(1)
v Ψ
)
Σ(2)
v .

(A.15)

Substituting (A.15) into (A.13) and using (18), we obtain

Ξ = 1
N

tr
(
Σ(1)
v Ψ
)
R(2). (A.16)

Using (A.16) in (A.9) directly yields (28). To prove (32), first
we use (19) and (30) to obtain

U(1)
s =

[
w(1)
1∥∥w(1)
1

∥∥ , . . . ,
w(1)
K∥∥w(1)
K

∥∥

]
,

Ω(12)
s

= diag
{
A(1)
1 A(2)

1

∥∥w(1)
1

∥∥∥∥w(2)
1

∥∥, . . . ,A(1)
K A(2)

K

∥∥w(1)
K

∥∥∥∥w(2)
K

∥∥
}
,

U(2)
s =

[
w(2)
1∥∥w(2)
1

∥∥ , . . . ,
w(2)
K∥∥w(2)
K

∥∥

]
.

(A.17)
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Let

w̆(1)
1 � R(12)†w(1)

1 = U(2)
s Ω(12)

s
−1
U(1)

s
H
w(1)
1 . (A.18)

Substituting (A.17) into (A.18) and using (30), we have

w̆(1)
1 = 1

A(1)
1 A(2)

1

∥∥w(2)
1

∥∥2
w(2)
1 . (A.19)

Using (A.19) along with (28) yields

E
{∥∥δh(1)1

∥∥2
}
≈ tr

(
Σ(1)
v Ψ
)

NA(1)
1

2
A(2)
1

2∥∥w(2)
1

∥∥4
w(2)
1

H
R(2)w(2)

1 .

(A.20)

SubstitutingR(2) from (18) into (A.20) and using (30) to sim-
plify the result, we obtain

E
{∥∥δh(1)1

∥∥2
}
≈ tr

(
Σ(1)
v Ψ
)

NA(1)
1

2

(
1 +

w(2)
1

H
Σ(2)
v w(2)

1

A(2)
1

2∥∥w(2)
1

∥∥4

)
. (A.21)

As for any w(2)
1 and Σ(2)

v ,

w(2)
1

H
Σ(2)
v w(2)

1 ≤ ∥∥w(2)
1

∥∥2λmax
(
Σ(2)
v

)
, (A.22)

then, when (31) holds, (32) directly follows from (A.21). This
completes the proof.

B. PROOF OF THEOREM 2

According to (24), we have

ŨH
n W = 0. (B.1)

From (51) along with (B.1) it follows that

Ψ̃W =WHΨ̃ = 0. (B.2)

Using the procedure similar to that in Appendix A, it can be
readily shown that

E
{∥∥δh1

∥∥2
}
≈ wH

1 R̃
†H E

{
δR̃HΨ̃δR̃

}
R̃†w1, (B.3)

where

δR̃ � ̂̃R− R̃. (B.4)

Let us denote

Ξ̃ � E
{
δR̃HΨ̃δR̃

}
. (B.5)

Substituting (B.4) into (B.5), and then using (B.2) to simplify
the result, we have

Ξ̃ = E
{̂̃R

H

Ψ̃ ̂̃R
}
. (B.6)

Expanding the right-hand side of (B.6) according to (27),
and then using (B.2) to simplify the resulting expression, we
obtain

Ξ̃ = 1
N

(
Φ̃1 + Φ̃2

)
, (B.7)

where

Φ̃1 � E
{
vH(i)Ψ̃v(i)W∗b(i)bT(i)WT

}
, (B.8)

Φ̃2 � E
{
v∗(i)vH(i)Ψ̃v(i)vT(i)

}
, (B.9)

and (·)∗ stands for the conjugate. Since the transmitted sym-
bols are drawn from the BPSK constellation, we have

Φ̃1 = E
{
vH(i)Ψ̃v(i)

}
W∗WT ,

= tr
(
ΣvΨ̃

)
W∗WT ,

(B.10)

where the second line of (B.10) can be derived using the same
steps as in (A.15). To obtain Φ̃2, it can be easily shown from
(B.9) that

[Φ̃2]kl =
Lc−L+1∑

g=1

Lc−L+1∑

m=1
[Ψ̃]gm E

{
[v]∗k [v]

∗
g [v]m[v]l

}
, (B.11)

where [·]k is the kth entry of a vector and the time index i
has been dropped from v(i) for the sake of simplicity. Since
v is a multivariate circular Gaussian random vector, we have
[28]

E
{
[v]∗k [v]

∗
g [v]m[v]l

}

= E
{
[v]m[v∗]k

}
E
{
[v]l[v]∗g

}

+ E
{
[v]m[v]∗g

}
E
{
[v]l[v]∗k

}

= [Σv
]
mk

[
Σv
]
lg +
[
Σv
]
mg

[
Σv
]
lk.

(B.12)

Substituting (B.12) into (B.11), we obtain

[
Φ̃2
]
kl =

Lc−L+1∑

g=1

[
Σv
]
lg

[
Ψ̃Σv

]
gk +

[
Ψ̃Σv

]
gg

[
Σv
]
lk

= [ΣvΨ̃Σv
]
lk + tr

(
Ψ̃Σv

)[
Σv
]
lk.

(B.13)

From (B.13) it directly follows that

Φ̃2 =
(
ΣvΨ̃Σv

)T
+ tr
(
Ψ̃Σv

)
ΣT
v . (B.14)

Substituting (B.10) and (B.14) into (B.7) and using the re-
sulting expression in (B.3), we obtain (48).

To prove (53), we note that (13) along with (24) yield

Ũs =
[

w1∥∥w1
∥∥ , . . . ,

wK∥∥wK

∥∥

]
,

Ω̃s = diag
{
A2
1

∥∥w1
∥∥2, . . . ,A2

K

∥∥wK

∥∥2
}
,

Ṽs =
[

w∗1∥∥w1
∥∥ , . . . ,

w∗K∥∥wK

∥∥

]
.

(B.15)

Let us denote

w̆1 � R̃†w1 = ṼsΩ̃
−1
s ŨH

s w1. (B.16)

Substituting (B.15) into the right-hand side of (B.16) and us-
ing (13), we have

w̆1 = w∗1
A2
1

∥∥w1
∥∥2 . (B.17)
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Using (B.17) in (48) results in the following expression for
E{‖δh1‖2}:

E
{∥∥δh1

∥∥2
}
≈ tr

(
Ψ̃Σv

)

N
∥∥w1
∥∥2A4

1

(
α1 + α2 + α3

)
, (B.18)

where

α1 � wT
1∥∥w1
∥∥W

∗WT w∗1∥∥w1
∥∥ ,

α2 � wT
1∥∥w1
∥∥Σ

T
v

w∗1∥∥w1
∥∥ ,

α3 � 1

tr
(
Ψ̃Σv

)
wT
1∥∥w1
∥∥
(
ΣvΨ̃Σv

)T w∗1∥∥w1
∥∥ .

(B.19)

It directly follows from (13) that

α1 = A2
1

∥∥w1
∥∥2. (B.20)

Noting that both Σv and Ψ̃ are positive (semi-) definite ma-
trices, it is easy to find an upper-bound for α2 and α3 as

α2 =
(

wH
1∥∥w1
∥∥Σv

w1∥∥w1
∥∥

)∗
≤ λ∗max

(
Σv
) = λmax

(
Σv
)
,

α3 = 1

tr
(
Ψ̃Σv

)

(
wH
1∥∥w1
∥∥
(
ΣvΨ̃Σv

) w1∥∥w1
∥∥

)∗

≤ 1

tr
(
Ψ̃Σv

)λ∗max

(
ΣvΨ̃Σv

)

= 1

tr
(
Ψ̃Σv

)λmax
(
ΣvΨ̃Σv

)

≤ λmax
(
Ψ̃Σv

)

tr
(
Ψ̃Σv

) λmax
(
Σv
) ≤ λmax

(
Σv
)
.

(B.21)

Hence, if (52) holds, both α2 and α3 are negligible comparing
to α1. Substituting (B.20) into (B.18) directly yields (53). This
completes the proof.
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