
Hindawi Publishing Corporation
EURASIP Journal on Advances in Signal Processing
Volume 2007, Article ID 84078, 14 pages
doi:10.1155/2007/84078

Research Article
Exploiting the Expressiveness of Cyclo-Static Dataflow
toModel Multimedia Implementations

Kristof Denolf,1 Marco Bekooij,2 Johan Cockx,1 Diederik Verkest,1, 3, 4 and Henk Corporaal5

1Nomadic Embedded Systems (NES), Interuniversity Micro Electronics Centre (IMEC), Kapeldreef 75, 3001 Leuven, Belgium
2NXP Research, Systems and Circuits, Prof. Holstlaan 4, 5656 AE Eindhoven, The Netherlands
3Department of Electrical Engineering, Katholieke Universiteit Leuven (KU-Leuven), 3001 Leuven, Belgium
4Department of Electrical Engineering, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
5Faculty of Electrical Engineering, Technical University Eindhoven, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands

Received 14 September 2006; Revised 11 February 2007; Accepted 23 April 2007

Recommended by Roger Woods

The design of increasingly complex and concurrent multimedia systems requires a description at a higher abstraction level. Using
an appropriate model of computation helps to reason about the system and enables design time analysis methods. The nature
of multimedia processing matches in many cases well with cyclo-static dataflow (CSDF), making it a suitable model. However,
channels in an implementation often use for cost reasons a kind of shared buffer that cannot be directly described in CSDF. This
paper shows how such implementation specific aspects can be expressed in CSDF without the need for extensions. Consequently,
the CSDF graph remains completely analyzable and allows reasoning about its temporal behavior. The obtained relation between
model and implementation enables a buffer capacity analysis on the model while assuring the throughput of the final implemen-
tation. The capabilities of the approach are demonstrated by analyzing the temporal behavior of an MPEG-4 video encoder with a
CSDF graph.

Copyright © 2007 Kristof Denolf et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

The increasing complexity and concurrency in digital multi-
processor systems used to build modern multimedia codecs
or wireless communications require a design flow covering
different abstract layers that evolve gradually towards a fi-
nal, efficient implementation. Describing the system first at
higher level of abstraction, using a model of computation
(MoC), permits the designer to model and reason about the
system.

Dataflow MoCs have proven to be useful for describing
multimedia processing applications [1] as they enable a nat-
ural visual representation exposing the parallelism and al-
lowing an evaluation of the temporal behavior. Cyclo-static
dataflow (CSDF) [2] is particularly interesting because this
variant is one of the most expressive dataflow models while
still being fully analyzable at design time (e.g., consistency
checks, dead-lock analysis).

An implementation on a multiprocessor platform has
optimized communication channels, often based on shared
buffers, to improve the efficiency. Examples are a sliding win-

dow for data reuse or a circular buffer with multiple con-
sumers. Also, due to implementation restrictions, buffer sizes
are limited. As it is not always clear how the behavior of such
channels can be expressed in a CSDF model, the designer
could judge it as an unsuited MoC, thus losing its analysis
potential.

This paper studies how such implementation aspects can
be represented in a CSDF model within its current defini-
tion. Its main contribution is the modeling of special behav-
ior on channels, such as data reuse or shared buffers, used in
an implementation to improve the efficiency. The proposal
of a short-hand notation for these special channels provides
an intuitive expression of shared memory related aspects in
CSDF without requiring extensions of the MoC. As a result,
the enriched CSDF graph remains fully analyzable at design
time and allows reasoning about the temporal behavior. The
capabilities of the approach are demonstrated by describing a
power-efficient custom implementation of an MPEG-4 part
2 video encoder using these special channels.

The special channels and the limited buffer sizes are
modeled in CSDF by representing them by two edges, one

2 EURASIP Journal on Advances in Signal Processing

forward edge assuring the synchronization and one back-
ward edge monitoring the free buffer space. Conditions are
formulated on those two edges to assure functional correct-
ness of the modeled application (i.e., no overwriting of live
data) and these conditions are verified for every special chan-
nel. A basic technique for the buffer capacity calculation
through life-time analysis is presented.

Other works only mention using extensions to (C)SDF
to describe image [3] and video [4] applications without a
formal description of these extensions. Reference [5] inte-
grates CSDF in a parameterized dataflow model to allow dy-
namic data production and consumption rates. The model-
ing of buffer bounds by using a feedback edge is introduced
in [1] for interprocessor communication graphs (a type of
homogenous synchronous dataflow graph) and in [6] to ex-
plore the tradeoff between throughput and buffer require-
ments. To deal with global parameters, [7] describes a syn-
chronous piggybacked dataflow model.

This paper is organized as follows. After summarizing
dataflow theory and introducing the basics of CSDF in the
next section, the modeling of an implementation including
its special edges is discussed in Section 3. In Section 4, an ap-
proach for the buffer capacity calculations is presented. Af-
ter the case study on an MPEG-4 part 2 video encoder in
Section 5, conclusions close this document.

2. DATAFLOWMODELS

In the application specific domain, specialized models of
computation like dataflow models aid in identifying and
exploring the parallelism, and in the manual or automatic
derivation of optimized implementations [8]. The choice
of the model of computation is a tradeoff between its ex-
pressiveness and well-behavior [3]. In this work, a dataflow
model is chosen as it combines the expressivity of block dia-
grams and signal flow charts while preserving the semantics
for system design and analysis tools [9]. More specifically, a
cyclo-static dataflow model is chosen as it is one of the most
expressive while keeping all analysis potentials at design time.

2.1. Definitions of dataflow theory

A comprehensive introduction to dataflow modeling is in-
cluded in [1, 10]. This subsection gives a summary to intro-
duce the dataflow definitions and terminology. In dataflow,
the application is described as a directed graph G. The ver-
tices of this graph are called actors and correspond to the
tasks of the application transforming input data into out-
put data. They are by definition atomic (i.e., indivisible). The
edges (arcs) represent channels carrying tokens between the
communicating actors. The edges act as First-In-First-Out
(FIFO) queues with a theoretically unlimited depth. A token
is a synchronizing communication object. It can be used to
represent a container or just to model synchronization. Con-
tainers are fixed-size data structures.

The actor execution is data-driven: it is enabled to fire as
soon as sufficient tokens are available on all inputs (i.e, its
firing-rule, a boolean expression in the number and/or the

value of tokens, turns true). An actor consumes tokens from
its input edges in one atomic action at the start of the firing
and writes tokens on its output edges in one atomic action at
the end of the firing. The number of tokens consumed and
produced is, respectively, given by the consumption and pro-
duction rules on the corresponding edges. The response time
(RT) of an actor is the elapsed time between its enabling and
the end of the firing.

The data-driven operation of a dataflow graph allows
synchronization between the actors: an actor cannot be ex-
ecuted prior to the arrival of its input tokens. When a graph
can run without a continuous increase or decrease of tokens
on its edges (i.e., with finite queues) it is said to be consistent.
A dataflow graph is called nonterminating or live if it can run
forever.

For a DSP-application, both the liveness and consistency
of the graph are required to get a proper execution. A forever
running execution can be obtained by repeating one itera-
tion of a periodic schedule [11]. To keep the number of to-
kens on the edges limited, the number of tokens produced on
an edge during one period must equal the number of tokens
consumed from it. The number of actor firings in one period
can be derived from this consistency requirement. The exis-
tence of a deadlock-free schedule for one iteration [11] is a
sufficient condition for a graph to be live. Any such schedule
is called a valid static schedule of the graph.

Depending on how the consumption and production to-
gether with the firing rules are specified, different classes
of graphs are distinguished [2]: homogeneous synchronous
dataflow (HSDF), synchronous dataflow (SDF), cyclo-static
dataflow (CSDF), and dynamic dataflow (DDF). This paper
concentrates on the CSDF model.

2.2. Temporalmonotonic behavior

The data-driven operation of a dataflow graph allows its ex-
ecution in a selftimed manner: actors start as soon as they
are enabled. Additionally, the FIFO ordering of the tokens
assures they cannot overtake each other. The FIFO order-
ing of the tokens is automatically respected on the edges of a
dataflow graph as these edges act as queues. In the actors, the
FIFO ordering is guaranteed if autoconcurrency is excluded
by a selfcycle with a single token forcing sequential firing of
this actor or by making the response time of the actors con-
stant.

These two properties are a sufficient condition for the
definition in [12–14] of the monotonic execution of a
dataflow graph G as follows: if firing i of actor A consumes
token t, then G executes monotonically if no decrease in re-
sponse time of any firing of any actor can lead to a later en-
abling of firing i of actor A. It is shown that a dataflow graph
with selftimed execution that maintains the FIFO ordering of
the tokens possesses this important property of monotonic
behavior in time. As a result, a decrease in response time can
only lead to earlier token production and consequently to an
equal or earlier actor enabling. Overall, this could possibly
lead to a higher throughput.

Kristof Denolf et al. 3

In this work, the focus is on cyclo-static dataflow [2] as it
is deterministic and allows checking conditions such as dead-
locks and bounded memory execution at compile/design
time. This is not always possible for DDF. Additionally, if
dynamic dataflow concepts are required to model a multi-
media application, this is often only needed for a part of the
graph and can sometimes be reduced to CSDF by consider-
ing worst-case scenarios [15].

After introducing the elements and properties of CSDF in
the next subsection, it will be shown that there exists a consis-
tent relation between CSDF model and implementation. As
a result, containers will not arrive later in an implementation
with selftimed execution than the corresponding tokens in
the CSDF model. If worst-case response times are used while
building this schedule, the worst-case throughput is known
and guaranteed.

2.3. Basics of CSDF

Cyclo-static dataflow modeling was first proposed by Bilsen
et al. [2] as extension of SDF. In CSDF, each actor A has
an execution sequence of length LA, called the actor period.
Consequently, the production and consumption are also se-
quences of constant integers noted on the corresponding side
of the edge eu as {puP(0), puP(1), . . . , puP(LP − 1)} for the pro-
ducer P and {cuC(0), cuC(1), . . . , cuC(LC − 1)} for the consumer
C. The (i+1)th firing of actor P produces puP(imodLP) tokens
on edge eu. Similarly, the (j+1)th firing of actor C consumes
cuC(jmodLC) tokens from the same edge. The firing rule of
an actor A becomes true for its (j + 1)th firing if all inputs
contain at least cuA(jmodLA) tokens. Also for CSDF, the con-
sistency can be evaluated through the balance equations and
a valid static schedule can be found [2] at compile time.

The rest of this subsection briefly explains how the con-
sistency and liveliness of a CSDF graph are evaluated. More
details are given in [1, 2]. The following notation are used in
the rest of the text:

(i) LA actor period or cycle length of the sequences of ac-
tor A;

(ii) puA(i) number of tokens produced on edge eu by actor
A during its (i + 1)th firing

puA(i) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(i + 1)th element in the

production sequence if 0 ≤ i ≤ LA − 1,

puA
(
imodLA

)
if i ≥ LA;

(1)

(iii) cuA(j) number of tokens consumed from edge eu by ac-
tor A during its (j + 1)th firing

cuA(j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(j + 1)th element in the

production sequence if 0 ≤ j ≤ LA − 1,

cuA
(
jmodLA

)
if j ≥ LA;

(2)

(iv) Pu
A(k) number of tokens produced on edge eu by actor

A after k firings

Pu
A(k) =

k−1∑

i=0
puA(i); (3)

(v) Cu
A(l) number of tokens consumed from edge eu by ac-

tor A after l firings

Cu
A(l) =

l−1∑

j=0
cuA(j); (4)

(vi) qbA basic repetition rate of actor A (see below).

A CSDF graphG is compactly represented by its topology
matrix Γ containing one column for each actor and one row
for each edge. Its (i, j)th entry corresponds to the total num-
ber of tokens produced/consumed by the actor with number
j on the edge with number i during one period. If the actor
with number j produces tokens, the entry is positive while
for a consuming actor, the entry is negative. The actor period
matrix L contains one row with the actor periods. Its jth en-
try holds the actor period of the actor with number j.

A period balance vector r is a positive solution of the bal-
ance equations

Γ · rT = 0. (5)

Such a period balance vector only exists if

rank(Γ) = NG − 1 (6)

with NG the number of actors in the CSDF graph. A repeti-
tion vector q is the product of a period balance vector r with
the actor periods

q = r · Ldiag (7)

with Ldiag the diagonal version of L. The basic repetition vec-
tor qb can be derived from any arbitrary repetition vector q
as

qb = q

s
, with s = gcd

y∈G

(
qy
Ly

)

. (8)

The existence of a repetition vector is a necessary condi-
tion for bounded memory execution (consistency) but is not
sufficient to guarantee the existence of a valid static schedule
(liveliness). To check if such a schedule with repetition vector
q actually exists for a consistent (C)SDF graph, [2, 11] pro-
pose the construction of a single-processor schedule for one
iteration, that is, one in which each actor A fires at least qbA
times.

3. USING CSDF TOMODEL IMPLEMENTATIONS

The implementation of an application can be represented as
a directed task graph [14] consisting of tasks communicat-
ing through FIFO buffers with fixed capacity, called regular
channels (see Figure 1(a)). Only containers, communication

4 EURASIP Journal on Advances in Signal Processing

P C
puP cuC

eu

1 1

1

1 1

1

(a) Regular channel

P C

d

cubP pubC

eub

p
u f
P c

u f
C

eu f

1 1

1

1 1

1

(b) CSDF equivalent

Figure 1: The feedback edge eub limits the size of edge eu to d.

units holding a fixed amount of data, are communicated over
these FIFOs. These containers can be free or completed. Note
the difference with a dataflow model where a token can rep-
resent a container or just synchronization. Tasks have pro-
duction and consumption sequences and can only start if
sufficient completed containers are present on its input FI-
FOs and sufficient free containers are available in its output
FIFOs. More specifically, executing a task consists of the fol-
lowing steps: (i) acquire: check the availability of the com-
pleted input containers and free output containers, (ii) ex-
ecute the code of the function describing the task behavior
(accessing the data in the container), and (iii) release: signal
the completion of the production of the output containers
and the finishing of the consumption of the input contain-
ers. The elapsed time between the successful acquiring and
releasing in a task execution is bounded by the worst-case re-
sponse time, known at design time. Finally, it is assumed that
at most one instance of a task can execute at any time. This
is important when the task keeps an internal state with data
that is needed during a next execution and to maintain the
FIFO ordering of the containers.

In a real implementation, also other communication
types than the regular channel are deployed, often to opti-
mize the data transfer. Examples are a sliding window for
data reuse or a shared buffer with multiple consuming tasks.
Such communication types are called special channels. The
next subsections describe how the regular channel and which
types of special channels can be expressed with a CSDF
graph. Their CSDF representation is essential to be able to
use the design time analysis techniques of CSDF.

3.1. Blockingwrite and blocking read

In the modeling of such an implementation task graph as a
CSDF graph, a task corresponds to an actor with a response

time equal to the task’s worst-case response time. The acquire
and release of containers in the implementation are, respec-
tively, represented by the removal and arrival of tokens on
the edges in the CSDF model. While a container is always
represented by tokens in the dataflow model, the inverse is
not necessarily true, as tokens can also express synchroniza-
tion only. For example, a selfcycle on each actor models that
no two instances of a task can execute simultaneously.

The blocking read behavior of a FIFO queue (i.e., the
stalling of the consuming task because the queue is empty)
is modeled by the data-driven operation of the actors. Be-
cause of the fixed depth of the FIFO queue, it also has a block-
ing write: the producing task is halted as long as the FIFO is
full. This blocking read and blocking write behavior can be
represented by a pair of queues in opposite direction [1, 6]
in the CSDF graph (see Figure 1(b)). The tokens on the for-
ward queue eu f (from producer P to consumer C) represent
completed containers while the tokens on the feedback queue
eub indicate the free containers. The fixed size of the FIFO
buffer (i.e., its depth expressed as a number of containers it
can maximally hold) is modeled by the number of initial to-
kens d on eub for an initially empty FIFO.

The tight coupling between the tokens and the contain-
ers is expressed by requiring that a producing or consuming
task releases at the end of the task execution all containers
acquired at the start of the task invocation,

∀i, j ∈ N : p
u f
P (i) = cubP (i), c

u f
C (j) = pubC (j). (9)

Consuming c
u f
C tokens from eu f releases the correspond-

ing containers, but only at the end of the firing with the pro-
duction of the same number of tokens pubC on eub. To pro-

duce p
u f
P tokens representing completed containers at the

end, the same number cubP of them is consumed at the start of
the firing, expressing the acquiring of the containers. Conse-
quently, the tokens on the two edges represent correctly how
the containers are used in the task graph: acquiring at the
start of the execution and releasing at the end of the execu-
tion.

Note that the presence of a selfcycle with one initial token
is assumed but not drawn in the following CSDF graphs of
this text.

3.2. Decoupling tokens from containers

The tight coupling of tokens and containers in a regular
channel represents the most common interpretation of the
behavior of an edge in a dataflow model: a container is re-
leased from/to the edge after a single firing. Figure 2 illus-
trates the data reuse in the overlapping regions of the search
area data during the motion estimation of a video encoder
[16]. Such sliding window behavior cannot be modeled with
the common CSDF interpretation since the complete dashed
search area is required as firing condition and consequently,
it will be released entirely from the edge after the first execu-
tion of the motion estimation task.

Kristof Denolf et al. 5

Figure 2: Data reuse in the overlapping regions of the search area
data for motion estimation.

Similarly, the production of a container over multiple
task executions cannot be expressed in the common CSDF
interpretation as the acquired containers at the start are re-
leased to the consuming task at the end of the same invoca-
tion. Finally, edges represent point-to-point communication,
hindering the expression of shared containers between mul-
tiple tasks.

Relaxing the requirement in (9) allows breaking this tight
relation between tokens and containers and enables themod-
eling of special data communication. During a firing of the

producer, the number of produced tokens p
u f
P on eu f can dif-

fer from the number of consumed tokens cubP from eub. Sim-
ilarly, a consumer firing can consume a different number of
tokens from eu f than the number produced on eub.

In the example of Figure 2, this decoupling of tokens and
containers allows releasing only the left, nonoverlapping part
of the search area (pubC), while the complete search area was
required to enable the execution of the motion estimation

(c
u f
C), with pubC < c

u f
C . The next subsection discusses the be-

havior of this special channel and other types (dealing with
the other restrictions listed above) in detail.

Boundedmemory condition

To maintain bounded memory execution, during one period
of the producing task, the sum of acquired containers at the
producer should equal the sum of completed containers (first
equality of (10)). Similarly, during one period of the con-
sumer, the sum of released containers has to equal the sum of
consumed completed containers (second equality of (10)).

P
u f
P

(
LP
) = Cub

P

(
LP
)
, C

u f
C

(
LC
) = Pub

C

(
LC
)
. (10)

Mutual exclusiveness condition

Additionally, at any moment at the producing task, the sum
of completed containers should not be larger than the sum of
acquired containers to avoid writing in a nonfree container.

∀k ∈ N0 : Cub
P (k) ≥ P

u f
P (k). (11)

P C
puP cuC

eu ruC

(a) Special channel

P C

d

cuCpuP

eub

puP c′uC
eu f

(b) CSDF equivalent

Figure 3: Nondestructive reads between a producer P with period
LP and production sequence p = {puP(0), . . . , puP(LP−1)} and a con-
sumer C with period LC and sequences r = {ruC(0), . . . , ruC(LC − 1)}
and c = {cuC(0), . . . , cuC(LC − 1)} for which cuC(j) ≤ ruC(j).

Data preservation condition

Similarly at any moment at the consuming task, the sum of
released containers should not be larger than the sum of ac-
quired new containers to avoid loss of data.

∀k ∈ N0 : Pub
C (k) ≤ C

u f
C (k). (12)

The number of free containers f in the buffer of edge eu
after k firings of P and l firings of C is

f = d − Cub
P (k) + Pub

C (l). (13)

3.3. Modeling special channels

Using the decoupling of tokens and containers, the following
subsections present some interesting cases of modeling spe-
cial behavior on edges of the task graph. For each of these
special channels, a CSDF equivalent is given when possible.
If the equivalent exists, the special channel becomes a short-
hand notation for the CSDF graph.

3.3.1. Nondestructive read

An edge eu with nondestructive reads (see Figure 3(a)) allows
a consuming task C to acquire during its (j +1)th invocation
ruC(j) containers of which only cuC(j) containers are released,
with

∀ j ∈ N : ruC(j) ≥ cuC(j). (14)

This special channel enables data reuse: the same container is
accessed over multiple invocations of the same task. Because
this container remains available on the special channel, the
number of acquired containers ruC(j) consists of a number
of reused containers and a number of additionally acquired
containers. Note that during the first task invocation, all ac-
quired containers are additionally acquired containers.

The number of containers r(j) that is reused from the
current invocation j during the next task execution j + 1

6 EURASIP Journal on Advances in Signal Processing

is obtained with (15) as the difference between the number
of acquired containers and the number of released contain-
ers. When the number of acquired containers ruC(j) is smaller
than the number of reused containers r(j − 1) from the pre-
vious invocation, this equation calculates r(j) recursively,

r(j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ruC(0)− cuC(0) if j = 0,

ruC(j)− cuC(j) if j > 0, ruC(j) > r(j − 1),

r(j − 1)− cuC(j) otherwise.
(15)

To avoid an accumulation of containers in the channel
that would lead to unbounded memory requirements (i.e.,
an inconsistent graph), the sum of additionally acquired con-
tainers during a repetition of the task should equal the num-
ber of released containers (bounded memory condition of
(10)). This requires that the number of reused containers of
the last firing of the repetition (qC) is zero. Consequently, at
least all reused containers r(qC − 2) of the one but last firing
of the repetition should be acquired, and all acquired con-
tainers need to be released:

ruC
(
qC − 1

) = cuC
(
qC − 1

) ≥ r
(
qC − 2

)
. (16)

Proof of (16). In order to prove (16), both cases of (15) are
considered for j = (qC − 1) > 0 while requiring that r(qC −
1) = 0.

(1) When ruC(qC − 1) > r(qC − 2) with r(qC − 1) = 0 in
(15),

cuC
(
qC − 1

) = ruC
(
qC − 1

)
. (17)

(2) When ruC(qC − 1) ≤ r(qC − 2) with r(qC − 1) = 0 in
(15),

cuC
(
qC − 1

) = r
(
qC − 2

)
. (18)

Combining this with (14),

ruC
(
qC − 1

) ≤ cuC
(
qC − 1

)
,

ruC
(
qC − 1

) ≥ cuC
(
qC − 1

) =⇒ ruC
(
qC − 1

) = cuC
(
qC − 1

)
.
(19)

Overall,

ruC
(
qC − 1

) = cC
u
(
qC − 1

) ≥ r
(
qC − 2

)
. (20)

The above condition on the last firing of the repetition
also applies to the last firing of the actor period, or

ruC
(
LC − 1

) = cC
u
(
LC − 1

) ≥ r
(
LC − 2

)
. (21)

This condition can sometimes be met by setting the ac-
tor period appropriately. In video processing for instance,
extending the actor period from a row basis to a frame ba-
sis allows the correct releasing of all reused containers at the

frame border, when no data reuse dependencies exist be-
tween frames.

Figure 3(b) shows how this data reuse behavior is ex-
pressed in CSDF using the decoupling of tokens and contain-
ers. Only containers that are no longer reused are released as
indicated by the production pubC = cuC on the feedback edge
eub. The forward edge eu f assures the correct synchronization
between the actors P and C.

The number c
u f
C on this forward edge expresses the num-

ber of additionally acquired containers c′uC , that is, the re-

quired number of new completed containers. c
u f
C = c′uC is

calculated in (22) so that actor C can only start firing j if the
sum of reused containers r(j − 1) and additionally acquired
containers c′uC(j − 1) at least equals ruC(j),

c
u f
C =c′uC(j)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ruC(0) if j= 0,

ruC(j)−r(j − 1) if j > 0, ruC(j) > r(j − 1),

0 otherwise.
(22)

Of the bounded memory, mutual exclusiveness and data
preservation conditions (see (10), (11), (12)) of the special
channel, only those at the consumer side need to be checked.

The ones at the producer are automatically fulfilled as p
u f
P =

cubP (since the producer behavior is like a regular channel).

Proof of the requirements in (12) and (10). The data preser-
vation condition of (12) becomes

Pub
C (l) ≤ C

u f
C (l) =⇒ Cu

C(l) ≤ C′uC(l). (23)

In order to use (22), two cases are distinguished as follows.
(1) ruC(l − 1) > r(l − 2)

Cu
C(l) ≤ C′uC(l),

Cu
C(l) ≤ C′uC(l − 1) + c′uC(l − 1).

(24)

Using (22) to replace c′uC(l − 1),

Cu
C(l) ≤ C′uC(l − 1) + ruC(l − 1)− r(l − 2). (25)

If ruC(j) ≤ r(j − 1) for l − x < j < l − 1 and x > 1, then
according to (15), r(l − 2) = ruC(l − x) −∑x

j=2 c
u
C(l − j) and

according to (22), c′uC(j) = 0 making C′uC(l − 1) = C′uC(l −
x + 1),

Cu
C(l) ≤ C′uC(l − x + 1)+ruC(l − 1)−ruC(l − x)+

x∑

j=2
cuC(l − j),

Cu
C(l − x)+cuC(l − 1) ≤ C′uC(l − x + 1)+ruC(l − 1)−ruC(l − x).

(26)

With c′uC(l − x) = ruC(l − x)− r(l − x − 1),

Cu
C(l − x) + cuC(l − 1) ≤ C′uC(l − x) + ruC(l − 1)− r(l − x − 1).

(27)

Kristof Denolf et al. 7

If ruC(j) ≤ r(j − 1) for l − y < j < l − x − 1 and y > x, then
c′uC(j) = 0 and r(l − y − 1) = ruC(l − y)−∑y

j=x+1 c
u
C(l − j),

Cu
C(l − y)+cuC(l − 1) ≤ C′uC(l − y)+ruC(l − 1)− r(l − y − 1).

(28)

Assume that l − y − 1 = 0,

cuC(0) + cuC(l − 1) ≤ c′uC(0) + ruC(l − 1)− r(0). (29)

With r(0) = ruC(0)− cuC(0) (see (15)),

cuC(0) + cuC(l − 1) ≤ ruC(0) + ruC(l − 1)− (ruC(0)− cuC(0)
)
,

cuC(l − 1) ≤ ruC(l − 1).
(30)

(2) ruC(l − 1) ≤ r(l − 2)

Cu
C(l) ≤ C′uC(l). (31)

If ruC(j) ≤ r(j − 1) for l− x < j ≤ l− 1 with x > 1, according
to (15), r(l − 1) = ruC(l − x) −∑x

j=1 c
u
C(l − j) and according

to (22), c′uC(j) = 0 making C′uC(l) = C′uC(l − x + 1),

Cu
C(l) ≤ C′uC(l − x + 1),

Cu
C(l) ≤ C′uC(l − x) + c′uC(l − x).

(32)

Using (22) to replace c′uC(l − x),

Cu
C(l) ≤ C′uC(l − x) + ruC(l − x)− r(l − x − 1). (33)

With ruC(l − x) = r(l − 1) +
∑x

j=1 c
u
C(l − j) (see above),

Cu
C(l) ≤ C′uC(l − x) + r(l − 1) +

x∑

j=1

(
cuC(l − j)

)− r(l − x − 1),

Cu
C(l − x) ≤ C′uC(l − x) + r(l − 1)− r(l − x − 1).

(34)

If ruC(j) ≤ r(j − 1) for l − y < j ≤ l − x − 1 and y > x, then
c′uC(j) = 0 and r(l − y − 1) = ruC(l − y)−∑y

j=x+1 c
u
C(l − j),

Cu
C(l − y) ≤ C′uC(l − y) + r(l − 1)− r(l − y − 1). (35)

Assume that l − y − 1 = 0,

cuC(0) ≤ c′uC(0) + r(l − 1)− r(0). (36)

With c′uC(0) = ruC(0) (see (22)),

cuC(0) ≤ ruC(0) + r(l − 1)− r(0). (37)

With r(0) = ruC(0)− cuC(0) (see (15)),

0 ≤ r(l − 1). (38)

To check the bounded memory condition of (10), LC firings
are considered or l = LC

Cu
C(LC) = C′uC

(
LC
)
. (39)

Because of (21), ruC(LC−1) ≥ r(LC−2). This matches the first
case of the proof above. Substituting l by LC and replacing the
inequality by an equality yields

cuC
(
LC − 1

) = ruC
(
LC − 1

)
. (40)

This is true because of (21).

P C
puP cuC

eusuP

(a) Special channel

P C

d

cuCp′uP

eub

puP cuC

eu f

(b) CSDF equivalent

Figure 4: Partial updates between a producer P with period LP and
sequences p = {puP(0), . . . , puP(LP − 1)} and s = {suP(0), . . . , suP(LP −
1)} for which puP(i) ≤ suP(i) and a consumer C with period LC and
sequence c = {cuC(0), . . . , cuC(LC − 1)}.

3.3.2. Partial update

An edge eu with partial updates (see Figure 4(a)) allows the
acquiring of suP(i) containers by the producing task during
the (i + 1)th invocation of which only puP(i) containers are
full and released at the end of the task execution, with

∀i ∈ N : suP(i) ≥ puP(i). (41)

This enables the production of data in a container over mul-
tiple invocations. Because this container remains available on
the special channel, the number of acquired containers suP(i)
consists of a number of uncompleted containers and a num-
ber of additionally acquired containers. Note that during the
first task invocation, all acquired containers are additionally
acquired containers. An example of partial updating is a task
that completes the data in a container over 2 invocations:
data on the even positions is written during the first execu-
tion, while the data on the odd positions is produced during
the second execution.

The number of uncompleted containers s(i) in task invo-
cation i that are continued during the next invocation i+1 is
calculated with (42) as the difference between the number of
acquired containers and the number of completed contain-
ers. When the number of acquired containers suP(i) is smaller
than the number of reused containers s(i − 1) from the pre-
vious invocation, this equation calculates s(i) recursively,

s(i) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

suP(0)− puP(0) if i = 0,

suP(i)− puP(i) if i > 0, suP(i) > s(i− 1),

s(i− 1)− puP(i) otherwise.

(42)

To avoid the loss of partially produced data, the num-
ber of containers acquired during the last invocation has to
include the remaining uncompleted ones from the previous
executions(s) (calculated with (42)) and all of them need to
be released

suP(n− 1) = puP(n− 1) ≥ s(n− 2). (43)

8 EURASIP Journal on Advances in Signal Processing

Similar to the nondestructive read, this condition can
sometimes be met by setting the actor period appropriately.
If this is not possible, the channel is misused as scratchpad.
Such temporal data should be stored in a local buffer of the
task.

The partial update behavior is represented in Figure 4(b)
using the decoupling of tokens and containers. Only the
completed containers are released to be used by the con-

sumer, as indicated by the production p
u f
P = puP on the for-

ward edge eu f . Consequently, this edge eu f synchronizes the
producer and the consumer. Equation (44) makes sure that
the sum of uncompleted containers s(i− 1) and additionally
acquired containers pubP = p′uP(i) at least equals the number
of acquired containers suP(i) for data production during firing
i,

cubP = p′uP =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

suP(0) if i = 0,

suP(i)− s(i− 1) if i > 0, suP(j) > s(i− 1),

0 otherwise.
(44)

Of the bounded memory, mutual exclusiveness and data
preservation conditions (see (10), (11), (12)) of the special
channel, only the ones at the producer need to be checked.
The conditions at the consumer are automatically fulfilled as

c
u f
C = pubC . The proof is similar to the nondestructive read
one.

3.3.3. Multiple consumers

An edge eu with multiple consumers (see Figure 5(a)) allows
N consuming tasksC1 · · ·CN to consume the same contain-
ers produced by a task P. Each consumer Cy can have its own
actor period LCy as long as there exists a solution for their
combined balance equations in (45) to obey the consistency
condition,

rP · Pu
P

(
LP
) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

rC1 · Cu
C1

(
LC1
)
,

...

rCN · Cu
CN

(
LCN

)
.

(45)

A multiple consumer edge works with a composed con-
sume: a container can only be released at the consume side
if all actors C1 · · ·CN have released this container. Equa-
tion (46) calculates the composed consume ccu(jc) after ly
firings of the tasks Cy (with 1 ≤ y ≤ N). The index jc counts
the composed consumes by incrementing jc whenever a con-
suming task Cy executes. To make sure all consumers no
longer need the container(s), this equation looks for the con-
suming task with the minimum sum of consumed contain-
ers and subtracts the sum of previously composed consumed
containers,

ccu(jc)= min
1≤y≤N

(
Cu
Cy

(
ly
))− Cu

cc

(
jc
)
, with jc=

(N∑

y=1
ly

)

−1.

(46)

P

C1

CN

eu

puP

cuC1

cuCN

...

(a) Special channel

P CC

C1

CN

puP puP

puP

cuC1

cuCN

...

eu1 f

euN f

cuC1

cuCN

eu1b

euNb

eub

d

1 1

1

(b) CSDF equivalent

Figure 5: Multiple consumers on an edge between a producer P
with period LP and sequence p = {puP(0), . . . , puP(LP − 1)} and N
consumers C1, · · · ,CN with periods LC1, . . . ,LCN and sequences
c1 = {cuC1(0), . . . , cuC1(LC1 − 1)}, . . . , cN = {cuCN (0), . . . , cuCN (LCN −
1)}.

Such a multiple consumer edge is represented in CSDF
using the decoupling of tokens and containers in Figure 5(b).
On each of the N forward edges euy f , the same number of
tokens puP representing the available completed containers is
produced during a firing of the producer. The number of to-
kens consumed from these forward edges can vary for the N
consumers, including the consume sequence length, as long
as the balance condition of (45) is met. The composed con-
sume is modeled by the CC actor with a zero response time.
Only when all consuming actors have released a container, it
is made available as free container on the backward edge eub.

As the size of the container, buffer d is shared over all
edges, the number of free containers f (in the shared buffer)
equals the number of initially free containers d decreased
with the number of acquired containers after k firings of the
producer and incremented with the number of composed
consumed containers after lc composed consumptions,

f = d − Cub
P (k) + Cu

CC

(
lc
)
. (47)

Using (46), Cu
CC(lc) can be rewritten and the number of free

containers f becomes

f = d − Cub
P (k) + min

1≤y≤N
(
P
uyb
Cy

(
ly
))
, (48)

where the minimum over all edges assures the containers re-
main available until the last consumer has released them.

Kristof Denolf et al. 9

P1

C

PN

puP1

puP1

cuC

eu

...

Figure 6: The multiple producers special channel with producers
P1, . . . ,PN has no CSDF equivalent as the token order depends on
the response time.

The bounded memory, mutual exclusiveness conditions
(see (10), (11)) of the special channel are met as for all edges

p
uy f
P = cubP , c

uy f
C = p

uyb
C and the CC actor has all ones as

consumption and production rates. The data preservation
condition (12) is satisfied because the composed consume
can only lead to a later releasing of a container that was still
needed by another consuming task.

3.3.4. Multiple producers

An edge eu with multiple producers (see Figure 6) allows N
producing tasks P1 · · ·PN to produce containers. This spe-
cial channel has no CSDF equivalent, as the token arrival de-
pends on the actual response time of the producer, leading to
nondeterministic behavior. Consequently it is invalid.

Multiple producers with partial updates on a single edge
would allow these tasks to produce their part of the token.
Still, this is equivalent to separate edges between the produc-
ers and the consumers and does not offer the protection of
the data that is produced like in the equivalent.

3.3.5. Combinations

All valid previous special channels can be combined, like an
edge with partial updates and nondestructive reads, an edge
with partial updates and multiple consumers, and so forth.
An interesting combination is multiple consumers with non-
destructive reads as it allows a producing task P to read pre-
viously produced containers back (see Figure 7(a)) by con-
sidering the producer also as a consumer on the same special
channel (see Figure 7(b)).

3.4. Other implementation aspects

All special channels described above represent a synchroniz-
ing communication. The implementation of an application
can also use nonsynchronizing communication, to pass for
instance parameters or if synchronization becomes obsolete
when tasks never execute concurrently due to ordering con-
straints.

P C
puP cuC

euruP , c
u
P

(a) Special channel

P C
puP cuC

eu

ruP
cuP

(b) Expressed as multiple consumers with non-
destructive reads

Figure 7: Special case of the multiple consumers with nondestruc-
tive read: a nondestructive read-back at the producer side.

P C
ruC

puP = 0 cuC = 0

suP = ruC
suP

Figure 8: Notation of a global buffer.

A B C D
e1 e2 e3

e4

1 1 2 2 1 1

1
1

1

Figure 9: Some actors do not fire concurrently due to the schedule
or the graph topology.

3.4.1. Global parameters

Global parameters are used in an implementation to pass
the most recent settings to a task. Through a global buffer
with an updating mechanism, the consuming tasks only see
the new parameters when the producer completed the new
data in a container. The nonsynchronizing behavior of such
a communication (see Figure 8) and its dynamic consump-
tion and production pattern cannot be modeled in CSDF.

On the other hand, these global parameters do not influ-
ence the temporal behavior (since they are a form of non-
synchronizing communication) nor need to be considered
during the buffer capacity calculation as their size is fixed at
design time (depending on the number and the size of the
parameters).

3.4.2. Serialized actors

In some cases, actors will never fire concurrently due to or-
dering constraints, either in their schedule or in the graph
topology. The schedule ordering constraint can also be rep-
resented in the graph by adding an edge to indicate this. In
Figure 9 actors A, B, C, and D can only fire sequentially due

10 EURASIP Journal on Advances in Signal Processing

to the graph topology. A schedule ordering constraint (e.g., a
sequential schedule A, B, C, D) of the same graph but with-
out edge e4 can be represented by adding edge e4. Using a
global buffer allows the sharing of container space between
such serialized actors. In the literature, this approach is com-
bined with lifetime analysis for memory optimized software
synthesis [17, 18].

4. BUFFER CAPACITY CALCULATION

The (minimum) buffer capacities d are calculated at design
time by manually constructing a (desired) static periodic
schedule and combining this with a life-time analysis of the
tokens using the worst-case actor response times. The sched-
ule needs to cover at least a complete iteration in the periodic
phase. As a result, it is constructed from the start and also in-
cludes the transient phase before reaching the periodic phase.
As no dead-lock is allowed in this periodic schedule to assure
the liveliness of the graph, the minimum buffer size is found
if the number of free tokens f on the feedback edge is zero
when the difference between the total number of consumed
and produced tokens on this edge reaches a maximum. The
buffer capacity du of edge eu is derived from (48), the generic
case for the all valid special channels, by setting f to zero and
considering the life-time analysis from start until one period
in steady state (periodic phase) is completed. Assuming the
desired schedule reaches the periodic phase after kSS firings
of the producer P and ly,SS firings of the consumers Cy

du = max
0≤k<kSS+qbP ; 0≤ly<ly,SS+qbCy

(
Cub
P (k)− min

1≤y≤N
(
P
uyb
Cy

)(
ly
))
.

(49)

The throughput of the constructed static schedule relates
to µ−1, with µ being the iteration period (or total execution
time of one period) of this periodic schedule. The temporal
monotonic behavior guarantees that moving to a selftimed
execution after the buffer sizing yields an implementation
with at least this throughput.

Practically, the life-time analysis monitors the number of
tokens on the forward and the backward edge of all edges eu
in the CSDF graph G: the forward one for the evaluation of
the firing condition, the backward one for the buffer capacity

calculation. Consequently, the evaluation P
uy f
P (k)−C

uy f
C (ly)

on euy f is made at the end of each firing of its producer or

consumer. The evaluation C
uyb
P (k)−P

uyb
C (ly) on euyb is made

at the start of each firing of its producer or consumer. The
maximum over all euy during the transient phase and one
iteration period in the periodic phase of the desired schedule
yields the buffer size du.

The formula for du (see (49)) and the practical approach
presented above only provide a basic buffer sizing technique
to find the minimum buffer capacity for the given desired
schedule. For an efficient multiprocessor implementation,
four related elements need to be considered in the tradeoff:

A B
2 r1B = 2

{1, 1, 2}

e1

(a) Example nondestructive read FIFO

A B
2

2

{2, 1, 1}
{1, 1, 2}

e1 f

e1b
d1

(b) Example nondestructive CSDF equivalent

Figure 10: Example nondestructive read keeping one container for
data reuse.

2 4 3 5 4 6 4# tokens on e1b

tokens on e1 f

B

A

2 0 2 1 2 2 2

0 3 6 9 12

Time
Transient Periodic

Figure 11: Schedule and life-time analysis of the buffer capacity.

throughput, response times, schedule settings, and buffer ca-
pacities. Optimization algorithms exploring these tradeoffs
are outside the scope of this paper.

Example 1. Consider the nondestructive read edge of Figure
10(a) with its CSDF equivalent in Figure 10(b). The basic
repetition vector qb is calculated from the topology matrix Γ
and the actor periods. Assume the worst case response times
are known, RTA = 3 and RTB = 2 and the desired schedule
is a pipelined parallel operation of both actors,

Γ=
(

2 −4
)

; L=
(

1 3
)

; r=
(

2 1
)

; q=qb=
(

2 3
)

.

(50)

The corresponding schedule with the lifetime analysis on
the edges e1 f and e1b is shown in Figure 11. The number of
tokens on e1 f is calculated at the end of a firing of one of the
actors while the number of tokens on edge e1b is calculated
at the start of a firing. The desired schedule reaches steady
state (periodic phase) at time 6 and one period has qbA = 2
firings of actor A and qbB = 3 firings of actor B. This period

Kristof Denolf et al. 11

CC ME MC TC TU

EC

BP

e12

6(width/16)(height/16)

{p, r, c}4CC {c, r}4MC

p2CC
e1 e5 r5MC = 1 e6 e8

e9

e10e11

e2

e3

c2ME r
2
ME = 3

{0, 0, . . . , [N]}

{1, 0, . . . , 0}

{0, 0, 0, 0, 0, 1}
c12CC

e4

1 1

6

1 1 1
1

1 1

6

1 1
1 1

ni

1

Figure 12: CSDF graph representing the partitioning of the MPEG-4 part 2 SP encoder scheme.

Table 1: Detailed information of the actors in the encoder CSDF graph.

Actor name Acronym Functionality Actor period

Copy control CC Fill the memory hierarchy and the new video inputs (width/16)(height/16)

Motion estimation ME Find the motion vectors width/16

Motion compensation MC Get predicted block and calculate error 6(width/16)(height/16)

Texture coding TC Transform, quantization, and inverse 1

Texture update TU Add and clip compensated and predicted blocks 1

Entropy coding EC AC/DC, MV prediction and VLC coding m

Bitstream packetization BP Add headers and compose the bitstream N

contains 6 time units. The required buffer capacity for the
desired schedule is 6 (the maximum on the # tokens on e1b
line).

5. MPEG-4 PART 2 VIDEO ENCODER EXAMPLE

To illustrate the expressiveness of a CSDF graph when to-
kens are decoupled from containers, an MPEG-4 part 2
video encoder [19] is presented as a case study. The con-
structed dataflow graph (see Figure 12) supports the parti-
tioning phase of the implementation of a low-power, fully
dedicated MPEG-4 part 2 encoder [20]. When the behav-
ior of the data communication between two actors cannot
be expressed by regular CSDF edges, special channels are in-
serted. In the video encoder example, this happens to main-
tain the effect of high-level memory optimizations, like data-
reuse and the sharing of local buffers.

The dataflow graph is a combination of a CSDF graph
with compile time parameters related to the maximum sup-
ported resolution (width× height) and a DDF part after the
entropy coding (EC). The meaning of the variables m and
N in the graph relate to this dynamic behavior and will be
explained later. The regular and special channels are used in

Table 2: Production and consumption sequences instantiated for a
resolution of 80× 48 pixels.

Symbol Sequence

p2CC {3, 1, 1, 1, 1}
c2ME {1, 1, 1, 1, 3}
p4CC {7, 1, 1, 1, 0, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0}
c4MC c(j ÷ 6) with c = {0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 0, 1, 1, 1, 7}
r4MC r(j ÷ 6) with r = {7, 8, 9, 10, 10, 11, 6, 6, 6, 11, 7, 6, 6, 6, 6}
r4CC {6, 3, 4, 5, 10, 11, 6, 6, 6, 11, 7, 6, 6, 6, 6}
c4CC {0, 0, 0, 0, 0, 2, 1, 1, 0, 1, 2, 1, 1, 0, 6}
c12CC {42, 6, 6, 6, 0, 12, 6, 6, 6, 0, 0, 0, 0, 0, 0}

the dataflow graph as short-hand notation: every drawn edge
represents a forward and a backward CSDF edge (to model
the bounded buffer sizes). Remember that a selfcycle with
one initial token is assumed on every actor.

The proposed dataflow graph (see Figure 12) consists of
7 actors connected by 12 edges numbered e1 to e12. Three
edges, e2, e4, and e5 are special channels. Edge e2 is a nonde-
structive read special channel modeling the sliding window
with the search area data repetitively accessed by the motion

12 EURASIP Journal on Advances in Signal Processing

Table 3: Buffer and token size of all edges.

Edge Name
Buffer size
(# of containers)

Container size
(words/container)

Container width
(bits/word)

e1 New macroblock 2 256 8

e2 Search area 6 768 8

e3 Current macroblock 18 64 8

e4 Buffer YUV (width/8) + 5 384 8

e5 Motion vectors 2 2 12

e6 Error block 2 64 9

e7 Compensated block 3 64 8

e8 Texture block 2 64 12

e9 Quantized macroblock 12 64 12

e10 Data buffer VPmax + nmax 1 1

e11 Generate VP 1 1 1

e12 Reconstructed frame 6(width/16)(height/16) 64 8

EC
TU
TC
MC
ME

IC & CC
Time

Figure 13: MPEG-4 part 2 SP encoder desired schedule with
pipelined parallel operation for one frame with resolution of 80 ×
48 pixels.

estimation. Edge e4 is drawn as a bidirectional edge, as it rep-
resents nondestructive read back behavior at the producer
side, sharing data between the copy controller and the mo-
tion compensation. Edge e5 is a nondestructive read special
channel passing the motion vectors to the motion compen-
sation. These motion vectors are reused for the six blocks of
the macroblock. Edge e12 is a regular channel with initial to-
kens (represented by the full dot and the number of initial
tokens).

Table 1 details for every actor its full name, function-
ality, and actor period. The production/consumption se-
quences reflect the behavior of the video encoder. They are
represented as compactly as possible in Figure 12 due to the
long actor periods: (i) if the sequence contains a repeated
pattern, only this pattern is listed and (ii) a symbolic repre-
sentation is used if the cycle of the sequence spans more than
6 phases. As these symbols are a function of the compile time
parameters width and height, they are instantiated for amax-
imum resolution of width = 80 and heigth = 48 in Table 2.
Note that even this small resolution results in a sequence pe-
riod of 90 for c4MC and r

4
MC. A short notation is used for them.

The real design [20] for which the CSDF graph is built has a
supported resolution of 704× 576.

The number of bits generated by the entropy coder varies
depending on the type of sequence and the quantization de-
gree (DDF). Edges e10 and e11 cooperate in a special way to
deal with this. The compressed information is accumulated
on edge e10 with the number of bits ni varying per firing of

the actor EC. When the size of a video packet is reached dur-
ing the mth firing, the number of bits N = ∑m−1

i=0 n(i) accu-
mulated on edge e10 is written on edge e11 (noted as [N] in
the produce sequence, representing the value of the single to-
ken). Once this is completed, actor BP can fire and consumes
1 token from edge e11 containing a scalar with the total num-
ber of tokens to consume from edge e10, resulting in N fir-
ings of BP that consume 1 token from e10. As the maximum
number of bits allowed in a video packet (VPmax) is defined
by the levels of the MPEG-4 part 2 standard, this edge can be
interpreted in worst-case conditions as CSDF to calculate the
buffer bound of edge e10.

To maximize the throughput while relaxing the response
time requirements for the HW design, the desired schedule
for a fully dedicated design is a pipelined and parallel opera-
tion (see Figure 13). This sets the goal of the buffer capacity
calculation to: find the minimal buffer sizes that maximize
the throughput while also maximizing the response times.
There are no processing resource constraints as every actor is
implemented as a separate hardware accelerator. Under those
circumstances, the worst-case actor RT equals its critical RT,
defined as

RTcrit
A = µ

qbA
(51)

and directly relates to the throughput required in the specifi-
cation through the iteration period µ of the desired pipelined
parallel schedule. The practical technique of the previous sec-
tion now has the necessary givens for the life-time analysis
of the edges. The resulting buffer sizes are summarized in
Table 3, together with their name, their container size, the
width of an element in a container, and the communication
primitive type that is selected for the hardware implementa-
tion [20].

6. CONCLUSIONS

The CSDF model of computation matches in many cases
well with the dataflow dominated behavior of multimedia

Kristof Denolf et al. 13

processing, making it a good abstraction means to reason
about the parallelism required in an efficient implemen-
tation. Among different dataflow models of computation,
CSDF is one of the most expressive MoCs while keeping
the full analysis potential (e.g., consistency checks, dead-lock
analysis, etc.).

This paper shows that implementation specific aspects,
like data reuse and shared buffers to improve the efficiency
or restricted buffer sizes, can also be expressed in a CSDF
graph that is used as an analysis model. Representing the
optimized data communication behavior and memory lim-
itations of such special channels, often related to the use of
shared circular buffers, by two edges allows the correct mod-
eling of the synchronization and the free buffer space be-
tween the communicating tasks. Consequently, the graph re-
mains completely analyzable and allows reasoning about its
temporal behavior. Additionally, the special channels are a
short-hand notation and a more intuitive representation of
this optimized data communication, enriching CSDF with
the expression of shared memory aspects.

With worst-case response times and a desired schedule as
given, a buffer capacity calculation at design time through a
life-time analysis of the CSDF model is presented. The ob-
tained consistent relation between the model and the im-
plementation combined with the temporal monotonic be-
havior when moving to selftimed execution assures that
the throughput of the final implementation is at least the
one derived from the iteration period of the desired sched-
ule.

A CSDF graph of an MPEG-4 part 2 video encoder using
shared buffers and exploiting reuse is constructed. With this
CSDFmodel, the correct buffer capacities are calculated for a
fully dedicated encoder implementation operating as a video
pipeline.

REFERENCES

[1] S. Sriram and S. S. Bhattacharyya, Embedded Multiprocessors:
Scheduling and Synchronization, Marcel Dekker, New York,
NY, USA, 2000.

[2] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete,
“Cyclo-static dataflow,” IEEE Transactions on Signal Processing,
vol. 44, no. 2, pp. 397–408, 1996.

[3] A. Davare, Q. Zhu, J. Moondanos, and A. Sangiovanni-
Vincentelli, “JPEG encoding on the intel MXP5800: a
platform-based design case study,” in Proceedings of the 3rd
IEEE Workshop on Embedded Systems for Real-Time Multime-
dia (ESTMED ’05), pp. 89–94, New York, NY, USA, September
2005.

[4] H. Hwang, T. Oh, H. Jung, and S. Ha, “Conversion of ref-
erence C code to dataflow model H.264 encoder case study,”
in Proceedings of the Asia and South Pacific Design Automation
Conference (DAC ’06), pp. 152–157, Yokohama, Japan, January
2006.

[5] F. Haim, M. Sen, D.-I. Ko, S. S. Bhattacharyya, and W. Wolf,
“Mapping multimedia applications onto configurable hard-
ware with parameterized cyclo-static dataflow graphs,” in Pro-
ceedings of IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP ’06), vol. 3, pp. 1052–1055,
Toulouse, France, May 2006.

[6] S. Stuijk, M. Geilen, and T. Basten, “Exploring trade-offs
in buffer requirements and throughput constraints for syn-
chronous dataflow graphs,” in Proceedings of the 43rd Design
Automation Conference (DAC ’06), pp. 899–904, San Francisco,
Calif, USA, July 2006.

[7] C. Park, J. Jung, and S. Ha, “Extended synchronous dataflow
for efficient DSP system prototyping,” Design Automation for
Embedded Systems, vol. 6, no. 3, pp. 295–322, 2002.

[8] S. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanni-
Vincentelli, “Design of embedded systems: formalmodels, val-
idation, and synthesis,” Proceedings of the IEEE, vol. 85, no. 3,
pp. 366–390, 1997.

[9] E. A. Lee and T. M. Parks, “Dataflow process networks,” Pro-
ceedings of the IEEE, vol. 83, no. 5, pp. 773–801, 1995.

[10] S. S. Bhattacharyya, S. Sriram, and E. A. Lee, “Resynchroniza-
tion for multiprocessor DSP systems,” IEEE Transactions on
Circuits and Systems I: Fundamental Theory and Applications,
vol. 47, no. 11, pp. 1597–1609, 2000.

[11] E. A. Lee and D. G. Messerschmitt, “Static scheduling of syn-
chronous data flow programs for digital signal processing,”
IEEE Transactions on Computers, vol. 36, no. 1, pp. 24–35,
1987.

[12] P. Poplavko, T. Basten, M. Bekooij, J. van Meerbergen, and
B. Mesman, “Task-level timing models for guaranteed per-
formance inmultiprocessor networks-on-chip,” in Proceedings
of the International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems (CASES ’03), pp. 63–72, San
Jose, Calif, USA, October-November 2003.

[13] M. H. Wiggers, M. Bekooij, P. Jansen, and G. Smit, “Efficient
computation of buffer capacities for multi-rate real-time sys-
tems with back-pressure,” in Proceedings of the 4th Interna-
tional Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS ’06), pp. 10–15, Seoul, Korea, Octo-
ber 2006.

[14] M. H. Wiggers, M. Bekooij, P. Jansen, and G. Smit, “Efficient
computation of buffer capacities for cyclo-static real-time sys-
tems with back-pressure,” in Proceedings of the 13th IEEE Real
Time and Embedded Technology and Applications Symposium
(RTAS ’07), pp. 281–292, Bellevue, Wash, USA, April 2007.

[15] J. Teich and S. S. Bhattacharyya, “Analysis of dataflow pro-
grams with interval-limited data-rates,” Journal of VLSI Sig-
nal Processing Systems for Signal, Image, and Video Technology,
vol. 43, no. 2-3, pp. 247–258, 2006.

[16] I. E. G. Richardson, H.264 and MPEG-4 Video Compression:
Video Coding for Next-Generation Multimedia, John Wiley &
Sons, New York, NY, USA, 2003.

[17] P. K. Murthy and S. S. Bhattacharyya, “Shared buffer imple-
mentations of signal processing systems using lifetime analy-
sis techniques,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 20, no. 2, pp. 177–198,
2001.

[18] H. Oh and S. Ha, “Memory-optimized software synthesis
from dataflow program graphs with large size data samples,”
EURASIP Journal on Applied Signal Processing, vol. 2003, no. 6,
pp. 514–529, 2003.

[19] “Information technology—generic coding of audio-visual
objects—part 2: visual,” ISO/IEC 14496-2:2004, June 2004.

[20] K. Denolf, A. Chirila-Rus, and D. Verkest, “Low-power
MPEG-4 video encoder design,” in Proceedings of IEEE Work-
shop on Signal Processing Systems (SIPS ’05), pp. 284–289,
Athens, Greece, November 2005.

14 EURASIP Journal on Advances in Signal Processing

Kristof Denolf received the M.Eng. de-
gree in electronics from the Katholieke
Hogeschool, Brugge-Oostende, Belgium, in
1998, the M.S. degree in electronic sys-
tem design from Leeds Metropolitan Uni-
versity, Leeds, UK, in 2000 and is currently
a Ph.D. candidate at the Eindhoven Uni-
versity of Technology, The Netherlands. He
joined the Multimedia (MM) group of the
Nomadic Embedded Systems devision, at
the Interuniversity Micro Electronics Centre (IMEC), Leuven, Bel-
gium, in 1998. His main research interests are the cost efficient
design of advanced video processing systems and the end-to-end
quality of experience.

Marco Bekooij received an M.S.E.E. degree
from Twente University of Technology, in
1995 and a Ph.D. degree from the Eind-
hoven University of Technology, in 2004.
He is currently a Senior Researcher at NXP
Semiconductors. He has been involved in
the design of a channel decoder IC for digi-
tal audio broadcasting and a compiler back-
end for VLIW processors with distributed
register files. His current research interest is
the design and analysis of predictable multiprocessor systems.

Johan Cockx received his degree in electri-
cal engineering from the Katholieke Univer-
siteit Leuven, Belgium, 1983. From 1983 to
1985 he was a member of the CAD research
group at the ESAT laboratory of that uni-
versity, working on modular circuit simu-
lation. From 1986 to 1996, he worked for
Silvar-Lisco, later renamed to EDC, on a
wide range of electronic design tools includ-
ing a schematic editor, the core data struc-
ture of DSP station behavioral synthesis tool suite, and a dynamic
dataflow simulator. He was an early adopter of object oriented pro-
gramming techniques in general and the C++ programming lan-
guage in particular. In 1996, he joined the Design Technology for
Integrated and Communication Systems (DESICS) division of the
Interuniversity Micro Electronics Center (IMEC), Heverlee, Bel-
gium, where he did research on C++-based concurrent timed sim-
ulation of embedded systems (TIPSY—comparable to but preced-
ing SystemC), automated overhead removal from object oriented
C++ programs, functional parallelization (SPRINT), translation of
C++ code to readable C code, and C code cleaning for embedded
application. He is author/coauthor of two patent applications and
several papers on these subjects.

Diederik Verkest received the Master and
Ph.D. degrees in applied sciences from the
Katholieke Universiteit Leuven (Belgium)
in 1987 and 1994, respectively. He has
been working in the VLSI design method-
ology group of the IMEC laboratory (Leu-
ven, Belgium) on several topics related
to formal methods, system design, hard-
ware/software codesign, reconfigurable sys-
tems, and multiprocessor systems. He is
currently in charge of the research at IMEC on design technology
for nomadic embedded systems. He is Professor at the University
of Brussels (VUB) and at the University of Leuven (KU-Leuven).

He is Member of IEEE and a Golden Core Member of the IEEE
Computer Society. He published and presented over 100 articles in
International Journals and at International Conferences. Over the
past years, he was amember of the programme and/or organization
committees of several major international conferences such as ISSS,
CODES, FPL, DATE, and DAC. He was the General Chair of the
Design, Automation, and Test in Europe Conference, DATE’03.

Henk Corporaal has gained an M.S. de-
gree in theoretical physics from the Univer-
sity of Groningen, and a Ph.D. degree in
electrical engineering, in the area of com-
puter architecture, from Delft University of
Technology. He has been teaching at sev-
eral schools for higher education, has been
Associate Professor at the Delft University
of Technology in the field of computer ar-
chitecture and code generation, had a Joint
Professor appointment at the National University of Singapore, and
has been Scientific Director of the joined NUS-TUE Design Tech-
nology Institute. He also has been Department Head and Chief
Scientist within the DESICS (design technology for integrated in-
formation and communication systems) division at IMEC, Leuven
(Belgium). Currently Corporaal is Professor in embedded system
architectures at the Eindhoven University of Technology (TU/e) in
The Netherlands. He has coauthored over 200 journal and con-
ference papers in the (multi)processor architecture and embedded
system design area. Furthermore, he invented a new class of VLIW
architectures, the transport triggered architectures, which is used
in several commercial products. His current research projects are
on the predictable design of soft and hard real-time embedded sys-
tems.

	Introduction
	Dataflow Models
	Definitions of dataflow theory
	Temporal monotonic behavior
	Basics of CSDF

	Using CSDF to Model Implementations
	Blocking write and blocking read
	Decoupling tokens from containers
	Bounded memory condition
	Mutual exclusiveness condition
	Data preservation condition

	Modeling special channels
	Nondestructive read
	Partial update
	Multiple consumers
	Multiple producers
	Combinations

	Other implementation aspects
	Global parameters
	Serialized actors

	Buffer Capacity Calculation
	MPEG-4 part 2 Video Encoder Example
	Conclusions
	REFERENCES

