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A new method for simultaneous range and bearing estimation for buried objects in the presence of an unknown Gaussian noise is
proposed. This method uses the MUSIC algorithm with noise subspace estimated by using the slice fourth-order cumulant matrix
of the received data. The higher-order statistics aim at the removal of the additive unknown Gaussian noise. The bilinear focusing
operator is used to decorrelate the received signals and to estimate the coherent signal subspace. A new source steering vector is
proposed including the acoustic scattering model at each sensor. Range and bearing of the objects at each sensor are expressed
as a function of those at the first sensor. This leads to the improvement of object localization anywhere, in the near-field or in
the far-field zone of the sensor array. Finally, the performances of the proposed method are validated on data recorded during
experiments in a water tank.
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1. INTRODUCTION

Noninvasive range and bearing estimation of buried objects,
in the underwater acoustic environment, has received con-
siderable attention.

Many studies have been recently developed. Some of
them use acoustic scattering to localize objects by analyzing
acoustic resonance in the time-frequency domain, but these
processes are usually limited to simple shaped objects [1]. In
the same way, Guillermin et al. [2] use the inversion of mea-
sured scattered acoustical waves to image buried object, but
the applicability in a real environment is not proven. Another
method which uses a low-frequency synthetic aperture sonar
(SAS) has been recently applied on partially and shallowly
buried cylinders in a sandy seabed [3]. Other techniques
based on signal processing, such as time-reversal method [4],
have been also developed for object detection and localiza-
tion but their applicability in real life has been proven only
on cylinders oriented in certain ways and point scatterers [5].
Furthermore, having techniques that operate well for simul-
taneous range and bearing estimation using wideband and
fully correlated signals scattered from near-field and far-field
objects, in a noisy environment, remains a challenging prob-
lem.

Array processing techniques, such as theMUSICmethod,
have been widely used for source localization. Typically, these
techniques assume that the underwater acoustic sources are
on the seabed and are in the far field of the sensor array. The
goal then is to determine the directions of the arrival of the
sources. These techniques have not been used yet for bearing
and range estimation for buried objects.

In this paper, the proposed approach is based on ar-
ray processing methods combined with an acoustic scatter-
ing model. The fourth-order cumulant matrix [6, 7] is used
instead of the cross-spectral matrix to remove the additive
Gaussian noise. The bilinear focusing operator is used to
decorrelate the signals [8] and to estimate the coherent sig-
nal subspace [8, 9]. From the exact solution of the acous-
tic scattered field [10, 11], we have derived a new source
steering vector including both range and bearing of the ob-
jects. This source steering vector is employed inMUSIC algo-
rithm instead of the classical plane wave model. The acoustic
scattered field model has been addressed in many published
works in several configurations, as single [12, 13] or multiple
objects [14, 15], buried or partially buried objects [16, 17],
with cylindrical [11, 12] or spherical shape [10, 11, 13], all
those scatteringmodels can be used with the proposed source
steering vector.



2 EURASIP Journal on Advances in Signal Processing

The organization of this paper is as follows: the problem
is formulated in Section 2. In Section 3, the scattering mod-
els are presented. In Section 4, the cumulant-based coherent
signal subspace method for bearing and range estimation is
presented. Experimental setup and the obtained results sup-
porting our conclusions and demonstrating our method are
provided in Sections 5 and 6. Finally, conclusion is presented
in Section 7.

Throughout the paper, lowercase boldface letters repre-
sent vectors, uppercase boldface letters represent matrices,
and lower- and uppercase letters represent scalars. The sym-
bol “T” is used for transpose operation, the superscript “+” is
used to denote complex conjugate transpose, the superscript
“∗” is used to denote complex conjugate, and ‖ · ‖ denotes
the L2 norm for complex vectors.

2. PROBLEM FORMULATION

We consider a linear array of N sensors (Figure 1) which re-
ceive the wideband signals scattered from P objects (N > P)
in the presence of an additive Gaussian noise. Using vector
notation, the Fourier transforms of the outputs of the array
can be written as [6, 7, 18]

r
(
fn
) = A

(
fn
)
s
(
fn
)
+ b
(
fn
)
, for n = 1, . . . ,L, (1)

where

A
(
fn
) = [a( fn, θ1, ρ1

)
, a
(
fn, θ2, ρ2

)
, . . . , a

(
fn, θP , ρP

)]
,

s
(
fn
) = [s1

(
fn
)
, s2
(
fn
)
, . . . , sP

(
fn
)]T

,

b
(
fn
) = [b1

(
fn
)
, b2
(
fn
)
, . . . , bN

(
fn
)]T

.

(2)

s( fn) is the vector of the source signals. b( fn) is the vector of
Gaussian noises which are assumed statistically independent
of the source signals. A( fn) is the transfer matrix which is
computed from a( fn, θk, ρk) for k = 1, . . . ,P given by
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where θk and ρk are the bearing and the range of the kth
object to the first sensor of the array, thus, θk = θk1 and
ρk = ρk1.

A fourth-order cumulant is given by
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where Cum(·) denotes the cumulant, rk1 is the k1 element
in the vector r, and E{·} denotes the expectation operator.
The indices k2, l1, and l2 are similarly defined as k1 has been
just defined. The cumulant matrix consisting of all possible
permutations of the four indices {k1, k2, l1, l2} is given in [19]
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Figure 1: Geometry configuration of the kth object localization.
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where ⊗ is the Kronecker product and uk( fn) is the source
kurtosis (i.e., fourth-order analog of variance) of the kth
complex amplitude source defined by
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In order to reduce the calculating time, instead of using the
cumulant matrix C( fn), a cumulant slice matrix (N × N) of
the observation vector at frequency fn can be calculated and
it offers the same algebraic properties as C( fn). This matrix is
denoted by C1( fn) [6, 19, 20]. We consider a cumulant slice,
for example, by using the first row of C( fn) and reshape it
into an (N ×N) Hermitian matrix [20], that is,
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where c1, j is the (1, j) element of the cumulant matrix C( fn)
andUs( fn) is the diagonal kurtosis matrix, its ith element de-
fined as Cum(si( fn), s∗i ( fn), si( fn), s

∗
i ( fn)) with i = 1, . . . ,P.

C1( fn) can be reported as the classical cross-spectral ma-
trix [8, 21] of received data. In practice, the noise is not often
white, hence the interest on the higher-order statistics is as
shown in (7) in which the fourth-order cumulant matrix is
not affected by additive Gaussian noise. Let {λi( fn)}i=1,...,N
and {vi( fn)}i=1,...,N be the eigenvalues and the correspond-
ing eigenvectors of the matrix C1( fn), respectively, then the
eigendecomposition of C1( fn) can be expressed as
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In matrix representation, (8) can be written
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Assuming that the columns of A( fn) are linearly indepen-
dent, in other words, A( fn) is full rank, it follows that for
nonsingular C1( fn), the rank of A( fn)Us( fn)A+( fn) is P. This
rank property implies that:

(i) the (N − P) multiplicity of its smallest eigenvalues
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The MUSIC method [18] is based on the above property
and it has been widely used to estimate the directions of the
arrival of the sources. The spatial spectrum of the MUSIC
method [18], in the case of narrowband signals (L = 1), is
given by
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, (13)

where g is the steering vector which can be filled with plane
wave model when the sources are in the far-field zone of the
sensor array [18].

In this study, we have extended firstly theMUSICmethod
[18] to estimate simultaneously range and bearing of the ob-
jects using narrowband signals by including the acoustic scat-
tering model of the objects. We have called this modified al-
gorithm the MUSICNB method and in the same manner its
spatial spectrum is given by
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Then, in the following sections, we will present how to fill
the vector of the scattering model a( f1, θk, ρk) and how to
use the focusing slice cumulant matrix (wideband signals) to
improve the object localization.

3. SCATTERINGMODEL

Consider the case in which a plane wave is incident, with
an angle θinc, on P infinite elastic cylindrical shells or elas-
tic spherical shells of inner radius βk and outer radius αk for
k = 1, . . . ,P, located in a free space at (θk, ρk) the bearing and
the range of the kth object, associated with the first sensor

of the array x1 (Figure 1). The fluid outside the shells is la-
beled by 1, thus, the sound velocity is denoted by c1 and the
wavenumber is Kn1 = 2π fn/c1.

3.1. Cylindrical shell

We consider the case of infinitely long cylindrical shell. In
order to calculate the exact solution for the acoustic scattered
field acyl( fn, θk1, ρk1), a partial wave series decomposition is
used. The scattered pressure, in the case of normal incidence,
is given by [11, 12]
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where pc0 is a constant, ε0 = 1, ε1 = ε2 = · · · = 2, bm is

a coefficient depending on boundary conditions, H(1)
m is the

cylindrical first kind Hankel function, and m is the modal
order [12].

The scattering model in (15) is very inaccurate for mod-
eling finite cylinders because of end-cap effects [22–24] and
also for oblique incidence [25].

3.2. Spherical shell

The analysis is now extended to the case where the scatterer
is a spherical shell. The scattered pressure is given by [10, 11,
13]
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where ps0 is a constant, h
(1)
m is the spherical first kind Hankel

function, and Pm(cos(θk1−θinc)) is the Legendre polynomial
[13].

The vector a( fn, θk, ρk) is filled with the cylindrical scat-
tering model in the case of cylindrical shells and filled with
the spherical scattering model in the case of spherical shells.
For example, when the considered objects are cylindrical
shells, this vector is given by

a
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) = [acyl
(
fn, θk1, ρk1

)
, . . . , acyl

(
fn, θkN , ρkN

)]T
.
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Equations (15) and (16) give the first component of the vec-
tor a( fn, θk, ρk). Thus, in a similar manner, the other com-
ponents acyl( fn, θki, ρki) and asph( fn, θki, ρki) for i = 2, . . . ,N ,
associated with the ith sensor, can be formed, where all the
couples (θki, ρki) are calculated using the general Pythagorean
theorem and are functions of the couple (θk1, ρk1). Thus, the
used configuration is shown in Figure 1. The obtained θki, ρki
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are given by
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where d is the distance between two adjacent sensors.
Equation (18) is employed in (14) to estimate simulta-

neously range and bearing of the objects using narrowband
signals. In the following section, we will present how to in-
clude the focusing slice cumulant matrix to treat correlated
wideband signals.

4. CUMULANT-BASED COHERENT SIGNAL SUBSPACE
METHOD FOR BEARING AND RANGE ESTIMATION

In this section, the frequency diversity of wideband signals
is considered. The received signals come from the reflections
on the objects, thus, these signals are totally correlated and
the MUSIC method looses its performances if any prepro-
cessing is used before as the spatial smoothing [21] or the
frequential smoothing [8, 26]. It appears clearly that it is nec-
essary to apply any preprocessing to decorrelate the signals.
According to the published results [21], the spatial smooth-
ing needs a greater number of sensors than the frequential
smoothing. In this section, the employed signals are wide-
band. This choice is made in order to decorrelate the sig-
nals by means of an average of the focused slice cumulant
matrices. Therefore, the objects can be localized even if the
received signals are totally correlated. This would have not
been possible with the narrowband signals without the spa-
tial smoothing. In the frequential smoothing-based process-
ing framework [18, 21, 27], we have adopted the optimal
method which is the bilinear focusing operator [8, 26], in
order to obtain the coherent signal subspace. This technique
divides the frequency band into L narrowbands [8, 26], then
transforms the received signals in the L bands into the focus-
ing frequency f0. The average of the focused signals is then
calculated and consequently decorrelates the signals [9, 28].
Here, f0 is the midband frequency of the spectrum of the re-
ceived signal and it is chosen as the focusing frequency.

The number P of the sources is estimated using the well-
known AIC or MDL criterion [29]. The following is the step-
by-step description of the proposed method which we have
called the MUSICWB method:

(1) use the beamformer method to find an initial estimate
of θk, where k = 1, . . . ,K , with K ≤ P,

(2) compute the initial values of ρk = X/ cos(θk) for k =
1, . . . ,K , where X represents the distance between the
receiver and the bottom of the tank,

(3) fill the transfer matrix
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, . . . , a

(
fn, θK , ρK

)]
,
(19)

where each component of the directional vector a( fn,
θk, ρk) for k = 1, . . . ,K is filled using (15) or (16) con-
sidering the object shape,

(4) estimate the cumulant slice matrix of the received data
C1( fn) using (7) and perform its eigendecomposition,

(5) calculate diagonal kurtosis matrix at each frequency fn
by using (7) and obtain
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(6) calculate the average of the diagonal kurtosis matrices
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(7) calculate Ĉ1( f0) = Â( f0)Us( f0)Â+( f0),
(8) form the focusing operator using the eigenvectors
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where V( fn) and V̂( f0) are the eigenvectors of the cu-
mulant matrices C1( fn) and Ĉ1( f0), respectively,

(9) form the average slice cumulant matrix C1( f0) and
perform its eigendecomposition
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(10) estimate the number P of objects using AIC or MDL
criterion with the eigenvalues of matrix C1( f0),

(11) calculate the spatial spectrum of the MUSICWB
method for estimating range and bearing of the objects
using

MUSICWB
(
f0, θk, ρk

) = 1
∥
∥a
(
f0, θk, ρk

)+
Vb
(
f0
)∥∥2

, (24)

where Vb( f0) is the eigenvector matrix of C1( f0) asso-
ciated with the (N − P) smallest eigenvalues.

5. EXPERIMENTAL SETUP

The data has been recorded using an experimental water tank
(Figure 2) in order to evaluate the performances of the devel-
oped method.

The transmitter sensor (on the left in Figure 2) is fixed
at an incident angle θinc = 60◦ and has a beamwidth equal
to 5◦. The receiver sensor (on the right in Figure 2) is omni-
directional and moves horizontally along the XX ′ axis, step
by step, from the initial to the final position (Figure 3) with a
step size d = 0.002m and takes ten positions in order to form
a uniform linear array of sensors with N = 10. The trans-
mitted signal has the following properties: impulse duration
is 15 us, the frequency band is Bf = [ fmin = 150, fmax =
250] kHz and the sampling rate is 2MHz. The duration of
the received signals is 700 us. This tank is filled with wa-
ter with Wh = 0.5m (Figure 2) and its bottom is filled
with homogeneous fine sand, where three cylinder couples
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Transmitter
sensor Receiver
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Figure 2: Experimental tank.

((O3,O4), (O5,O6), (O7,O8)) and one sphere couple (O1,O2)
(Figure 4) are buried. Table 1 summarizes the characteristics
of these objects. The acoustic wave velocity in the water tank
is c1 = 1466m/s.

The experiment configuration in the scaled tank is realis-
tic. In order to reproduce the configuration at a real scenario
(rs), we should take Wh(rs)/δ0(rs) = Wh/δ0, where δ0 = c1/ f0,
andWh(rs) is the water depth, and δ0(rs) is the wavelength in a
real scenario. For that the distance d between two consecutive
sensors, the object dimensions, and the burial depth used in
the experimental tank must be multiplied by δ0(rs)/δ0.

The cylinders used satisfy the approximation such that
they can be considered infinitely long. Indeed, their lengths
satisfy the following condition [30]:

lOk > 2
√
ρmaxδmax, (25)

where δmax � 0.01m is the maximal wavelength and ρmax is
the maximal range of all the objects

ρmax =
√
(
Hb + ddepth + αmax

)2
+ (TR)2, (26)

where Hb = 0.4m is the vertical distance between the re-
ceiver and the bottom of the tank, ddepth = 0.005m is the
burial depth of the objects, αmax = 0.02m is the outer radius
of the biggest object (object O7 or O8), and TR = 0.9m is
the horizontal distance between the transmitter and the final
position of the receiver (Figure 3), thus, ρmax = 0.99m and
lOk > 0.19m for all k = 1, . . . , 8.

The homogeneous fine sand used in this study has geoa-
coustic characteristics near to those of water. Consequently,
we can make the assumption that the objects are in a free
space. However, this assumption remains valid only when
the presence of the water/sediment interface has negligible
effects on the results. Otherwise, acoustic scattering model
including the water/sediment interface effects [31–34] must
be used. The considered objects are made of dural aluminum
with density D2 = 1800 kg/m3, the longitudinal and trans-
verse elastic-wave velocities inside the shell medium are cl =
6300m/s and ct = 3200m/s, respectively. The external fluid
is water with density D1 = 1000 kg/m3 and the internal

Air

Water

Transmitter

0.8 0.1 0.8

R
The initial and the final
positions of the receiver

Wh

x

x
0.25 Hb = 0.4

x�

x�

Ha = 0.2
Bottom of
the tank

0.66 0.54 1.09
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Figure 3: Experimental setup.
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O4 O7

O5
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O8

Figure 4: Objects.

fluid is water or air with density D3air = 1.2 10−6 kg/m3 or
D3water = 1000 kg/m3.

The experimental setup is shown in Figure 3, where all
the dimensions are given in meter. First, we have buried the
considered objects in the sand at 0.005m. Then, we have
done eight experiments that we have called Ei(Oii,Oii+1), where
i = 1, . . . , 8 and ii = 1, 3, 5, 7. Two experiments are per-
formed for each couple: one, when the receiver horizontal
axis XX ′ is fixed at 0.2m from the bottom of the tank
(E1(O1,O2), . . . ,E4(O7,O8)), the other when this axis is fixed at
0.4m from the bottom of the tank (E5(O1,O2), . . . ,E6(O7,O8)).
RR′ is a vertical axis which goes through the center of the
first object of each couple. Note that the configuration shown
in Figure 3 is associated with the experiment E2(O3,O4), where
RR′ axis goes through the object O3. Thus, for each exper-
iment, only one object couple is radiated by the transmitter
sensor. At each sensor, time-domain data corresponding only
to target echoes are collected with signal-to-noise ratio equal
to 20 dB. The typical sensor output signals recorded during
one experiment are shown in Figure 5. Figure 6 shows an ex-
ample of the power spectral density of the received signal on
fifth sensor.
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Table 1: Characteristics of the various objects (the inner radius
βOk = αOk − 0.001m, for k = 1, . . . , 8).

First couple Second couple

Spheres (O1,O2) Cylinders (O3,O4)

Outer radius (m) αO1,2 = 0.03 αO3,4 = 0.01

Length (m) —
lO3 = 0.258

lO4 = 0.69

Filled with Air Air

Separated by (m) 0.33 0.13

Third couple Fourth couple

Cylinders (O5,O6) Cylinders (O7,O8)

Outer radius (m) αO5,6 = 0.018 αO7,8 = 0.02

Length (m)
lO5 = 0.372 lO7 = 0.63

lO6 = 0.396 lO8 = 0.24

Filled with Water Air

Separated by (m) 0.16 0.06
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Figure 5: Observed sensor output signals.

6. RESULTS ANDDISCUSSION

The steps listed above in Section 4 were applied on each ex-
perimental data set, thus, an initialization of θ, using the
beamformer, and of ρ, using X/ cos(θ), has been done, where
X is the distance between the receiver axis XX ′ and the bot-
tom of the tank. The distance X can take two values Ha or
Hb. For example, for the experiment E1(O1,O2), those two pa-
rameters have been initialized by θ1 = 15◦, ρ1 = 0.28m,
and X = Ha = 0.2m. Moreover, the average of the focused
slice cumulant matrices was calculated using L = 50 frequen-
cies chosen in the frequency band of interest [ fmin, fmax]. The
data length to estimate the cumulant matrix is 1400 samples.
Thanks to the detection AIC criterion [29], two sources are
detected (P = 2). Then, a sweeping is made on the bearing
from −90◦ to 90◦ with a step of 0.1◦, as well as on the range
from 0.2 to 1.5m with a step of 0.002m. Two examples of
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Figure 6: Power spectral density of the signal received on fifth sen-
sor.

the obtained spatial spectra using the MUSICWB method
are shown in Figures 7(a)-7(b).

Table 2 summarizes the expected and the estimated range
and bearing of the objects obtained using the MUSIC
method ((13) with f1 = 200 kHz), the MUSICNB method
((14) with f1 = 200 kHz), and the MUSICWB method (24).
The indices 1 and 2 are the first and the second objects of
each couple of cylinders or spheres. The presented values are
the spatial spectrum peaks coordinate on the bearing-range
plane. Note that the bearing objects obtained after apply-
ing the MUSIC method are not exploitable. Similar results
were obtained when we applied the MUSICNB method be-
cause the received signals are correlated. However, satisfy-
ing results were obtained when we applied the MUSICWB
method, thus, bearing and range of the objects were success-
fully estimated. In order to a posteriori verify the quality of
estimation of the MUSICWB method, it is possible to use
the relative error (RE) defined as follows:

REWByi =
∣
∣yi exp − yi est

∣
∣

∣∣yi exp
∣∣ for i = 1, 2, (27)

where yi exp (resp., yi est) represents the ith expected (resp., the
ith estimated) value of θ or ρ. The obtained values of RE for θ
and ρ are given in Table 2. These values confirm the efficiency
of the proposed method.

7. CONCLUSION

In this paper, we proposed a new method to estimate both
bearing and range of the sources in a noisy environment
and in presence of correlated signals. To cope with the noise
problem, we have used higher-order statistics, thus, we have
formed the slice cumulant matrices at each frequency bin.
Then, we have applied the coherent subspace method which
consists in a frequential smoothing in order to cope with
the signal correlation problem and in forming the focus-
ing slice cumulant matrix. To estimate range and bearing,
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Figure 7: Spatial spectra of the developed method: zoom in range-
bearing plane. (a) E5(O1,O2), (b) E8(O7,O8).

the focusing slice cumulant matrix was used instead of us-
ing the spectral matrix and the exact solution of the acoustic
scattered field was used instead of the plane wave model, in
the MUSIC method. The performances of this method were
investigated through scaled tank tests associated with many
spherical and cylindrical shells buried in an homogenous fine
sand. The obtained results show that the proposed method is
superior in terms of bearing and range estimation compared
with the classical MUSIC algorithm. Range and bearing of
the objects were estimated with a significantly good accuracy
thanks to the free space assumption. Opening directions for
future work could concern mainly the performances of the
proposed method under some more realistic experimental
conditions. We could improve the scattering model by in-
cluding the water/sediment interface effects and considering

Table 2: The expected (exp) and estimated (est) values of range and
bearing objects (negative bearing is clockwise from the vertical).

E1(O1,O2) E2(O3,O4) E3(O5,O6) E4(O7,O8)

θ1 exp(◦) −26.5 −23 −33.2 −32.4
ρ1 exp(m) 0.24 0.24 0.26 0.26

θ2 exp(◦) 44 9.2 −20 5.8

ρ2 exp(m) 0.31 0.22 0.24 0.22

MUSIC

θ1 est(◦) −18 −30 −40 −22
θ2 est(◦) 30 −38 −48 −32

MUSICNB

θ1,2 est(◦) 15 −12 −28 −10
ρ1,2 est(m) 0.28 0.23 0.25 0.24

MUSICWB

θ1 est(◦) −26 −23 −33 −32
ρ1 est(m) 0.22 0.25 0.29 0.28

θ2 est(◦) 43 9 −20 6

ρ2 est(m) 0.34 0.25 0.25 0.23

REWB θ1 0.018 0 0.006 0.012

REWB ρ1 0.083 0.041 0.11 0.076

REWB θ2 0.022 0.021 0 0.034

REWB ρ2 0.096 0.13 0.041 0.045

E5(O1,O2) E6(O3,O4) E7(O5,O6) E8(O7,O8)

θ1 exp(◦) −50 −52.1 −70 −51.6
ρ1 exp(m) 0.65 0.65 1.24 0.65

θ2 exp(◦) −22 −41 −65.3 −49
ρ2 exp(m) 0.45 0.56 1.17 0.64

MUSIC

θ1 est(◦) −58 25 −40 −45
θ2 est(◦) −12 −40 −45 −45

MUSICNB

θ1,2 est(◦) −35 −45 −70 −50
ρ1,2 est(m) 0.52 0.63 1.2 0.65

MUSICWB

θ1 est(◦) −49 −52 −70 −52
ρ1 est(m) 0.65 0.63 1.21 0.63

θ2 est(◦) −22 −40 −65 −50
ρ2 est(m) 0.44 0.53 1.2 0.63

REWB θ1 0.02 0.019 0 0.007

REWB ρ1 0 0.03 0.024 0.03

REWB θ2 0 0.024 0.004 0.002

REWB ρ2 0.022 0.053 0.025 0.015

the influence of the signal-to-reverberation ratio. In order
to facilitate the implementation of the proposed method in
real-time application, the reduction of computational time
should be considered in the future study. For example, the
high-resolution methods without eigendecomposition could
be used.
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