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Image restoration is a widely studied discrete ill-posed problem. Among the many regularization methods used for treating the
problem, iterative methods have been shown to be effective. In this paper, we consider the case of a blurring function defined by
space invariant and band-limited PSF, modeled by a linear system that has a band block Toeplitz structure with band Toeplitz
blocks. In order to reduce the number of iterations required to obtain acceptable reconstructions, in [1] an inverse Toeplitz pre-
conditioner for problems with a Toeplitz structure was proposed. The cost per iteration is of O(n2 logn) operations, where n2 is
the pixel number of the 2D image. In this paper, we propose inverse preconditioners with a band Toeplitz structure, which lower
the cost to O(n2) and in experiments showed the same speed of convergence and reconstruction efficiency as the inverse Toeplitz
preconditioner.
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1. INTRODUCTION

Many image restoration problems can be modeled by the lin-
ear system

Ax = b−w, (1)

where x, b, and w represent the original image, the observed
image, and the noise, respectively. Matrix A is defined by the
so-called point spread function (PSF), which describes how
the image is blurred out. If the PSF is space invariant with
respect to translation, that is, a single pixel is blurred inde-
pendently of its location, and is bandlimited, that is, it has a
local action, matrixA turns out to have a band block Toeplitz
structure with band Toeplitz blocks (hereafter band BTTB
structure).

Since A is generally ill-conditioned, the exact solution of
the system

Ay = b (2)

may differ considerably from x even if w is small, and a reg-
ularized solution of (1) is sought. A widely used regulariza-
tion technique [2–4] suggests solving (2) by employing the

conjugate gradient (CG) method when A is positive defi-
nite or some of its generalizations for the nonpositive defi-
nite case. In fact, CG is a semiconvergent method: at first the
iteration reconstructs the low frequency components of the
original signal, then subsequently, the iteration also starts to
recover increasing frequency components, corresponding to
the noise. Thus the iteration must be stopped when the noise
components start to interfere. A general purpose precondi-
tioner, which reduces the condition number by clustering all
the eigenvalues of the preconditioned matrix around 1, is not
satisfactory in the present case. If it were applied, the signal
subspace, generated by the eigenvectors corresponding to the
largest eigenvalues, and the noise subspace, generated by the
eigenvectors corresponding to the lowest eigenvalues, would
be mixed up and the effect of the noise would appear be-
fore the image is fully reconstructed. In the present context, a
good preconditioner should reduce the number of iterations
required to reconstruct the information from the signal sub-
space, that is, it should only cluster the largest eigenvalues
around 1, and leave the others out of the cluster.

This requires knowledge (or at least an estimate) of a pa-
rameter τ > 0, called the regularization parameter, such that
the eigenvalues of the matrixAwhich have amodulus greater
than τ correspond to the signal subspace. Techniques which
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allow for an estimate of τ are described in the literature (see,
e.g., [5]).

With a matrix A having a BTTB structure, the product
Az (required in the application of CG) can be computed
by means of the fast Fourier transform in O(n2 logn) op-
erations, where n2 is the number of rows and columns of
A. Then the construction of the preconditioner and its use
should have costs not exceeding O(n2 logn) operations. The
preconditioners based on circulant matrices (see the exten-
sive bibliography in [6]) satisfy this cost requirement, im-
prove the convergence speed, and can be easily adapted to
cope with the noise. The cost of the circulant precondition-
ers cannot be lowered when A has a band structure too, as in
the present case. Band Toeplitz preconditioners, which have
a cost per iteration of the same order as the cost of comput-
ing Az (i.e., O(n2)), without any regularizing property, have
been proposed in [7–9].

Band Toeplitz preconditioners with a regularizing prop-
erty and with a cost per iteration O(n2) have been proposed
in [10]. The reduction in cost was achieved by performing
approximate spectral factorizations of a trigonometric bi-
variate polynomial which, through a fit technique, regular-
izes the symbol function associated with A. In this way, the
preconditioner is expressed as the product of two band tri-
angular factors.

Another strategy with the cost O(n2 logn) consists in the
use of an inverse Toeplitz preconditioner (see [11] for the
general purpose preconditioner and [1] for the regularizing
preconditioner).

In this paper, we consider some inverse preconditioners
which have a band BTTB structure. We compare them with
the inverse Toeplitz preconditioner of [1] and show that the
reduction in cost per iteration to O(n2) operations does not
imply a substantial decrease in the speed of convergence or
in the reconstruction efficiency. The structure of matrix A is
defined in detail in Section 2; three different banded precon-
ditioners are described in Section 3, together with the inverse
Toeplitz preconditioner. Then the banded preconditioners
are tested and compared with the Inverse Toeplitz and the
results are shown in Section 4.

2. PRELIMINARIES

We assume here that the original image has size n×n, hence x,
b, andw are n2 vectors andA is an n2×n2 matrix. Let the PSF
describing the blurring be space invariant and bandlimited.
The PSF can thus be represented by amask of finite sizeM =
(mk, j),−μ ≤ k, j ≤ μ, with μ < n. Matrix A has a band BTTB
structure with bandwidth μ of the form

A =

⎡
⎢⎢⎢⎢⎢⎣

A0 A1 . . . An−1

A−1
. . .

. . .
...

...
. . .

. . . A1

A−n+1 . . . A−1 A0

⎤
⎥⎥⎥⎥⎥⎦
, Ak = O for |k| > μ,

(3)

where

Ak =

⎡
⎢⎢⎢⎢⎢⎣

ak,0 ak,1 . . . ak,n−1

ak,−1
. . .

. . .
...

...
. . .

. . . ak,1
ak,−n+1 . . . ak,−1 ak,0

⎤
⎥⎥⎥⎥⎥⎦
,

ak, j =
⎧⎨
⎩
mk, j for |k|, | j| ≤ μ,

0 otherwise.

(4)

We assume that A is symmetric, that is, mk, j = m−k,− j for
k, j = −μ, . . . ,μ. In addition, we assume that M is nonnega-
tive and normalized, that is,M ≥ O and

∑
k, j mk, j = 1.

We look for a preconditioner P, to be applied as follows:

PAy = Pb. (5)

Hence P is an inverse preconditioner, like the one introduced
in [1].

If A is positive definite, system (5) is solved by CG. Oth-
erwise, we assume that its eigenvalues verify λ ≥ −τ; in this
case system (5) is solved by MR-II [2, 12] (we have chosen
MR-II instead of CGNR because in our numerical experi-
ence CGNR appears to be slower even if skillfully precon-
ditioned). Both CG and MR-II methods require one matrix-
vector product per iteration. For BTTB matrices, the prod-
uct can be computed by an ad hoc procedure relying on FFT,
with cost O(n2 logn). However, in our case, where a band is
present, the direct computation, performed inO(μ2n2) oper-
ations with μ constant, may be advantageous.

Even with a nonpositive definite A, the preconditioner P
should be chosen positive definite and P−1 should approxi-
mate A in a regularizing way.

The symbol function of A is

f (θ,η) =
μ∑

k, j=−μ
mk, j e

i(kθ+ jη), (6)

where i is the complex unit, such that i2 = −1. Since A is
symmetric, f is a real function in the Wiener class. The clas-
sical Grenander and Szegő theorem [13, page 64] on the spec-
trum of symmetric Toeplitz matrices, extended to the 2D case
in [14, Theorm 6.4.1], states that for any bounded function
F uniformly continuous on R it holds that

lim
n→∞

1
n2

n2∑

i=1
F
(
λi(A)

) = 1
4π2

∫∫ 2π

0
F
(
f (θ,η)

)
dθ dη, (7)

where λi(A) are the eigenvalues of A. Moreover, if fmin and
fmax are the minimum and maximum values of f , respec-
tively, (in our case fmax = 1) with fmin < fmax, then for any
n,

fmin < λi(A) < fmax for i = 1, . . . ,n2. (8)

In particular, if f is positive, then fmin > 0 and A is positive
definite.
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In order to construct a good preconditioner for matrixA,
an approximate knowledge of the eigenvalues of A should be
available. Given an integerN , let

SN =
{
θr = 2rπ

N
, r = 0, . . . ,N − 1

}
(9)

be a set of nodes. From the previous theorem, if N is large,
the set of N 2 values f (θr ,ηs), with (θr ,ηs) ∈ S2

N , can be
assumed to be an acceptable approximation of the spectrum
of the eigenvalues of A.

In reality, for (θr ,ηs) ∈ S2
N , the values

f
(
θr ,ηs

) =
μ∑

k, j=−μ
mk, j e

i(kθr+ jηs)

=
μ∑

k, j=−μ
mk, jω

kr+ js
N , ωN = ei2π/N ,

(10)

are the eigenvalues of a 2D circulant matrix whose first row
embeds the elements of the mask M which have been suit-
ably rotated. Hence they can be computed using a two-
dimensional fast Fourier transform (FFT2d) of order N . In
fact, consider theN ×N matrix R whose entries are

rk, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

mk, j if 0 ≤ k, j ≤ μ,

mk, j−N if 0 ≤ k ≤ μ, N − μ ≤ j ≤ N − 1,

mk−N , j ifN − μ ≤ k ≤ N − 1, 0 ≤ j ≤ μ,

mk−N , j−N ifN − μ ≤ k, j ≤ N − 1,

0 otherwise.
(11)

Matrix S = N · FFT2d(R) contains the values f (θr ,ηs) for
r, s = 0, . . . ,N − 1. The cost of this computation is
O(N 2 logN ). The computation of f (θr ,ηs) for r, s = 0, . . . ,
N − 1, made by directly applying (10), has a cost O(μ2N 2),
where μ does not depend onN .

3. REGULARIZING INVERSE PRECONDITIONERS

Let τ > 0 be the regularization parameter (chosen in such a
way that λi(A) ≥ −τ for i = 1, . . . ,n2). Define

Γτ =
{
(θ,η) ∈ [0, 2π]2 : f (θ,η) ≥ τ

}
,

fτ(θ,η) =
⎧⎨
⎩
f (θ,η) for (θ,η) ∈ Γτ ,

τ otherwise.

(12)

Function fτ(θ,η) is continuous and strictly positive on
[0, 2π]2. We can then define the functions

gτ(θ,η) = 1
fτ(θ,η)

,

hτ(θ,η) = gτ(θ,η) f (θ,η).
(13)

Function hτ(θ,η) assumes value 1 on Γτ and values f (θ,η)/
τ < 1 elsewhere.

Let

ck, j = 1
4π2

∫∫ 2π

0
gτ(θ,η)e−i(kθ+ jη)dθ dη (14)

be the (k, j)th Fourier coefficient of gτ(θ,η) and let

∞∑

k, j=−∞
ck, j e

i(kθ+ jη) (15)

be the trigonometric expansion of gτ(θ,η). Since gτ(θ,η) is a
continuous periodic function on [0, 2π]2 and has a bounded
generalized derivative, gτ(θ,η) is equal to its trigonometric
expansion, which is uniformly convergent.

Let Gτ and Hτ be the n2 × n2 BTTB matrices whose sym-
bols are gτ(θ,η) and hτ(θ,η), respectively. Since A is sym-
metric, Gτ is symmetric as well, that is, ck, j = c−k,− j . In ac-
cordance with Grenander and Szegő theorem, for n → ∞,
matrix Hτ has a cluster of eigenvalues around 1 correspond-
ing to the eigenvalues of A greater or equal to τ. The other
eigenvalues are generally not clustered and have a modulus
lower than 1. By direct computation, it is easy to verify that
matrix GτA − Hτ has rank ρ = 4μ(n − μ). Then for n → ∞
also matrix GτA has a cluster around 1. No more than 2ρ
eigenvalues of GτA leave the cluster of Hτ and in particular
no more than ρ become greater than max hτ = 1 (see [15,
Theorem 10.3.1 and Corollary 10.3.2]). Many similar results
can be found in the literature on preconditioners for Toeplitz
systems (see, e.g., [1, 5, 6, 11, 16, 17]).

It follows that for a sufficiently large n, matrix Gτ would
be a good regularizing inverse preconditioner. In general, the
trigonometric expansion of gτ(θ,η) is not finite and Gτ does
not have a band structure. On the contrary, the precondition-
ers we are interested in should have a band BTTB structure,
which would lead to a cost per iteration O(n2).

3.1. Least-squares approximation

In this subsection, we examine different banded approxima-
tions of Gτ which can be obtained through a fit procedure.
Similar procedures have been followed in [10, 16] for the
construction of banded direct preconditioners.

The choice of the bandwidth of the preconditioner
should take into consideration the rate of decay of ck, j for
growing indices k and j: the faster the decay, the smaller
the bandwidth. Since function f is bandlimited with band-
width μ, it is reasonable to expect that a bandwidth close to
μ can be chosen. We look for a preconditioner with the same
bandwidth μ as the given matrix A. This choice is also influ-
enced by computational considerations and its suitability is
supported by the numerical experimentation of Section 4. In
any case, what follows would hold for any choice of constant
value of the bandwidth.

Let Pμ be the set of bivariate trigonometric polynomials
of the form

p(θ,η) =
μ∑

k, j=−μ
dk, j e

i(kθ+ jη), (16)



4 EURASIP Journal on Advances in Signal Processing

such that p(θ,η) > 0 for any (θ,η). We consider the problem

min
p∈Pμ

∥∥w(θ,η)(p(θ,η)− gτ(θ,η)
)∥∥, (17)

where w(θ,η) > 0 is a weight function (we choose the Eu-
clidean norm).

Various choices of the weight w(θ,η) can be considered.

(1) If w(θ,η) ≡ 1, the absolute error is minimized, that is,
problem (17) becomes

min
p∈Pμ

∥∥p(θ,η)− gτ(θ,η)
∥∥. (18)

In this way, all the values of gτ(θ,η) are given the same
importance when the fit is computed.

(2) We can get a better result if we put more emphasis
on the greatest values of fτ(θ,η). In fact, the largest
eigenvalues of A are transformed into eigenvalues of
the preconditioned matrix which are clustered around
1, while the smallest eigenvalues of A are transformed
into eigenvalues lower than 1, which can lie anywhere,
provided they are outside the cluster. This result can
be obtained by putting w(θ,η) = fτ(θ,η). In this way,
the relative error is minimized, that is, problem (17)
becomes

min
p∈Pμ

∥∥∥∥∥
p(θ,η)− gτ(θ,η)

gτ(θ,η)

∥∥∥∥∥ = min
p∈Pμ

∥∥p(θ,η) fτ(θ,η)− 1
∥∥.

(19)

(3) Since τ ≤ fτ(θ,η) ≤ 1 for any (θ,η), the largest val-
ues of fτ(θ,η) are even more weighted by choosing a
function similar to the Chebyshev weight of the form

w(θ,η) = (1− ϕ f 2τ (θ,η)
)−1/2

(20)

for a constant ϕ slightly lower than 1 (in our experi-
ments we took ϕ = 0.99).

The solution of problem (17) can be approximated by a con-
strained discrete least-squares procedure on the N 2 nodes
(θr ,ηs) ∈ S2

N , with N > 2μ + 1 and independent from n.
Let p̂(θ,η) be the polynomial thus computed. The precondi-
tioner we look for is generated by p̂(θ,η) and, according to
[18], we call it an optimal preconditioner when it is obtained
by solving problem (18) and a superoptimal preconditioner
when it is obtained by solving problem (19). We call the third
one a Chebyshev preconditioner.

Let P be the n2×n2 BTTBmatrix generated by the symbol
p̂(θ,η). The cluster around 1 of the preconditioned matrix is
modified when Gτ is replaced by P. Let

ν = max
(θ,η)∈Γτ

∣∣ p̂(θ,η)− gτ(θ,η)
∣∣. (21)

Thus
∣∣ p̂(θ,η) f (θ,η)− hτ(θ,η)

∣∣ < ν for any (θ,η) ∈ Γτ .
(22)

Hence matrix Kτ whose symbol function is p̂(θ,η) f (θ,η)
has a cluster of eigenvalues around 1 (corresponding to the
eigenvalues of A greater or equal to τ) of size ν and the ma-
trix PA − Kτ has rank ρ. As before, we can conclude that at
most 2ρ eigenvalues leave the cluster of Kτ .

3.2. Unconstrained approximation

First, we examine the approximation one would obtain if the

constraint p(θ,η) > 0 were not imposed. The coefficients d̂k, j
of p̂(θ,η) satisfy the (2μ + 1)2 × (2μ + 1)2 linear system

μ∑

k, j=−μ
dk, j

N−1∑

r,s=0
w2
r,se

i((k+k′)θr+( j+ j′)ηs)

=
N−1∑

r,s=0
w2
r,sgr,se

i(k′θr+ j′ηs) for k′, j′ = −μ, . . . ,μ,
(23)

where wr,s = w(θr ,ηs) and gr,s = gτ(θr ,ηs). When the nodes
are chosen in S2

N , system (23) becomes

μ∑

k, j=−μ
dk, j

N−1∑

r,s=0
w2
r,sω

r(k+k′)+s( j+ j′)
N

=
N−1∑

r,s=0
w2
r,sgr,sω

rk′+s j′
N for k′, j′ = −μ, . . . ,μ.

(24)

The elements of the coefficient matrix of the system only de-
pend on the sums k + k′ and j + j′ of the indices. Hence
this matrix is a block Hankel matrix and the system can be
solved by special fast techniques [19]. The computation of
the required entries, once the values fr,s have been computed,
has a cost O(μ2N 2) if the sums are directly computed and a
cost O(N 2 logN ) if the computation is made through the
Fourier transforms.

When the weight w(θ,η) ≡ 1 is chosen, we have

d̂k, j = 1
N 2

N−1∑

r,s=0
gr,sω

−(rk+s j)
N for k, j = −μ, . . . ,μ. (25)

The following theorem connects the polynomial p̂(θ,η) with

the coefficients d̂k, j given in (25) to a finite approximation of
the trigonometric polynomial (15).

Theorem 1. The polynomial p̂(θ,η), which approximates the
minimum of ‖p(θ,η) − gτ(θ,η)‖ among all the bivariate
trigonometric polynomials of degree μ by discretizing on N 2

nodes, coincides with the approximate truncated expansion of
gτ(θ,η):

p̃(θ,η) =
μ∑

k, j=−μ
c̃k, j e

i(kθ+ jη), (26)

where the coefficients c̃k, j are computed by applying the rectan-
gular rule to (14) on the set of nodes (θr ,ηs) ∈ S2

N , that is,

c̃k, j = 1
N 2

N−1∑

r,s=0
gτ
(
θr ,ηs

)
e−i(kθr+ jηs) for k, j = −μ, . . . ,μ.

(27)

Proof. LetN > 2μ+1 (we assume, without loss of generality,
thatN is even). According to [20, Section 9.2.2], the polyno-
mial

q(θ,η) =
N /2∑

k, j=−N /2+1

c̃k, j e
i(kθ+ jη), (28)
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with the coefficients c̃k, j given in (27) interpolates gτ(θ,η) on
the N 2 nodes (θr ,ηs) ∈ S2

N , and the polynomial (26) with
the coefficients given by (27) (i.e., the truncation at the μth
term of (28)) coincides with the polynomial p̂(θ,η), which
realizes the minimum of ‖p(θ,η) − gτ(θ,η)‖ discretized on
the sameN 2 nodes.

The use of the rectangular rule is suggested in [11].

3.3. Enforcing the positivity

Even if all the values gr,s are positive, the polynomial obtained
by solving system (24) is not guaranteed to satisfy the posi-
tivity constraint p(θ,η) > 0. We could impose the Karush-
Kuhn-Tucker conditions to problem (17) discretized on all
the N 2 nodes. Unfortunately, this approach, besides being
computationally demanding, would not suffice, because of
the oscillations characteristic of a trigonometric polynomial.
On the other hand, the most dangerous oscillations are those
occurring near the minimum point of function gτ , that is,
in the neighborhood of (0, 0). We expect this phenomenon
to happen more frequently with the optimal preconditioner,
since in the case of the superoptimal and Chebyshev precon-
ditioners this problem is, to some extent, prevented by the
presence of a heavy weight in the neighborhood of (0, 0).
Other oscillations frequently occur near the points where the
function f is cut by τ, but they do not appear to threaten the
positivity of the fit, due to the large values of 1/τ required in
the applications.

These considerations suggest a heuristic approach privi-
leging the positivity in (0, 0). Since the necessary condition
p(0, 0) > 0 is too weak, we replace it by the stronger condi-
tion p(0, 0) ≥ pmin for a suitable constant pmin > 0 and ne-
glect other positivity conditions. The new simpler problem is
then solved by a constrained discrete least squares procedure.

The coefficients d̂k, j and the Karush-Kuhn-Tucker parameter
ψ satisfy

μ∑

k, j=−μ
dk, j

N−1∑

r,s=0
w2
r,sω

r(k+k′)+s( j+ j′)
N

=
N−1∑

r,s=0
w2
r,sgr,sω

rk′+s j′
N + ψ for k′, j′ = −μ, . . . ,μ,

ψ

( μ∑

k, j=−μ
dk, j − pmin

)
= 0, ψ ≥ 0,

μ∑

k, j=−μ
dk, j − pmin ≥ 0.

(29)

The coefficients d̂k, j found by solving (24) correspond to
the null value of the parameter ψ and can be accepted if∑μ

k, j=−μ d̂k, j ≥ pmin. Otherwise, the equation
∑μ

k, j=−μ dk, j =
pmin is added to the first 2μ + 1 equations and the enlarged
system is solved.

3.4. The inverse Toeplitz preconditioner

The approach followed in this paper is similar to the one pro-
posed in [1], where the preconditioner does not have a band
structure, since its bandwidth is set to n, and N is set to 2n.
In this case, the values f (θr ,ηs) are the eigenvalues of the cir-
culant matrix whose first row elements are the entries of R
defined in (11). The values gτ(θr ,ηs) are set equal to the in-
verse of the eigenvalues, modified for the regularization. Ac-
tually, in [1] when f (θr ,ηs) < τ these values are set to 1 in-
stead of 1/τ, but we believe that a continuous function in (14)
makes the approximation of the integral more effective (see
also [21]). The preconditioner P, called inverse Toeplitz pre-
conditioner, is then extracted from the circulant matrix with
gτ(θr ,ηs) as eigenvalues. The cost for both the construction
of P and per iteration is O(n2 logn).

Within circulant preconditioners with regularizing prop-
erties, superoptimal preconditioners have been proposed in
[22, 23]. They are independent of the regularization param-
eter τ and have a cost per iteration of O(n2 logn).

3.5. Analysis of the cost per iteration

The cost we analyze here takes into account the complexity
of one iteration of the preconditioned methods, neglecting
the cost for the construction of the preconditioner, which is
made only once. Each iteration requires two matrix-vector
products, one by the coefficient matrix and one by the pre-
conditioner. The product by a banded preconditioner, with
bandwidth μ, has a cost upper bounded by cb = (2μ + 1)2n2.
The product by the inverse Toeplitz preconditioner requires
two applications of the discrete Fourier transform (one di-
rect and one inverse) to a vector of size (2n)2, represent-
ing the first column of a block circulant matrix of double
dimension, and one componentwise multiplication of vec-
tors of size (2n)2 (see [12] for details). By using the standard
complexity bound of 5N log2N operations for the radix-2
FFT algorithm applied to a vector of size N , and by drop-
ping the lower order terms, we see that the cost of the prod-
uct for the Inverse Toeplitz preconditioner amounts to cT =
(2 × 5 log2(2n)

2 + 1)(2n)2. It follows that cb < cT if μ <√
10 log2(2n)

2 + 1 − 1/2. For example, in the case n = 1024,
cb < cT for μ ≤ 14.

4. NUMERICAL EXPERIMENTS

The aim of the experiments was to test the effectiveness of
the banded preconditioners. In other words, we wanted to
check whether the preconditioned method can obtain recon-
structions comparable with those of the unpreconditioned
method at a lower computational cost. In order to be able to
compare the results objectively (i.e., numerically), we worked
in a simulated context where an exact solution was assumed
to be available and the error of the reconstructions could be
computed at any iteration. We also wanted to compare the
performance of the banded preconditioners with that of the
inverse Toeplitz preconditioner.
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(a) (b)

Figure 1: Original images.

The experiments performed with positive definite matri-
ces showed that the number of iterations required by an un-
preconditioned CG to obtain acceptable reconstructions is
very small, especially for higher noise levels. Hence, in the
positive definite case the use of a preconditioner does not
provide much of a margin for improvement. For this rea-
son, below we only show the results obtained by applying the
preconditioned MR-II to the symmetric indefinite problems,
where more iterations are generally required.

4.1. The test problems

Two images were used for the experiments. The first was the
128×128 image shown in Figure 1(a). This data, widely used
in the literature for testing image restoration algorithms, can
be found in the package RestoreTools [24]. The second was
the 1024× 1024 meteorological image shown in Figure 1(b),
which can be found in the Monterey Naval Research Labora-
tory site [25].

We considered one mask obtained by measurements and
three analytically defined masks. The first one, Mask 1, was
the mask used in [24], truncated at bandwidth μ = 8. The
three others were of the form

mi, j = γ exp
(− α(i + j)2 − β(i− j)2

)
, i, j = −μ, . . . ,μ,

(30)

where α,β, γ are positive parameters. The entries of M were
scaled by the constant γ in such a way that

∑
i, j mi, j = 1. Once

again the bandwidth was set to μ = 8. The masks have differ-
ent properties, according to the choice of parameters α and β.
The following choices were considered: Mask 2 for α = 0.04
and β = 0.02, Mask 3 for α = 0.01 and β = 0.4, Mask 4 for
α = 0.019 and β = 0.017. Mask 4 is a smooth approximation
of Mask 1.

The noisy image b was obtained by computing Ax + w,
where w is a vector of randomly generated entries, with nor-
mal distribution and mean 0, scaled in such a way that the
noise level � = ‖w‖2/‖Ax‖2 was equal to an assigned quan-
tity � = 10−t , with t ∈ [2, 4].

In general, for a given noise level, smoother masks, such
as the exponential ones, required less iterations to achieve an
acceptable reconstruction than nonsmooth ones, likeMask 1.

4.2. Selection of parameters

The banded preconditioners depend on three parameters:
the regularization parameter τ, the number N 2 of nodes for
the fit, and the constant pmin used to enforce the positivity of
the fit.

As is well known, a suitable value of the parameter τ is
fundamental for the efficiency of any regularizing precon-
ditioner. To find such a value, two different lines could be
followed: (a) in a simulated context one can find the best
value of τ, that is, that particular value for which the precon-
ditioner computes an acceptable solution in the minimum
number of iterations, and (b) even in a simulated context
one can use a practical approach, employing one of the pro-
cedures described in the literature, such as a method based
on the L-curve [1] or the more general method based on the
FFT of the right-hand side noisy vector [5]. For a given prob-
lem, line (a) may lead to different values of τ according to
the particular preconditioner used, and this would prevent
an objective comparison, which would be useful for solving
problems arising in nonsimulated contexts.

We preferred a practical technique and used the one de-
scribed in Section 5 of [5]. It allowed us to estimate the di-
mension of the noise and signal subspaces by only exploiting
the information derived from the observed image and ma-
trix A, independently of the preconditioner. This technique
generally leads to reasonable values for the regularization pa-
rameter τ. The values of τ found in this way are aimed at
only clusterizing the eigenvalues that correspond to the signal
subspace, leaving the eigenvalues of the transient and noise
subspaces outside. In reality, the presence of the outliers al-
ters the situation somewhat. For the test problems taken into
consideration, we verified that for the computed values of τ,
the condition −τ ≤ fmin holds, where fmin is the minimum
value of the symbol function f .

Regarding parameter N , we note that great accuracy in

the approximation of the coefficients d̂k, j of p̂(θ,η) is not
required, due to the fact that this polynomial is in any case
an approximation of gτ(θ,η). Thus the choice of a suitable
value of N is not so critical, as the ad hoc experiment in
the next subsection shows. As a matter of fact, it appears
that the speed of convergence of the preconditioned method
does not vary much when N is increased, suggesting that a
choice of N not much greater than the bound 2μ + 2 is ade-
quate.

Finally, we might think that tuning a good value for
pmin is difficult, because the polynomial p(θ,η) obtained
from small values of pmin may be nonpositive, and poly-
nomials corresponding to large values of pmin may be un-
suitable for our preconditioning purposes, even if they are
positive. But the experiment showed that it is not so dif-
ficult. In fact, in the case of the superoptimal and Cheby-
shev preconditioners we obtained satisfactory results with-
out having to apply the heuristic approach proposed in
Section 3.3. Moreover, in the case of the optimal pre-
conditioner, even the small translation caused by setting
pmin = 1 was sufficient to get a positive polynomial
p(θ,η).
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Table 1: Number of iterations varyingN for Mask 1, with τ = 0.07
for � = 10−2, τ = 0.05 for � = 10−2.5, and τ = 0.03 for � = 10−3.

Noise level 10−2 10−2.5 10−3

N 18 24 30 18 24 30 18 24 30

Optimal 8 10 12 22 26 29 58 73 65

Superopt. 7 7 7 17 21 19 42 52 48

Chebyshev 8 10 12 22 26 27 57 69 64

Table 2: Number of iterations varying N for Mask 2, with τ = 0.1
for � = 10−3, τ = 0.09 for � = 10−3.5, and τ = 0.08 for � = 10−4.

Noise level 10−3 10−3.5 10−3

N 18 24 30 18 24 30 18 24 30

Optimal 10 11 10 25 26 24 68 72 68

Superopt. 10 10 10 25 24 24 68 67 67

Chebyshev 10 10 10 25 25 25 68 69 68

4.3. Performancemeasures

Each problemwas first solved without preconditioning in or-
der to determine the reconstruction efficiency limit. By de-
noting with x(i) the vector obtained at the ith iteration start-
ing with x(0) = 0 and with e(i) = ‖x(i) − x‖2/‖x‖2 the rela-
tive error, we considered the minimum error em = mini e(i).
The quantity E = 1.05em is taken as the reference value, in
the sense that any approximated image with an error lower
than E is considered as an acceptable reconstruction. The in-
dex I of the first acceptable iteration is the reference index.
The value I appears to be very close to the number of iter-
ations that can be made before the noise starts to contami-
nate the reconstructed image. Since the cost per iteration of
a banded preconditioned method is twice the cost of the un-
preconditioned one, preconditioners computing acceptable
reconstructions with a number of iterations lower than I/2
are considered effective.

The results obtained in three different sets of experiments
are summarized in the tables, where the minimum iteration
numbers κ such that e(κ) ≤ E are shown. The caption of
each table lists, for each noise level, the corresponding τ. The
heuristic described in Section 3.3 was required only for the
optimal preconditioner and it was applied with pmin = 1.

A first set of experiments was carried out on the first im-
age in order to analyze the effects of the choice of N on the
performance of the banded preconditioners. The masks used
here were Mask 1 for noise levels 10−2, 10−2.5 and 10−3, and
Mask 2 for noise levels 10−3, 10−3.5, and 10−4. The three val-
ues 2μ+2, 2μ+8, and 2μ+14 were chosen forN . The results
are shown in Tables 1 and 2. It appears that the different val-
ues of N do not affect the results much, hence a value not
much greater than 2μ + 2 is suggested forN .

The second set of experiments too was carried out on the
first image. All the masks and the banded preconditioners
were considered, together with the inverse Toeplitz precondi-
tioner. The valueN = 24 was chosen. The results are shown
in Tables 3 and 4. We observe that the overall behavior of

Table 3: Number of iterations for all the methods. Mask 1, with
τ = 0.07 for � = 10−2, τ = 0.05 for � = 10−2.5, and τ = 0.03
for � = 10−3. Mask 2, with τ = 0.18 for � = 10−2, τ = 0.14 for
� = 10−2.5, and τ = 0.1 for � = 10−3.

Noise level
Mask 1 Mask 2

10−2 10−2.5 10−3 10−2 10−2.5 10−3

Ref. index I 24 63 169 12 20 29

Optimal 10 26 73 6 8 11

Superopt. 7 21 52 5 7 10

Chebyshev 10 26 69 5 8 10

Inv. Toep. 6 19 49 4 7 9

Table 4: Number of iterations for all the methods. Mask 3, with
τ = 0.12 for � = 10−3, τ = 0.1 for � = 10−3.5, and τ = 0.08 for
� = 10−4. Mask 4, with τ = 0.08 for � = 10−3, and τ = 0.06 for
� = 10−3.5, τ = 0.04 for � = 10−4.

Noise level
Mask 3 Mask 4

10−3 10−3.5 10−4 10−3 10−3.5 10−4

Ref. index I 53 155 485 44 146 655

Optimal 24 62 180 15 49 222

Superopt. 21 58 175 13 47 206

Chebyshev 23 61 180 15 49 207

Inv. Toep. 21 59 183 12 47 207

the banded preconditioners does not differ much from that
of the inverse Toeplitz preconditioner and shows comparable
reconstruction efficiency and speed of convergence. In par-
ticular, we note that the margin for improvement increases
when the noise level decreases, as shown in Table 4, and that
in general the superoptimal preconditioner can be advised.

Figure 2(a) shows the noisy image, obtained by blurring
the original image of Figure 1(a) with Mask 4 and noise level
10−3.5, together with the images reconstructed with the in-
verse Toeplitz preconditioner (Figure 2(b)) and with the su-
peroptimal preconditioner (Figure 2(c)). They are both ap-
plied with the value τ and the number of iterations indicated
in Table 4. The two reconstructions appear to be very similar.

The third set of experiments was aimed at showing that
the equivalence (in terms of the numbers of iterations re-
quired to get the same acceptable reconstruction) of the
banded preconditioners and the inverse Toeplitz precondi-
tioner, verified for the size n = 128, also holds for larger di-
mensions, which are of interest in the applications. For this
purpose, the second image with size n = 1024 was chosen.
Mask 3 and the three noise levels � = 10−3, � = 10−3.5, and
� = 10−4 were considered. The valueN = 20 was chosen. In
Table 5, the results of the comparison between the superop-
timal preconditioner and the inverse Toeplitz preconditioner
are shown.

The numbers of iterations required by the two precondi-
tioners are comparable. The cost of the matrix-vector prod-
uct is cb = 289 220 for the superoptimal and cT = 884 220 for
inverse Toeplitz, hence cT ∼ 3cb.
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(a) (b) (c)

Figure 2: (a) Image blurred with Mask 4 and noise level 10−3.5, (b) reconstructed images with inverse Toeplitz preconditioner and (c) with
superoptimal preconditioner.

Table 5: Number of iterations required for a large image. Mask 3,
with τ = 0.1 for � = 10−3, τ = 0.08 for � = 10−3.5, and τ = 0.06 for
� = 10−4.

Noise level 10−3 10−3.5 10−4

Ref. index I 14 31 66

Superopt. 5 12 26

Inv. Toep. 6 12 25

5. CONCLUSIONS

The proposed banded preconditioners appear to be effective
compared to the unpreconditioned method. They show the
same performances as the inverse Toeplitz preconditioner,
but the cost per iteration of a banded preconditioner isO(n2)
operations, while the cost per iteration of the inverse Toeplitz
preconditioner is O(n2 logn). The constants hidden in the
O notation are such that the banded preconditioners result
competitive with the inverse Toeplitz preconditioner already
for sizes of practical interest.
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