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This paper presents a feature-list cross-correlation algorithm based on: a common feature extraction algorithm, a transformation
of the results into a feature-list representation form, and a list-based cross-correlation algorithm. The feature-list cross-correlation
algorithms are compared with known results of the common cross-correlation algorithms. Therefore, simple test images con-
taining different objects under changing image conditions and with several image distortions are used. In addition, a medical
application is used to verify the results. The results are analyzed by means of curve progression of coefficients and curve pro-
gression of peak signal-to-noise ratio (PSNR). As a result, the presented feature list cross-correlation algorithms are sensitive to all
changes of image conditions. Therefore, it is possible to separate objects that are similar but not equal. Because of the high quantity
of feature points and the strong PSNR, the loss of a few feature points does not have a significant influence on the detection results.
These results are confirmed by a successfully applied medical application. The calculation time of the feature list cross-correlation
algorithms only depends on the length of the feature-lists. The amount of feature points is much less than the number of pixels
in the image. Therefore, the feature-list cross-correlation algorithms are faster than common cross-correlation algorithms. Better
image conditions tend to reduce the size of the feature-list. Hence, the processing time decreases considerably.
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1. INTRODUCTION

The two-dimensional cross-correlation is a simple and ro-
bust algorithm used to solve different problems in the field
of image processing. However, when images are rotated,
scaled, or include other image distortions the computation
time increases considerably. Furthermore, extensive changes
in brightness, contrast, or strong outliers cause false results
[1]. Because of this, optimized algorithms have been de-
veloped, namely, the cross-correlation algorithm based on
least squared error [2], the block-matching algorithms [3],
techniques based on the Fourier transform [4], wavelet-
based techniques [5], and feature-based techniques [2, 6-10].
These algorithms are used for many problems such as mo-
tion estimation [11], video coding [12], target detection [13],
character recognition [8], image registration [14], or image
fusion [15]. In [16], a summary of visual tracking techniques
and problems with focus on motion estimation in log-polar
images is presented. Some references for motion estimation
on Cartesian images can be found in [17].

Similar to [6, 18, 19], in this paper single feature points
are saved in a feature list, along with their positions and
the value of the feature. In contrast to the earlier described
methods where single selected points with certain features
were used, this paper presents a threshold-based selection
of the feature points. Additionally, the proposed method
allows the use of simple feature extraction algorithms such
as Canny or Laplace of Gaussian edge detection [20, 21]. The
applicability is shown for the Sobel operator. However, other
feature extraction algorithms are also possible [9, 22, 23].

The matching algorithms are based on the two-dimen-
sional cross-correlation algorithm. It has been adapted to the
list-based cross-correlation algorithm. The definition of this
algorithm is similar to the discrete generalized Radon trans-
form [24]. However, there are some distinctions. Firstly, the
aim of the Radon transform [25] is the transformation into
a parameter domain whereas the aim of the list-based cross-
correlation is the calculation of the coefficients of the two
dimensional cross-correlation. The Hough transform can be
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interpreted as a special case of the Radon transform [18, 19].
Hence, usually binary images are used instead. The literature
also presents improvements of the Hough transform or
Radon transform with respect to the cross-correlation
[19, 26, 27]. In this paper, cross-correlation between two
grayscale images is in the focus of the analysis. Secondly,
the generalized Hough transform uses a reference table that
characterizes a template shape [28, 29], which is accurately
selected while the presented algorithm initially uses the
whole image and all gray-scale values. It is only due to the
attenuation of the processing effort that simple feature-
values are used. Also different forms of cross-correlation
are analyzed. The binary cross-correlation is similar to
cross-correlation using the Hough transform. But different
possibilities for measuring the difference values for the
cross-correlation are not considered. This paper considers
as an example an algorithm based on the difference. Other
distance measurements such as mean-squared error are
possible, by using the list-based cross-correlation. Thirdly, in
[19, 26] the relation between the Radon transform and the
cross-correlation is shown. However, in these works only the
template is transformed into another representation form
and the pixel representation of the image remains unaffected.
The calculation is performed for all the pixels in the image. In
this paper, the template and the image are transformed into
a list representation form. The list-based algorithms only use
these lists to calculate a two-dimensional cross-correlation.

Zero values do not contribute to the result of a cross-
correlation. Therefore, only image points above a threshold
are used and only these required positions are calculated.
This is also a major advantage of a technique called image
point mapping, which is presented in [24]. This image point
mapping is used to calculate the discrete generalized Radon
transform.

In this paper, the feature-list cross-correlation algo-
rithms are compared with the common cross-correlation
algorithms. In the following section, the principle of the
list-based cross-correlation algorithm is presented and the
feature-list cross-correlation algorithm is described. The
methods of comparison used and the test images with partic-
ular image distortions are presented afterwards. Additionally,
a medical application is described, which is used to verify the
results of the different algorithms. The results and the discus-
sion are presented afterwards.

2. ALGORITHMS AND METHODS

2.1. List representation ofimages

In the field of image processing, a digital image b can be de-
fined as a two-dimensional array of colour points v (pixels).
The positions of the pixels are determined by the topology.
Thus, it is possible to access every pixel by their x and y co-
ordinates (1),

blx,yl = v. (1)

An image can also be defined as a sorted sequence of pix-
els. It can be transformed into this vector-based representa-

tion form without losing any information (2),

bli] = bx, y] =,
i=y-Np+x, (2)

N, number of columns.

In this case, it is necessary to know the size N; and M,
of the image. This form is usually used to implement image
processing algorithms.

Another possible way of representing images can be de-
scribed as a list-based representation form. It describes the
image as an unsorted list of vectors, where every vector con-
tains the position and value of the different parameters at this
position (3),

bx[n] = x)
by[”] = }’,
b,[n] = bx, yl,

Np number of columns, M} number of rows

x=1--Npyy=1---Mp, n=1---Np- M,
(3)

where

The position of a pixel can also be negative. This is
useful for some image operations. In the literature, similar
forms are also used as parameter vectors or parameter tables
(6, 19, 27, 28]. In this paper, the coordinates of the pixel and
its intensity value or its absolute gradient value are used. For
the list-based algorithms, all source and template images are
transformed into this form of representation. The size N and
M of the image can be computed by the maximum and the
minimum of the x and y positions (4),

Np = max (by[n]) — min (be[n]) + 1,
4
M = max (b,[n]) — min (b,[n]) + 1. @

By using this list-based form, any image operation can be
performed. In this paper, the list-based representation form
is used to compute the two-dimensional cross-correlation,
which is described in the following section.

2.2, List-based cross-correlation algorithm

In discrete space, the two-dimensional cross-correlation al-
gorithm (CCA) is defined as

glx, y] = X hli, j1blx +1i, y + jl,

jii
where x=1---Np y=1---M,,
(N =1)  (Nu—1)

i=— , (5)
2 2
,z_(Mh—l)”_(Mh—l)
J 2 2
for x=1--"Ng, y=1---M,,
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where M, X Ny, is the size of the source image, Mj, X Ny, is the
size of the template image, and M, X Nj is the size of the re-
sulting image. It is necessary to calculate (5) for each pixel of
the result image g. The computation time of this algorithm
depends on the size of both images b and h. Hence, the algo-
rithm needs O(Ny, - My, - Nj, - My,) computation time.

In [26], the generalized Radon transform is used to calcu-
late the cross-correlation.! In [24], the image point mapping
technique (IPM) is presented, to calculate the Radon trans-
form. These are the fundamentals for the feature-list cross-
correlation algorithm. The IPM technique uses the discrete
generalized Radon transform, which can be defined as fol-
lows (6):

M-1 N-1
g =" > bli,j16(j - ¢(isD),
i=0 j=0

1 forx=0, (6)

where 6(x) =
0 for #0,

Z - (ll,lz,...,lrl))

where ¢ denotes the discrete generalized Radon transform of
bli, j] and I denotes a 5-dimensional discrete index param-
eter vector and &(x) denotes the Kronecker delta function.
Finally ¢(i; 1) denotes a discrete index transformation curve,
where j = ¢(i;1). The IPM technique calculates the summa-
tion only for image values different from zero and only for
possible vectors [,,2

Sy Sh

gloyl =2 2. cij - Puyijy

i=1 j=1
Cijj = by[i] - hy[j],
Px,y,i,j = 8()6 - (bx[l] - hx[]]))

where

(7)
= 8(y — (byli] = hylj]))
Sy = Np * My,
Sy = Ny - My,

for x=1-+-Ng, y=1-+-M,.

In this paper, this IPM technique is used to calculate the
coefficients of the cross-correlation g[x, y] directly. Further-
more, only images in the list-based representation form (3)
are used. Hence, the source image b and the template image
h are transformed into this representation form. To calculate
the cross-correlation by using the IPM technique, a function
¢ is defined to calculate the position where the measurement
of the distance value of the cross-correlation, denoted as c; j,
has an influence on the result matrix g[x, y]. This function
is denoted as Py ; ;. Hence, the cross-correlation algorithm

! For the definition of the Radon transform, please see [19, 24-26].
2 For detailed information see [24].

can be transformed into the list-based cross-correlation al-
gorithm (7). Every entry in the image list is calculated with
every entry of the template list. The measurement of the dis-
tance value of the cross-correlation ¢;; can be replaced by
other measurements such as least-square error, normed dis-
tance measurements or others. In this paper, a binary and
a difference-based measurements are additionally used (see
Section 2.4). Because of the length of the source image-list of
Ny, - M, and the size of the template image-list of Nj, - My,
the list-based cross-correlation algorithm needs O((Nj, - My, -
Ny - My) - Ny - Mg) computation time.

By examining formula (7) it can be concluded that the
summation at position g[x, y] is only necessary for P # 0.
These positions where P # 0 can be calculated as follows:

x = (beli] = helf])s
y= (by[i] _hy[j])~

At these positions the product of b,[i] and h,[j] can be
added up to a summation matrix. Hence, this algorithm de-
pends only on the size of the image lists of b and h. It needs
only O(Nj - My, - Nj, - My,) computation time. However, the
algorithm requires extra time for each operation to calculate
the positions. But compared to CCA (5), only two loops are
necessary to process the whole image.

The presented algorithm will only be useful if the compu-
tation can be further optimized. In [24], each computation
for image points with a value of zero is omitted. By investi-
gating formula (7), it can be concluded that the product of
by[i] and h,[j] only has influence on the result if both values
are nonzero (9),

(8)

0 for by[i] =0V hy[j] =0,

Cij = 9)
byli] - hy[j] otherwise.

Hence, it is possible to drop every value equal to zero
from the image lists and the template lists. This reduces the
list size of the images S; and Sj. The size of the image list
is now independent of the image size. It only depends on the
length of the image list, which depends on the contents of the
image. In any case, the list-based cross-correlation algorithm
needs only O((Sp, - Sy)) computation time.

Additionally, it is possible to transform the formulas
above into the vector-based representation form, as pre-
sented in (2). Hence, the memory required for the image-lists
and the computation effort required to calculate the position
decrease.

2.3. Feature list

Algorithm (7) is only faster than CCA (5) if the image con-
tains large regions of zero values. However, this is unusual.
Therefore, preprocessing operations are necessary to reduce
the amount of pixels which are nonzero. However, the signif-
icant information should not be removed. One possibility for
reducing the number of pixels is the calculation of local fea-
ture points. Possible algorithms include, for instance, edge-
detection or corner-detection algorithms [9, 30-33]. The al-
gorithms must be able to achieve consistent results and be
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robust with respect to the noise and changing image condi-
tions which have a major influence on the correlation results.

In this paper, the 3 X 3 Sobel operator [20, 21] is used
in the horizontal and vertical directions with signed result
values. The Sobel operator has been chosen to demonstrate
the assets and drawbacks of feature-based cross-correlation
algorithms. In [23], additional feature extraction algorithms
for feature list cross-correlation algorithms are analyzed for
detecting blood vessels in human retinal images. In this anal-
ysis, the Sobel operator obtained good results. In this paper,
the signed results of the Sobel operator in both directions are
only transformed into the feature list representation form (3)
if the absolute feature value exceeds a constant predefined
threshold value. Finally, both feature lists have to be concate-
nated. The use of the gradient and magnitude values of the
edge is suggested for practical applications.

2.4. Cross-correlation algorithms

In the field of image processing, cross-correlation algorithms
are used in different variations. Multiplication can, for ex-
ample, be replaced by calculating the difference, the mean-
squared error, the absolute error, or the median squared er-
ror [2, 16,17, 20, 34, 35]. The CCA as defined in (5) is robust
with regard to noise. However, a bright spot will have a strong
influence on the result [7, 35]. By using subtraction, the algo-
rithm becomes robust with regard to single outliers but sen-
sitive with regard to noise. Normalized cross-correlation co-
efficient [35] and empirical cross-correlation algorithms ob-
tain better results [36]. These algorithms use the local mean
value or the local variance value. Therefore, these algorithms
require more computational effort. But there exist alterna-
tive implementations for a fast normalized cross-correlation
[35]. This implementation reduces the computational effort.
In contrast, binary cross-correlation [1, 37] is fast but the re-
sults are worse.

The influence of varying image conditions, changing
object forms, and image contents on the results of com-
mon cross-correlation algorithms has already been analyzed
(see [1]). In any case, in this paper, the common cross-
correlation algorithms, more precisely the cross-correlation
algorithm (CCA) (5) and the normalized cross-correlation
algorithm (NCCA) (10) [34], are compared to three dif-
ferent feature-list cross-correlation algorithms. These algo-
rithms are the feature-list cross-correlation algorithm (FLA)
(7), the feature-list cross-correlation algorithm using differ-
ence values (DFLA) (13), and the binary feature-list cross-
correlation algorithm (BFLA) (11), which is similar to the
cross-correlation using the Hough transform,

glxy]
X hlit (NG =102, j+ (My = 1)/2]blx+i, y+ ]
B \/Zj,ih[iaj]z\/zu,vb[x+u,y+v]2

for le"'Nb;yzl"'Mh>

1:_(Nh—1)___(Nh—1)

2 2

o WMy=1) M)
I= 2 2
uzf(Nb—l).__(Nb—l)
2 2 ’
My -1 (M- 1)
2 2 '

(10)

In formula (9), the condition for reducing the size of
the feature list is shown. By using a reduced feature list,
all feature-list cross-correlation algorithms have to take this
condition into account, which is added to BFLA and DFLA.
Hence, the behavior of these algorithms differs from that of
common binary or difference algorithms,

_]o for by[i] =0V hy,[j] =0,
Cij = {1 otherwise, (1)
0 for b,[i] =0V h,[j] =0,
o0 _ , 12
i 1 |b,[i] — hy[j]| otherwise. (12)

In contrast to other cross-correlation algorithms, algo-
rithm (12) achieves best matches at the minimum value.
Therefore, its results are subtracted from the maximum value
of the image (13). In this paper, a constant maximum value
of 255 is used,

0 for b,[i]=0V h,[j] =0,

max(b,) — | b,[i] — hy[j]| otherwise.

(13)

2.5. Evaluation

To evaluate and compare the results of the different feature-
list cross-correlation algorithms, several tests using different
artificial images, templates, image parameters, image distor-
tions, and evaluation parameters are run. Two simple objects,
a circle and a triangle, are used as an image and as a tem-
plate. In previous analysis [38], these templates have shown
the most differing results. In other common analysis of cross-
correlation algorithms (e.g., see [1]), also the brightness and
contrast of the images are modified, the images are scaled,
blurred, and degraded by noise. In addition to these analyses
in this paper, a template is searched which is not present in
the image.

The coefficients of the cross-correlation algorithms and
the peak signal-to-noise ratio (PSNR) are compared for all
kind of distortions.

To validate the former results considering real images, a
medical application is used. Therefore, different templates of
different sizes are searched in human retinal blood vessel im-
age series to calculate the image displacement. The number
of incorrect detected templates is compared.

2.5.1. Testimages

For the evaluation, 8-bit gray-scale images showing a circle
with a diameter of 81 pixels and a equilateral triangle of the
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FiGure 1: Example of a test image of triangles with changed brightness. The original image is the 7th image.

same size are used. The size of the equilateral triangle is de-
termined by the size of the wrapped circle. The diameter of
this wrapped circle is 81 pixels. The centre point of the trian-
gle is in the middle of the image. Both objects have a gray-
scale value of 128. This value allows the brightness to be in-
creased. The size of the template is 91 x 91 pixels. It is de-
termined by the size of the object and a border of 5 pixels.
The border is used to allow different convolution matrix sizes
for the feature extraction algorithm and to avoid the related
marginal problem. For the feature-list cross-correlation al-
gorithms, the feature-lists are created first. The lengths of the
feature-lists of the templates are about 900 feature points for
the triangle template and about 1100 feature points for the
circle template. Hence, the length of the feature list is about
8 times smaller than the template image.

One test image for each kind of image modification has
been created. That is why the effect of a single variations can
be analyzed separately. Every test image consists of 21 differ-
ent object images. These object images, having been changed
iteratively, are arranged horizontally. The object image size
is 293 x 293 pixels. It is derived from the maximum object
size of 101 pixels, plus a border of 5 pixels, plus two times
the size of the template. The maximum object size depends
on the maximum scaling value (see Section 2.5.4). An addi-
tional border of the size of the template minus one divided
by two, determines the test image size to be 6243 X 383 pixels.
Due to all the borders adding space, the results of the cross-
correlation for each modification are independent of the re-
sults of the neighbouring objects. In Figure 1, an example of
a test image is shown.

For the medical application, the human retinal blood ves-
sel image series from five test persons (see Figure 2) [23, 39]
are used.” The image series includes 21 to 26 single grayscale
fundus images of five healthy subjects. The images have a size
of 768 x 576 pixels. These images are of good quality as short
flashes were used as the fundus illumination. In addition,
an optical green filter of 560 nm is used. In total, 119 med-
ical images were analyzed. The first image of each series is
used to extract different templates with different sizes. Three
medium templates with a size of 100 X 100 pixels, one small
template with a size of approximately 40 x 40 pixels and two
large templates of approximately 250 X 150 pixels are used
(see Figure 2).

2.5.2. Evaluation measures

The coefficients of the cross-correlation have a different
range of values. The normalized cross correlation has a range

3 The image series has been recorded by the VisuallS system for digital fun-
dus imaging (thanks to Imedos GmbH, Jena, Germany).

of values between zero and one. For comparing the results,
the coefficients are normalized by the size of the template or
by the length of the feature list. It is possible that one edge
point exists in the feature list twice, because the results of
the Sobel operator in that horizontal and vertical directions
are stored. Therefore, the coefficients of the list-based cross-
correlation algorithms are sometimes greater than one.

In addition to the coefficients, the peak signal-to-noise
ratio (14) is also calculated,

PSNR [x, y]
-2
:10_10g< (flxy] = ) _2>,
1/(Mp, - Ny = 1) - 3 (flis j1 = f)
(14)
where x, y position of maximum value,
Nk 1) (Ny — 1)
= 5 - 5 (15)
My -1) (M —1)
B 2 2

The result region is determined by the corresponding
modification step and has the same size as the template
(MpxNy,). For each modification step, the value in the middle
of the result region is used as the peak value for the PSNR cal-
culation. Sometimes, the maximum value is not in the mid-
dle of the result region, where it should be, due to the sym-
metry of the templates. This information is evaluated and
presented as markers in the result graphs (e.g., see Section 3,
Figure 7).

2.5.3. Variation of image conditions

To analyze the behavior of the different cross-correlation al-
gorithms, the image conditions are changed in various ways.

The first test image is distorted by noise. Therefore, for
every modification step the object image is added up with
uniformly centred distributed noise varying in intensity from
0 to 200 percent of the maximum grayscale value. Ten of
these test images were created to reduce the variance of the
results. The mean value and the standard deviation of the re-
sults were analyzed (e.g., see Figure 4).

Furthermore, the brightness and contrast were changed
by linear scaling (16),

glx, y] = (blx, y] + 1) * ca. (16)

In the test images, the brightness was changed by vary-
ing ¢; in 21 steps from —108 to 250. Hence, in the first part,
from —108 to 0, only the gray-scale value of the object was
changed. In the second part, from 0 to 125, both the value of
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FiGure 2: Example of retinal fundus image with the selected templates: (1)—(3) medium template (100 x 100 pixels); (4) small template
(40 x 40 pixels); (5) large template which includes the optic nerve (180 x 180 pixels); (6) large template (240 x 140 pixels).

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

11

13 16 17 18 19 20 21

12 13 14 15 16 17 18 19 20 21

FIGURE 3: Example results of different cross-correlation algorithms (top—CCA; bottom—FLA). The test image contains triangles varying in
brightness (see Figure 1). The 7th image shows the result for the original image. High coefficients are black, low coefficients are white.

the object and the background were changed. The difference
between the gray value between object and background re-
mained constant. In the last part, from 125 to 250, only the
colour of the background was changed. The distance between
object and background influences the values of the feature
extraction. We expect a significant effect of this variation on
the results of the feature-list cross-correlation algorithms.

In the next test image, the contrast was changed by vary-
ing ¢; from 9 to 189 percent. In all variations, only the object
gray-scale value was changed in 21 steps from 11 to 240.

2.5.4. Change of object form

The modification of the object image was also analyzed. To
do so, the object was scaled using the nearest neighbor scal-
ing algorithm in 21 steps from a diameter of 61 to 101 pixels.
The size of the triangle changed appropriately with the diam-
eter of the wrapped circle. The centre point was kept in the
middle of the object.

Another test image includes blurred objects, which are
generated using a box filter with different mask sizes from 1
to 41 pixels.

In most applications, different objects can easily be sep-
arated or distinguished. That is why, as a last variation,
the correlation results using deviant templates are analyzed.
Therefore, the scaling test images (see Figure 1) are corre-
lated with the template which is not in the actual image.

2.5.5.  Medical application

For the final test, the incorrectly detected templates in the
human retinal blood vessel image series are counted. Hu-
man retinal images are used, because these fundus images
have a high individual reproducibility and do usually not
change even over longer time intervals. The maximum po-
sition in the result of the cross-correlation is assumed to be
the detected template position. The position of the templates
and the displacement for each image of the image series are
known. The template is incorrectly detected if the distance
of the detected template position in the x or y directions is
greater than 5 pixels from the known position.

In addition, the computational effort for all tests are mea-
sured. For the medical application, in addition to the time
required for all images, the time required with respect to the
template size is analyzed.

3. RESULTS

Figure 3 illustrates the result coefficients of CCA and FLA
for an exemplary test image that shows triangles varying
in brightness. Obviously, the feature-list cross-correlation is
more sensitive with regard to changing brightness.

The evaluation results for all cross-correlation algorithms
based on different images are shown in Figures 4 to 9.
For each distortion type, four graphs are shown (e.g., see
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Figure 4). The figures at the top illustrate the coefficients of
the cross-correlation algorithms. In addition, the validation
of the maximum position is visualized. If the maximum po-
sition is located in the centre of the object, a marker is dis-
played on the curve. The coefficients of the cross-correlation
measures are differently normalized, a comparison of the val-
ues is not suggestive. However, the curve progression can be
analyzed.

The graphs at the bottom show the PSNR. The results
of the feature-list cross-correlation algorithms are sometimes
negative. In this case, the graphs are truncated. The graphs on
the left show the results of the images with circles. The graphs
on the right show the results of the images with triangles.

3.1. Variation of image conditions

The influence of noise on the correlation results is shown in
Figure 4. Due to the sensitivity of the feature extraction al-
gorithm concerning noise and the lower amount of values
for the calculation, we expected that the feature-list cross-
correlation algorithms are more sensitive to noise than the
common cross-correlation algorithms. This assumption is
confirmed by the results. The coefficients of FLA, DFLA, and
NCCA decrease with increasing noise. The other coefficients
remain more or less constant. This curve progression is inde-
pendent of the form of object used. For up to 80 percent of
all algorithms and all objects, the position of the maximum

value agrees with the object position. The standard deviation
of the coefficients is very low for all algorithms.

The PSNR of all feature-list cross-correlation algorithms
also decreases with increasing noise (see Figure 4 bottom).
The PSNR of the BFLA and the DFLA decreases more
strongly than the PSNR of the FLA. But the values for the
PSNR of the feature-list cross-correlation algorithms is up to
three times higher than those of common cross-correlation
algorithms. The PSNR of the FLA and the DFLA are higher
than common cross-correlation algorithms for up to 90 per-
cent noise. Due to the decreasing variance of the results of
the NCCA, the PSNR of the NCCA increases slightly.

The standard deviation of the PSNR rises with increasing
noise for all algorithms. With the BFLA and the DFLA, it rises
even faster than with other algorithms. The FLA and the CCA
always detected the correct position. The BFLA lacks position
accuracy.

The influence of altering brightness on the results of the
analyzed cross-correlation algorithms is shown in Figure 5.
The BFLA is robust concerning varying brightness, as the bi-
nary images remain the same. The results of the other algo-
rithms vary widely. In the first section, where c1 is between
—108 and 0 and the background is constant, the coefficients
of the FLA, the DFLA, and the CCA are rising, while those
of the NCCA remain constant. In the second section, where
cl is between 0 and 125 and only the difference between ob-
ject and background is constant, the coefficients of the FLA
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and the DFLA also remain constant. While only the coeffi-
cients of the CCA are still rising, those of the NCCA begin to
fall. In the last section, where c1 is between 125 and 250 and
only the background is changed, the coefficients of the FLA
and the DFLA are falling, the coefficients of the CCA remain
constant, and those of the NCCA are still falling. The curve
progression of the coefficients of the FLA and the DFLA can
be explained by the result values of the feature extraction.
Because of the varying difference between object and back-
ground, the value of the extracted feature values are chang-
ing.
The PSNR of the FLA, the BFLA, and the CCA are
approximately constant (see Figure 5 bottom). The DFLA
shows the same curve progression for the PSNR values as
for the coefficients. The PSNR of the NCCA depends on the
variance of the coefficients around their maximum. With in-
creasing brightness, this decreases. Therefore, the result of
the PSNR of the NCCA rises if the background colour rises.

For all algorithms, the correct position has been detected
for all levels of brightness. The difference between the ana-
lyzed objects is marginal.

Changing the contrast also leads to correct position de-
tection by all algorithms (see Figure 6). The differences in the
results between the analyzed objects are also minimal. The
coefficients of the BFLA and the NCCA are approximately
constant while they rise with the FLA and the CCA. Only the

coefficients of the DFLA have their maximum values at the
position of the unchanged image. The same is true for the
PSNR of the DFLA. The PSNR values of all other algorithms
are approximately constant when varying the contrast.

3.2. Change of object form

Figure 7 shows the results of changing the size of the analyzed
objects. Where object and template have the same size, the
coefficient of all algorithms, except those of the CCA, have a
single maximum at the correct position at the centre of the
objects. With the triangular object, the peak is not as strong
as for the circle object. In those cases where the triangular ob-
ject is scaled larger than the template, the template is located
inside, at top of the triangle. This leads to constant coetfi-
cients for the CCA, but to incorrect positions.

The PSNR of all algorithms also has the maximum
value when object and template are of the same size (see
Figure 7 bottom). Again, feature-list cross-correlation algo-
rithms have a major peak at the correct position. By chang-
ing the size of the triangles, feature-list cross-correlation al-
gorithms offer the correct position only if the size of the tem-
plate and the object is approximately the same. At this point,
the coefficients and the PSNR attain a high maximum value.
The DFLA gives the best results. Moreover, it is the most sen-
sitive algorithm.
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The more the image is blurred, the more the coefficients
of all algorithms, except those of the BFLA decrease (see
Figure 8). The coefficients of the BFLA increase a little bit
with increasing blur.

The PSNR of all feature-list cross-correlation algorithms
is decrease strongly if the object is blurred (see Figure 8
bottom). The PSNR of the common cross-correlation algo-
rithms is decrease slightly. The feature-list cross-correlation
algorithms only find the correct position as long as the image
is lightly blurred.

In addition to the distortions described before a template
which is not present in the image is searched. In Figure 9
the results are visualized. In this case, the coefficients of
the feature-list cross-correlation algorithms are 80 percent
smaller than the results when the searched object and tem-
plate are the same. The coefficients of the other algorithms
are higher than the results of the feature-list algorithms as
they are only decreased by 20 percent. The position of the
maximum coefficient is seldom at the central position. This
is obvious, because the templates are not in the image. In any
case, the CCA and the NCCA sometimes have their maxi-
mum values at the central position.

The PSNRs of the feature-list cross-correlation algo-
rithms are decreased as well as the PSNRs of the other al-
gorithms (see Figure 9 bottom), while those of the feature-
list cross-correlation algorithms decrease more than those of
the others. The curve progressions of the feature-list cross-

correlation algorithms are definitely different from the cor-
responding curve progressions of the scaling objects (see
Figure 7).

3.3. Medical application

In Figure 11, the total amount of errors for all templates and
all images is shown. The results of the medical application
partially confirmed the results of the analytic images. The
CCA has the largest amount of errors. Only the large tem-
plates are sometimes detected. The results of the NCCA are
clearly better than those of the CCA. The FLA is derived
from CCA. This could explain why that this algorithm also
has a high amount of errors. This large amount of errors in
relation to the other feature-list cross-correlation algorithms
is unexpected because the results of the former analysis gets
better results. On the other hand, the results of the BFLA are
better than expected. By using medium and large templates,
the DFLA and the BFLA have the lowest amount of errors.
On the other hand, by using small templates, the NCCA has
the minimal amount of errors (see Figure 10). But overall,
the DFLA achieves the best results (see Figure 10).

3.4. Computational effort

The processing time for the common cross-correlation algo-
rithms is constant for all types of distortion. The algorithms
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are implemented in C++ by using a signal processing frame-
work [40] and the intel performance library [34]. Using a
currently standard PC, this implementation of the CCA and
the NCCA requires about 37 seconds without optimization.
The time needed for the feature list algorithms depends on
the length of the feature list. Omitting the noisy and blurred
images, this size is constant. Therefore, the processing time
for the feature list algorithms is constant, at about one to
two seconds. Hence, the algorithms are 12 to 50 times faster
than the common cross-correlation algorithms. But this is
valid only for these analytic examples. Noise and blur lead
to a considerably increasing feature-list size. Therefore, the
feature-list cross-correlation algorithms require about 2 to 10
seconds for the blurred images and 26 to 190 seconds for the
noisy images. The FLA requires the highest processing time,
which is about 170 to 210 seconds for the same images.

The processing time for the medical images also de-
pends on the size of the template. All the algorithms require
more processing time for large templates than for small tem-
plates. For the CCA and NCCA, the processing time is ap-
proximately the same. The results of the feature-list cross-
correlation algorithms are strongly varying. The FLA re-
quires the most processing time, but only for the large tem-
plates. The feature-list cross-correlation algorithms are up
to 12 times faster than the common cross-correlation algo-
rithms. By using other feature extraction algorithms such as
the Canny operator [30], the feature list cross-correlation al-

gorithms are even up to 14 times faster than common cross-
correlation algorithms [23].

4. DISCUSSION

As is well known, the CCA is robust with respect to noise.
The increase of brightness or contrast caused the coefficients
to increase, but the PSNR to remain constant. Smaller objects
have smaller coefficients. Larger objects result in the same co-
efficients as for the unchanged object. By changing the size
and by increasing the blur, the PSNR hardly decreases. The
difference between the two analyzed objects is minimal. This
algorithm only detects large templates in the medical images.
The computation time required depends on the image and
the template size and is constant, if the image sizes are con-
stant.

Asis also known from literature, the NCCA is robust con-
cerning changes of brightness and contrast. Increasing noise
causes falling coefficients but constant PSNR. The change of
the object form also has an influence on the coefficients and
the PSNR. The unchanged object mostly corresponds to the
maximum value. By using the medical images, this algorithm
obtains the best results for small templates. The computation
time required is also constant.

Every feature-list cross-correlation algorithm is sensitive
with regard to changes of the object form and is susceptible
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to noise. Only the unchanged or minimally changed objects
are detected at the correct position. The processing time is
independent of the image size. These algorithms are very fast
when there is not too much noise.

The BFLA is robust with respect to change of brightness
and contrast. Blur also has only a marginal influence on the
result. This algorithm is much more susceptible to noise than
others. But for the medical application, this algorithm ob-
tains unexpectedly good results.

The FLA is more robust with respect to noise. But it is
an algorithm that is sensitive to changes of brightness, con-
trast, object size, blurring, and any change of the object form.
Rising contrast causes rising PSNR. But the FLA requires six
times more processing time than the other feature-list cross-
correlation algorithms. Surprisingly, this algorithm gives a
large amount of errors when detecting the templates in the
analyzed medical images.

The results of images analyzed by the DFLA and the FLA
are similar. The DFLA reaches the maximum PSNR. Only
this algorithm determines a single maximum value. Changes
in contrast are also recognized. This algorithm is faster than
the FLA, but also more susceptible to noise. But this algo-
rithm obtains the best overall results with regard to the med-
ical application.

The results of the common cross-correlation algorithms
are similar to those of other publications. In [1], the re-

sults of the cross-correlation of Laplacian filtered images are
presented. These results differ from the results of the list-
based cross-correlation algorithms. In [1], only the CCA is
said to be sensitive concerning brightness and contrast. But
the results of this study show that the feature-based cross-
correlations FLA and DFLA are sensitive concerning bright-
ness and contrast, too. The verification of the results by us-
ing the Laplace operator instead of the Sobel operator leads
to similar results.

The major advantage of the feature-list cross-correlation
algorithms is the high values of the coefficients and the high
values of the PSNR. Different objects can clearly be differen-
tiated due to strong differences in coefficients and PSNR be-
tween correct and incorrect objects. The algorithms are sen-
sitive to all deviations from the template. On the other hand,
the algorithms cannot generalize very well. A high quantity
of feature points and the use of the local area around a fea-
ture point can solve this problem. This can be achieved by
smoothing the template.

Moreover, missing feature points have a strong influence
on the result. But, because of (9), additional feature points
in the image have no influence on the result. This problem
can be reduced by using the local mean or variance, so the
normed or empirical versions of feature-list cross-correlation
algorithms. But these algorithms require additional process-
ing time to calculate the local mean or variance.
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The feature-list cross-correlation algorithms are mostly
faster than common cross-correlation algorithms. However,
the processing time depends on the quantity of feature points
in the image, but is independent of the image size. Therefore,
a minimal number of features is one requirement for the fea-

ture extraction. Different images have different numbers of
feature points and therefore varying processing times. But in
most cases the size of the feature-list of the template is con-
stant. Moreover, noise causes the number of feature points to
increase, therefore increasing the processing. Furthermore,
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TasLE 1: Computation effort of the cross-correlation algorithms in
seconds per image for the different analytic test images and the hu-
man retinal images.

CCA NCCA FLA BFLA DFLA

Analytic images

Noisy images 37.0 37.0 190.0 32.0 26.0

Blurred images 37.0 37.0 10.0 2.0 2.0

Other distortions 37.0 37.0 2.0 1.0 1.0
Medical images

Small templates 1.20 1.21 0.76 024 0.21

Medium templates 5.49 5.48 222 050 044

Large templates 13.09 1312 13.69 295 275

Amount of errors for all templates

100

Amount of errors

CCA NCCA FLA

BFLA DFLA

FiGure 11: Amount of incorrect detected templates in percent for
all images and all templates.

noise has a strong influence on the correlation result. That
is why the feature extraction should be robust with regard to
noise. Additional smoothing could be necessary. Other dis-
tortions also have a strong influence on the result. Further-
more, unintended omission of feature points reduces the co-
efficients. But, if enough feature points still remain, the re-
sults will be adequate. The sensitivity of the feature list cross-
correlation algorithms could, for instance, be useful for in-
specting objects for quality assurance, as every change of the
object has an influence on the result.

The medical application clarifies the practical usability
of the feature-list cross-correlation algorithms, although the
medical images includes noise, changes of brightness and
contrast and somewhat changing objects within the image
series. Also the advantage of short processing times are con-
firmed.

The choice of the feature-extraction algorithm has a
strong influence on the cross-correlation results. The re-
quirements of feature extraction are sophisticated. One ma-
jor requirement is that the minimum of feature values is
not equal to zero. Furthermore, the feature extraction has
to be robust, consistent, and fast. For instance, the Harris-
corner detection [32] only produces a few points with high

values. But, absent corner points have a strong influence on
the result. Therefore, the corner points have to be detected
with certainly. Other feature extraction algorithms such as
the Canny corner detection produce more feature points, so
only a few missing feature points have no strong influence
on the result. The use of signed feature values such as those
gained by the Laplace operator or the Sobel operator causes
a stronger sensitivity with respect to different distortions.

To increase the robustness of the feature-list cross-
correlation algorithms, additional features could be used.
Additionally, in this paper only absolute gradient values are
used. Considering also the orientation of the gradient could
improve the results, too. But these additional steps result in
an increasing processing time.

5. CONCLUSION

In this paper, different feature-list cross-correlation algo-
rithms are compared to common cross-correlation algo-
rithms. For this purpose, the images and the templates are
transformed from the two-dimensional representation form
into a list representation form. Next, each zero value is re-
moved from the image lists. This allows a drastic reduction
of computational effort in comparison to common cross-
correlation algorithms. The choice of feature extraction of-
fers further possibilities for reducing the number of calcula-
tion steps. The Sobel operator is used in this paper as an ex-
ample. Lastly, the cross-correlation algorithm is adapted into
a list-based cross-correlation algorithm.

Different kinds of feature-list cross-correlation algo-
rithms are compared. All feature-list cross-correlation algo-
rithms are sensitive to any changes in the object form and
are susceptible to noise. However, it is possible to differen-
tiate between similar objects. When the noise level does not
exceed a certain value, these algorithms are much faster than
common cross-correlation algorithms. These advantages are
confirmed by a medical application. For actual application, it
must be taken into account that feature-list cross-correlation
algorithms do not have a constant processing time. By im-
proving the image conditions the processing time decreases.
The DFLA achieves the best results and is very fast. The FLA
is more robust with regard to noise, but slower than other
feature-list cross-correlation algorithms. The BFLA is robust
to changes in brightness and contrast but is more sensitive
to noise. But the medical application shows that the results
of the FLA are worse than the results of the other feature-list
cross-correlation algorithms.

The feature-list cross-correlation algorithms are success-
fully applied to a medical application. For the purpose
presented, the DFLA achieves the best results. But also the
BFLA and the NCCA achieve sufficiently good results.

The choice of feature extraction algorithm also has a
strong influence on the cross-correlation results. But the re-
quirements for feature-extraction are sophisticated and de-
pend on different applications as well as on the respective
cross-correlation algorithms. Therefore, it is necessary to an-
alyze the influence of different feature extraction algorithms
on the results. Hence, it is possible to select the best fea-
ture extraction algorithm and feature-list cross-correlation
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algorithm for the actual problem. This will form part of fu-
ture analytical investigation.
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