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During digital video acquisition, imagery may be degraded by a number of phenomena including undersampling, blur, and noise.
Many systems, particularly those containing infrared focal plane array (FPA) sensors, are also subject to detector nonuniformity.
Nonuniformity, or fixed pattern noise, results from nonuniform responsivity of the photodetectors that make up the FPA. Here we
propose a maximum a posteriori (MAP) estimation framework for simultaneously addressing undersampling, linear blur, additive
noise, and bias nonuniformity. In particular, we jointly estimate a superresolution (SR) image and detector bias nonuniformity
parameters from a sequence of observed frames. This algorithm can be applied to video in a variety of ways including using a mov-
ing temporal window of frames to process successive groups of frames. By combining SR and nonuniformity correction (NUC)
in this fashion, we demonstrate that superior results are possible compared with the more conventional approach of performing
scene-based NUC followed by independent SR. The proposed MAP algorithm can be applied with or without SR, depending on
the application and computational resources available. Even without SR, we believe that the proposed algorithm represents a novel
and promising scene-based NUC technique. We present a number of experimental results to demonstrate the efficacy of the pro-
posed algorithm. These include simulated imagery for quantitative analysis and real infrared video for qualitative analysis.

Copyright © 2007 R. C. Hardie and D. R. Droege. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

1. INTRODUCTION

During digital video acquisition, imagery may be degraded
by a number of phenomena including undersampling, blur,
and noise. Many systems, particularly those containing
infrared focal plane array (FPA) sensors, are also subject to
detector nonuniformity [1–4]. Nonuniformity, or fixed pat-
tern noise, results from nonuniform responsivity of the pho-
todetectors that make up the FPA. This nonuniformity tends
to drift over time, precluding a simple one-time factory cor-
rection from completely eradicating the problem. Traditional
methods of reducing fixed pattern noise, such as correlated
double sampling [5], are often ineffective because the pro-
cessing technology and operating temperatures of infrared
sensor materials result in the dominance of different sources
of nonuniformity. Periodic calibration techniques can be em-
ployed to address the problem in the field. These, however,
require halting normal operation while the imager is aimed
at calibration targets. Furthermore, these methods may only
be effective for a scene with a dynamic range close to that

of the calibration targets. Many scene-based techniques have
been proposed to perform nonuniformity correction (NUC)
using only the available scene imagery (without calibration
targets).

Some of the first scene-basedNUC techniques were based
on the assumption that the statistics of each detector output
should be the same over a sufficient number of frames as
long as there is motion in the scene. In [6–9], offset and
gain correction coefficients are estimated by assuming that
the temporal mean and variance of each detector are identi-
cal over time. Both a temporal highpass filtering approach
that forces the mean of each detector to zero and a least-
mean squares technique that forces the output of a pixel
to be similar to its neighbors are presented in [10–12]. By
exploiting a local constant statistics assumption, the tech-
nique presented in [13] treats the nonuniformity at the de-
tector level separately from the nonuniformity in the read-
out electronics. Another approach is based on the assump-
tion that the output of each detector should exhibit a con-
stant range of values [14]. A Kalman filter-based approach
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that exploits the constant range assumption has been pro-
posed in [15]. A nonlinear filter-based method is described
in [16]. As a group, these methods are often referred to as
constant statistics techniques. Constant statistics techniques
work well whenmotion in a relatively large number of frames
distributes diverse scene intensities across the FPA.

Another set of proposed scene-based NUC techniques
utilizes motion estimation or specific knowledge of the
relative motion between the scene and the FPA [17–23].
A motion-compensated temporal average approach is pre-
sented in [19]. Algebraic scene-based NUC techniques are
developed in [20–22]. A regularized least-squares method,
closely related to this work, is presented in [23]. These
motion-compensated techniques are generally able to op-
erate successfully with fewer frames than constant statis-
tics techniques. Note that many motion-compensated tech-
niques utilize interpolation to treat subpixel motion. If the
observed imagery is undersampled, the ability to perform ac-
curate interpolation is compromised, and these NUC tech-
niques can be adversely affected.

When aliasing from undersampling is the primary form
of degradation, a variety of superresolution (SR) algorithms
can be employed to exploit motion in digital video frames. A
good survey of the field can be found in [24, 25]. Statistical
SR estimation methods derived using a Bayesian framework,
similar to that used here, include [26–30]. When significant
levels of both nonuniformity and aliasing are present, most
approaches treat the nonuniformity and undersampling sep-
arately. In particular, some type of calibration or scene-based
NUC is employed initially. This is followed by applying an SR
algorithm to the corrected imager [31, 32]. One pioneering
paper developed a maximum-likelihood estimator to jointly
estimate a high-resolution (HR) image, shift parameters, and
nonuniformity parameters [33].

Here we combine scene-basedNUCwith SR using amax-
imum a posteriori (MAP) estimation framework to jointly
estimate an SR image and detector nonuniformity param-
eters from a sequence of observed frames (MAP SR-NUC
algorithm). We use Gaussian priors for the HR image, bi-
ases, and noise. We employ a gradient descent optimization
and estimate the motion parameters prior to the MAP algo-
rithm. Here we focus on translational and rotational motion.
The joint MAP SR-NUC algorithm can be applied to video
in a variety of ways including processing successive groups
of frames spanned by a moving temporal window of frames.
By combining SR and NUC in this fashion, we demonstrate
that superior results are possible compared with the more
conventional approach of performing scene-based NUC fol-
lowed by independent SR. This is because access to an SR
image can make interpolation more accurate, leading to im-
proved nonuniformity parameter estimation. Similarly, HR
image estimation requires accurate knowledge of the detector
nonuniformity parameters. The proposed MAP algorithm
can be applied with or without SR, depending on the ap-
plication and computational resources available. Even with-
out SR, we believe that the proposed algorithm represents
a novel and promising scene-based NUC technique (MAP
NUC algorithm).

yk =Wkz + b + nk

z yk

Wk b nk

Motion PSF ↓ Lx ↓ Ly
∑ ∑

Figure 1: Observation model for simultaneous image superresolu-
tion and nonuniformity correction.

The rest of this paper is organized as follows. In Section 2,
we present the observation model. The joint MAP estimator
and corresponding optimization are presented in Section 3.
Experimental results are presented in Section 4 to demon-
strate the efficacy of the proposed algorithm. These include
results produced using simulated imagery for quantitative
analysis and real infrared video for qualitative analysis. Con-
clusions are presented in Section 5.

2. OBSERVATIONMODEL

Figure 1 illustrates the observation model that relates a set
of observed low-resolution (LR) frames with a correspond-
ing desired HR image. Sampling the scene at or above the
Nyquist rate gives rise to the desired HR image, denoted us-
ing lexicographical notation as an N × 1 vector z. Next, a
geometric transformation is applied to model the relative
motion between the camera and the scene. Here we con-
sider rigid translational and rotational motion. This requires
only three motion parameters per frame and is a reason-
ably good model for video of static scenes imaged at long
range from a nonstationary platform. We next incorporate
the point spread function (PSF) of the imaging system using
a 2D linear convolution operation. The PSF can be modi-
fied to include other degradations as well. In the model, the
image is then downsampled by factors of Lx and Ly in the
horizontal and vertical directions, respectively.

We now introduce the nonuniformity by adding anM×1
array of biases, b, whereM = N/(LxLy). Detector nonunifor-
mity is frequently modeled using a gain parameter and bias
parameter for each detector, allowing for a linear correction.
However, in many systems, the nonuniformity in the gain
term tends to be less variable and good results can be ob-
tained from a bias-only correction. Since a model containing
only biases simplifies the resulting algorithms and provides
good results on the imagery tested here, we focus here on a
bias-only nonuniformity model. Finally, an M × 1 Gaussian
noise vector nk is added. This forms the kth observed frame
represented by anM×1 vector yk. Let us assume that we have
observed P frames, y1, y2, . . . , yP . The complete observation
model can be expressed as

yk =Wkz + b + nk, (1)

for k = 1, 2, . . . ,P, whereWk is anM ×N matrix that imple-
ments the motion model for the kth frame, the system PSF
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blur, and the subsampling shown in Figure 1. Note that this
model can accommodate downsampling (i.e., Lx,Ly > 1) for
SR or can perform NUC only for Lx = Ly = 1. Also note that
the operation Wkz implements subpixel motion for any Lx
and Ly by performing bilinear interpolation.

We model the additive noise as a zero-mean Gaussian
random vector with the following multivariate PDF:

Pr
(
nk
) = 1

(2π)M/2σMn
exp

{
− 1
2σ2n

nT
k nk

}
, (2)

for k = 1, 2, . . . ,P, where σ2n is the noise variance. We also as-
sume that these random vectors are independent from frame
to frame (temporal noise).

We model the biases (fixed pattern noise) as a zero-mean
Gaussian random vector with the following PDF:

Pr
(
b
) = 1

(2π
)M/2

σMb
exp

{
− 1
2σ2b

bTb
}
, (3)

where σ2b is the variance of the bias parameters. This Gaus-
sian model is chosen for analytical convenience but has been
shown to produce useful results.

We model the HR image using a Gaussian PDF given by

Pr(z
) = 1

(2π)N/2
∣∣Cz

∣∣1/2 exp
{
−1
2
zTC−1z z

}
, (4)

where Cz is the N × N covariance matrix. The exponential
term in (4) can be factored into a sum of products yielding

Pr(z) = 1

(2π)N/2
∣∣Cz

∣∣1/2 exp
{
− 1

2σ2z

N∑
i=1

zTdidTi z
}
, (5)

where di = [di,1,di,2, . . . ,di,N ]T is a coefficient vector. Thus,
the prior can be rewritten as

Pr(z) = 1

(2π)N/2
∣∣Cz

∣∣1/2 exp
{
− 1

2σ2z

N∑
i=1

( N∑
j=1

di, j z j

)2}
.

(6)

The coefficient vectors di for i = 1, 2, . . . ,N are selected to
provide a higher probability for smooth random fields. Here
we have selected the following values for the coefficient vec-
tors:

di, j =
⎧⎪⎨⎪⎩
1 for i = j,

−1
4

for j : zj is a cardinal neighbor of zi.
(7)

This model implies that every pixel value in the desired image
can be modeled as the average of its four cardinal neighbors
plus a Gaussian random variable of variance σ2z . Note that
the prior in (6) can also be viewed as a Gibbs distribution
where the exponential term is a sum of clique potential func-
tions [34] derived from a third-order neighborhood system
[35, 36].

3. JOINT SUPERRESOLUTION AND
NONUNIFORMITY CORRECTION

Given that we observe P frames, denoted by y =
[yT1 , y

T
2 , . . . , y

T
P ]

T , we wish to jointly estimate the HR image
z and the nonuniformity parameters b. In Section 4, we will
demonstrate that it is advantageous to estimate these simul-
taneously versus independently.

3.1. MAP estimation

The joint MAP estimation is given by

ẑ, b̂ = argmax
z,b

Pr(z,b | y). (8)

Using Bayes rule, this can be equivalently be expressed as

ẑ, b̂ = argmax
z,b

Pr(y | z,b) Pr(z,b)
Pr(y)

. (9)

Assuming that the biases and the HR image are independent,
and noting that the denominator in (9) is not a function of z
or b, we obtain

ẑ, b̂ = argmax
z,b

Pr(y | z,b) Pr(z) Pr(b). (10)

We can express the MAP estimation in terms of a minimiza-
tion of a cost function as follows:

ẑ, b̂ = argmin
z,b

{
L(z,b)

}
, (11)

where

L(z,b) = − log
[
Pr(y | z,b)]− log

[
Pr(z)

]− log
[
Pr(b)

]
.

(12)

Note that when given z and b, yk is essentially the noise
with the mean shifted to Wkz + b. This gives rise to the fol-
lowing PDF:

Pr(y | z,b)

=
P∏

k=1

1
(2π)M/2σMn

× exp
{
− 1
2σ2n

(
yk −Wkz− b

)T(
yk −Wkz− b

)}
.

(13)

This can be expressed equivalently as follows:

Pr(y | z,b)

= 1
(2π)PM/2σPMn

× exp

{
−

P∑
k=1

1
2σ2n

(
yk −Wkz− b

)T(
yk −Wkz− b

)}
.

(14)
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Figure 2: Simulated images: (a) true high-resolution image; (b) simulated frame-one low-resolution image; (c) observed frame-one low-
resolution image with σ2

n = 4 and σ2
b = 400; (d) restored frame-one using the MAP SR-NUC algorithm for P = 30 frames.

Substituting (14), (4), and (3) into (12) and removing scalars
that are not functions of z or b, we obtain the final cost func-
tion for simultaneous SR and NUC. This is given by

L(z,b) = 1
2σ2n

P∑
k=1

(
yk −Wkz− b

)T(
yk −Wkz− b

)
+
1
2
zTC−1z z +

1
2σ2b

bTb.

(15)

The cost function in (15) balances three terms. The first
term on the right-hand side is minimized when a candidate
z, projected through the observation model, matches the ob-
served data in each frame. The second term is minimized
with a smooth HR image z, and the third term is minimized
when the individual biases are near zero. The variances σ2n ,
σ2z , and σ2b control the relative weights of these three terms,
where the variance σ2z is contained in the covariance matrix

Cz as shown by (4) and (5). It should be noted that the cost
function in (15) is essentially the same as that used in the reg-
ularized least-squares method in [23]. The difference is that
here we allow the observation model matrix Wk to include
PSF blurring and downsampling, making this more general
and appropriate for SR.

Next we consider a technique for minimizing the cost
function in (15). A closed-form solution can be derived in
a fashion similar to that in [23]. However, because the ma-
trix dimensions are so large and there is a need for a matrix
inverse, such a closed-form solution is impractical for most
applications. In [23], the closed-form solution was only ap-
plied to a pair of small frames in order to make the prob-
lem computationally feasible. In the section below, we derive
a gradient descent procedure for minimizing (15). We be-
lieve that this makes the MAP SR-NUC algorithm practical
for many applications.
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Figure 3: Mean absolute error for the estimated biases as a function
of P (the number of input frames).

3.2. Gradient descent optimization

The key to the optimization is to obtain the gradient of the
cost in (15) with respect to the HR image z and the bias vec-
tor b. It can be shown that the gradient of the cost function
in (15) with respect to the HR image z is given by

∇zL(z,b) = 1
σ2n

P∑
k=1

WT
k

(
Wkz + b− yk

)
+ C−1z z. (16)

Note that the term C−1z z can be expressed as

C−1z z = [z1, z2, . . . , zN]T , (17)

where

zk = 1
σ2z

N∑
i=1

di,k

( N∑
j=1

di, j z j

)
. (18)

The gradient of the cost function in (15) with respect to the
bias vector b is given by

∇bL(z,b) = 1
σ2n

P∑
k=1

(
Wkz + b− yk

)
+

1
σ2b

b. (19)

We begin the gradient descent updates using an initial
estimate of the HR image and bias vector. Here we lowpass
filter and interpolate the first observed frame to obtain an
initial HR image estimate z(0). The initial bias estimate is
given by b(0) = 0, where 0 is an M × 1 vector of zeros. The
gradient descent updates are computed as

z(m + 1) = z(m)− ε(m)gz(m),

b(m + 1) = b(m)− ε(m)gb(m),
(20)
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Figure 4: Mean absolute error for the HR image estimate as a func-
tion of P (the number of input frames).

wherem = 0, 1, 2, . . . is the iteration number and

gz(m) = ∇zL(z,b)|z=z(m),b=b(m),

gb(m) = ∇bL(z,b)|z=z(m),b=b(m).
(21)

Note that ε(m) is the step size for iteration m. The optimum
step size can be found by minimizing

L
(
z(m + 1),b(m + 1)

)
= L

(
z(m)− ε(m)gz(m),b(m)− ε(m)gb(m)

) (22)

as a function of ε(m). Taking the derivative of (22) with re-
spect to ε(m) and setting it to zero yields

ε(m)=
(

1
σ2n

P∑
k=1

(
Wkgz(m) + gb(m)

)T(
Wkz(m)+ b(m)− yk

)

+ gTz (m)C−1z z(m) +
1
σ2b

gTb (m)b(m)

)/
(

1
σ2n

P∑
k=1

(
Wkgz(m) + gb(m)

)T(
Wkgz(m) + gb(m)

)

+ gTz (m)C−1z gz(m) +
1
σ2b

gTb (m)gb(m)

)
.

(23)

We continue the iterations until the percentage change in cost
falls below a pre-determined value (or a maximum number
of iterations are reached).

4. EXPERIMENTAL RESULTS

In this section, we present a number of experimental results
to demonstrate the efficacy of the proposed MAP estimator.
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Figure 5: Simulated output HR image estimates for P = 5: (a) joint MAP SR-NUC; (b) MAP NUC followed by MAP SR; (c) MAP NUC
followed by bilinear interpolation; (d) registration-based NUC followed by bilinear interpolation.

This first set of results is obtained using simulated imagery to
allow for quantitative analysis. The second set uses real data
from a forward-looking infrared (FLIR) imager to allow for
qualitative analysis.

4.1. Simulated data

The original true HR image is shown in Figure 2(a). This is a
single 8-bit grayscale aerial image to which we apply random
translational motion using the model described in Section 2,
downsample by Lx = Ly = 4, introduce bias nonunifor-
mity with variance σ2b = 40, and add Gaussian noise with
variance σ2n = 1 to simulate a sequence of 30 LR observed
frames. The first simulated LR frame with Lx = Ly = 4,
slight translation and rotation, but no noise or nonunifor-
mity, is shown in Figure 2(b). The first simulated observed
frame with noise and nonuniformity applied is shown in

Figure 2(c). The output of the joint MAP SR-NUC algorithm
is shown in Figure 2(d) for P = 30 observed frames contain-
ing noise and nonuniformity. Here we used the exact motion
parameters in the algorithm in order to assess the estima-
tor independently from the motion estimation. An analysis
of motion estimation in the presence of nonuniformity can
be found in [19, 32, 37]. Note that for all the results shown
here, we iterate the gradient descent algorithm until the cost
decreases by less than 0.001% (typically 20–100 iterations).

The mean absolute error (MAE) for the bias estimates
are shown in Figure 3 as a function of the number of input
frames. We compare the joint MAP SR-NUC estimator with
the MAP NUC algorithm (without SR, but equivalent to
the MAP SR-NUC estimator with Lx = Ly = 1) and the
registration-based NUC proposed in [19]. Note that the joint
MAP SR-NUC algorithm (with Lx = Ly = 4) outperforms
the MAP NUC algorithm (Lx = Ly = 1). Also note that both
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Figure 6: Bias error image for P = 30: (a) Joint MAP SR-NUC bias error image; (b) MAP NUC bias error image; (c) registration-based
NUC bias error image.

MAP algorithms outperform the simple registration-based
NUC method.

A plot of the MAE for the HR image estimates, versus the
number of input frames, is shown in Figure 4. Here we com-
pare the MAP SR-NUC algorithm to several two-step algo-
rithms. Two of the benchmark approaches use the proposed
MAP NUC (Lx = Ly = 1) algorithm to obtain bias esti-
mates and these biases are used to correct the input frames.
We consider processing these corrected frames using bilin-
ear interpolation as one benchmark and using a MAP SR
algorithm without NUC as the other. The pure SR algo-
rithm is obtained using the MAP estimator presented here
without the bias terms. This pure SR method is essentially
the same as that in [29, 38]. We also present MAEs for the
registration-based NUC algorithm followed by bilinear in-
terpolation. The error plot shows that for a small number of
frames, the joint MAP SR-NUC estimator outperforms the

two-step methods. For a larger number of frames, the error
for the joint MAP SR-NUC and the independent MAP esti-
mators is approximately the same. This is true even though
Figure 3 shows that the bias estimates are more accurate us-
ing the joint estimator. This suggests that the MAP SR al-
gorithm offers some robustness to the small nonuniformity
errors when a larger number of frames are used (e.g., more
than 30).

To allow for subjective performance evaluation of the al-
gorithms, several output images are shown in Figure 5 for
P = 5. In particular, the output of the joint MAP SR-NUC
algorithm is shown in Figure 5(a). The output of the MAP
NUC followed by MAP SR is shown in Figure 5(b). The
outputs of the MAP NUC followed by bilinear interpolation
and registration-based NUC followed by bilinear interpola-
tion are shown in Figures 5(c) and 5(d), respectively. Note
that the adverse effects of nonuniformity errors are more
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Figure 7: Simulated image results: (a) observed frame-one low-resolution image; (b) observed frame-one low-resolution image region of
interest; (c) frame-one region of interest restored using the MAP SR-NUC algorithm for P = 20 frames; (d) frame-one region of interest
corrected with the MAP SR-NUC biases for P = 20 frames; (e) low-resolution corrected region of interest followed by bilinear interpolation.
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evident in Figure 5(b) compared with those in Figure 5(a).
The SR processed frames (Figures 5(a) and 5(b)) appear to
have much greater details than those obtained with bilinear
interpolation (Figures 5(c) and 5(d)), even with only five in-
put frames. Additionally, the MAP NUC (Figure 5(c)) out-
performs the registration-based NUC (Figure 5(d)).

To better illustrate the nature of the errors in the
bias nonuniformity parameters, these errors are shown in
Figure 6 as grayscale images. All of the bias error images are
shown with the same colormap to allow for direct compar-
ison. The middle grayscale value corresponds to no error.
Bright pixels correspond to positive error and dark pixels cor-
respond to negative error. The errors shown are for P = 30
frames. The bias error for the joint MAP SR-NUC algorithm
(Lx = Ly = 4) is shown in Figure 6(a). The error for theMAP
NUC algorithm (Lx = Ly = 1) is shown in Figure 6(b). Fi-
nally, the bias error image for the registration-based method
is shown in Figure 6(c). Note that with the joint MAP SR-
NUC algorithm, the bias errors have primarily low-frequency
nature and their magnitudes are relatively small. The MAP
NUC algorithm shows some high-frequency errors, possi-
bly resulting from interpolation errors in the motion model.
Such errors are reduced for the joint MAP SR-NUC method
because the interpolation is done on the HR grid. The errors
for the registration-based method include significant low-
and high-frequency components.

4.2. Infrared video

In this section, we present the results obtained by ap-
plying the proposed algorithms to a real FLIR video se-
quence created by panning the camera. The FLIR imager
contains a 640 × 512 infrared FPA produced by L-3 Com-
munications Cincinnati Electronics. The FPA is composed
of Indium-Antimonide (InSb) detectors with a wavelength
spectral response of 3 μm–5 μm and it produces 14-bit data.
The individual detectors are set on a 0.028mm pitch, yield-
ing a sampling frequency of 35.7 cycles/mm. The system is
equipped with an f /4 lens, yielding a cutoff frequency of
62.5 cycles/mm (undersampled by a factor of 3.5×).

The full first raw frame is shown in Figure 7(a) and a cen-
ter 128 × 128 region of interest is shown in Figure 7(b). The
output of the joint MAP SR-NUC algorithm for Lx = Ly = 4
and P = 20 frames is shown in Figure 7(c). Here we use
σn = 5, the typical level of temporal noise; σz = 300, the stan-
dard deviation of the first observed LR frame; and σb = 100,
the standard deviation of the biases from a prior factory cor-
rection. We have observed that the MAP algorithm is not
highly sensitive to these parameters and their relative values
are all that impact the result. Here the motion parameters
are estimated from the observed imagery using the registra-
tion technique detailed in [38, 39] with a lowpass prefilter to
reduce the effects of the nonuniformity on the registration
accuracy [19, 32, 37].

The first LR frame corrected with the estimated biases is
shown in Figure 7(d). The first LR frame corrected using the
estimated bias followed by bilinear interpolation is shown
in Figure 7(e). Note that the MAP SR-NUC image provides

more details, including sufficient details to read the lettering
on the side of the truck, than the image obtained using bilin-
ear interpolation.

5. CONCLUSIONS

In this paper, we have developed a MAP estimation frame-
work to jointly estimate an SR image and bias nonunifor-
mity parameters from a sequence of observed frames. We use
Gaussian priors for the HR image, biases, and noise. We em-
ploy a gradient descent optimization and estimate the mo-
tion parameters prior to the MAP algorithm. Here we esti-
mate translation and rotation parameters using the method
described in [38, 39].

We have demonstrated that superior results are possible
with the joint method compared with comparable processing
using independent NUC and SR. The bias errors were con-
sistently lower for the joint MAP estimator with any number
of input frames tested. The HR image errors were lower in
our simulated image results using the joint MAP estimator
when fewer than 30 frames were used. Our results suggest
that a synergy exists between the SR and NUC estimation
algorithms. In particular, the interpolation used for NUC is
enhanced by the SR and the SR is enhanced by the NUC. The
proposedMAP algorithm can be applied with or without SR,
depending on the application and computational resources
available. Even without SR, we believe that the proposed al-
gorithm represents a novel and promising scene-based NUC
technique. We are currently exploring nonuniformity mod-
els with gains and biases, more sophisticated prior models,
alternative optimization strategies to enhance performance,
and real-time implementation architectures based on this al-
gorithm.
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